Effect of Carbon-Doped Cu(Ni) Alloy Film for Barrierless Copper Interconnect
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, B.; Chen, H.; Asempah, I.; Wang, J.; Zhu, Y.; Wan, J.; Jiang, F.; Wang, Z.; Shui, Y.; Wang, L.; et al. Self-Formed Diffusion Layer in Cu(Re) Alloy Film for Barrierless Copper Metallization. Coatings 2022, 12, 613. [Google Scholar] [CrossRef]
- Kim, J.; Rhee, H.; Son, M.W.; Park, J.; Kim, G.; Jeon, J.B.; Song, H.; Kim, G.; Park, B.G.; Han, J.H.; et al. Electromigration Reliability of Barrierless Ruthenium and Molybdenum for Sub-10 nm Interconnection. ACS Appl. Electron. Mater. 2023, 5, 2447–2453. [Google Scholar] [CrossRef]
- Joi, A.; Lesniewska, A.; Dictus, D.; Tso, K.C.; Venkatraman, K.; Dordi, Y.; Croes, K.; Tokei, Z.; Yadav, S.K.; Wu, P.W. Doped Ru to enable next generation barrier-less interconnect. J. Appl. Phys. 2022, 132, 175704. [Google Scholar] [CrossRef]
- Zhu, H.; Fu, Z.; Xie, Q.; Yue, W.; Wang, C.; Kang, J.; Zhu, L. Effect of deposition temperature on thermal stabilities of copper-carbon films in barrier-less Cu metallization. Appl. Surf. Sci. 2018, 427, 276–281. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, F.; Liu, Y.T.; Ding, M.H. Investigation of Zr-Si-N/Zr bilayered film as diffusion barrier for Cu ultralarge scale integration metallization. Appl. Phys. Lett. 2008, 92, 032108. [Google Scholar] [CrossRef]
- Gall, D. The Search for the Most Conductive Metal for Narrow Interconnect Lines. J. Appl. Phys. 2020, 127, 050901. [Google Scholar] [CrossRef]
- Kohn, A.; Eizenberg, M.; Shacham-Diamand, Y. Copper grain boundary diffusion in electroless deposited cobalt based films and its influence on diffusion barrier integrity for copper metallization. J. Appl. Phys. 2003, 94, 3015. [Google Scholar] [CrossRef]
- Wang, L.; Asempah, I.; Dong, S.-T.; Yin, P.-P.; Jin, L. Quantitative studies of electric field intensity on atom diffusion of Cu/Ta/Si stacks during annealing. Appl. Surf. Sci. 2017, 399, 215–219. [Google Scholar] [CrossRef]
- Wang, L.; Jin, L.; Yu, L.H.; Dong, S.T.; Chen, J.; Xu, J.H. Evaluation of electric field intensity on atom diffusion of Cu/Ta/Si stacks during annealing. Appl. Phys. A 2016, 122, 3. [Google Scholar] [CrossRef]
- Damayanti, M.; Sritharan, T.; Mhaisalkar, S.G.; Phoon, E.; Chan, L. Study of Ru barrier failure in the Cu/Ru/Si system. Mater. Res. 2011, 22, 2505–2511. [Google Scholar] [CrossRef]
- Lin, P.C.; Chen, H.; Hsieh, H.C.; Tseng, T.-H.; Lee, H.Y.; Wu, A.T. Co-sputtered Cu(Ti) thin alloy film for formation of Cu diffusion and chip-level bonding. Mater. Chem. Phys. 2018, 211, 17–22. [Google Scholar] [CrossRef]
- Park, J.-H.; Han, D.-S.; Kim, K.-D.; Park, J.-W. Effects of plasma pretreatment on the process of self-forming Cu–Mn alloy barriers for Cu interconnects. AIP Adv. 2018, 8, 025007. [Google Scholar] [CrossRef]
- Josell, D.; Brongersma, S.H.; Tőkei, Z. Size-Dependent Resistivity in Nanoscale Interconnects. Ann. Rev. Mater. Res. 2009, 39, 231–254. [Google Scholar] [CrossRef]
- Chen, S.-T.; Liu, Y.-Y.; Chen, G.-S. Ultrathin cobalt-alloyed barrier layers for copper metallization by a new seeding and electroless-deposition process. Appl. Surf. Sci. 2015, 354, 144–147. [Google Scholar] [CrossRef]
- Kim, C.; Kang, G.; Jung, Y.; Kim, J.Y.; Lee, G.B.; Hong, D.; Lee, Y.; Hwang, S.G.; Jung, I.H.; Joo, Y.C. Robust Co alloy design for Co interconnects using a self-forming barrier layer. Sci. Rep. 2022, 12, 12291. [Google Scholar] [CrossRef]
- Joi, A.; Venkatraman, K.; Tso, K.-C.; Dictus, D.; Dordi, Y.; Wu, P.-W.; Pao, C.-W.; Akolkar, R. Interface Engineering Strategy Utilizing Electrochemical ALD of Cu-Zn for Enabling Metallization of Sub-10 nm Semiconductor Device Nodes. ECS J. Solid State Sci. Technol. 2019, 8, 516–521. [Google Scholar] [CrossRef]
- Lin, C.-H. Newly-Developed Cu(NbZrNx) Copper-Alloy Films for Microelectronic Manufacture Advancement. Mater. Trans. 2022, 63, 1080–1086. [Google Scholar] [CrossRef]
- Lin, C.-H. A new Cu(NbCNx) film and some of its characteristics. Microelectron. Eng. 2020, 223, 111217. [Google Scholar] [CrossRef]
- Hu, C.K.; Kelly, J.; Huang, H.; Motoyama, K.; Shobha, H.; Ostrovski, Y.; Chen, J.H.C.; Patlolla, R.; Peethala, B.; Adusumilli, P.; et al. Future On-Chip Interconnect Metallization and Electromigration. In Proceedings of the 2018 IEEE International Reliability Physics Symposium, Burlingame, CA, USA, 11–15 March 2018; pp. 4F.11–4F.16. [Google Scholar]
- Cao, F.; Wang, Y.; Li, F.-Y.; Tang, B.-H. Evaluation of Cu(Ti) and Cu(Zr) alloys in barrier-less Cu metallization. Mater. Chem. Phys. 2018, 217, 412–420. [Google Scholar] [CrossRef]
- Li, Z.M.; Meng, W.L.; Hu, Y.L.; Zheng, Y.H.; Liu, R.W.; Li, J.S.; Liu, T.; Liu, Q.; Li, X.N. Differential effects of Sn and Si solutes on the microstructure and properties of Cu–Ni–Al alloys with coherent L12-γ′ phases. Vacuum 2023, 215, 112355. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Du, C.; Du, Y.; Zheng, Z.; Liu, S.; Premovic, M.; Hu, J.; Xie, M. Diffusivity and atomic mobility in fcc Cu–Mn–Si alloys: Measurements and modeling by CALTPP program. J. Mater. Sci. 2022, 57, 5241–5257. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, X.; Cheng, X.; Li, Z.; Liu, Y.; Dong, C. Enhanced thermal stability of Cu alloy films by strong interaction between Ni and Zr (or Fe). J. Phys. D Appl. Phys. 2018, 51, 135304. [Google Scholar] [CrossRef]
- Li, X.; Cheng, B.; Asempah, I.; Shi, Q.; Long, A.Q.; Zhu, Y.L.; Wang, Q.; Li, Y.L.; Wang, L.; Jin, L. Effect of Different Ni Contents on Thermal Stability of Cu(Ni) Alloy Film. J. Electron. Mater. 2020, 49, 5674–5680. [Google Scholar] [CrossRef]
- Nie, L.F.; Li, X.N.; Chu, J.P.; Wang, Q.; Lin, C.H.; Dong, C. High thermal stability and low electrical resistivity carbon-containing Cu film on barrierless Si. Appl. Phys. Lett. 2010, 96, 182105. [Google Scholar] [CrossRef]
- Li, X.N.; Liu, L.J.; Zhang, X.Y.; Chu, J.P.; Wang, Q.; Dong, C. Barrierless Cu-Ni-Mo Interconnect Films with High Thermal Stability Against Silicide Formation. J. Electron. Mater. 2012, 41, 3447–3452. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, B.-H.; Li, F.-Y. The properties of self-formed diffusion barrier layer in Cu(Cr) alloy. Vacuum 2016, 126, 51–54. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, H.; Li, Y. Diffusion barrier performance of nanoscale TaNx thin-film. Trans. Nonferrous Met. Soc. China 2007, 17, 733–738. [Google Scholar] [CrossRef]
- Mansour, A.N. Nickel Mg Kα XPS Spectra from the Physical Electronics Model 5400 Spectrometer. Surf. Sci. Spectra 1994, 3, 211–220. [Google Scholar] [CrossRef]
- Khawaja, E.E.; Salim, M.A.; Khan, M.A.; Al-Adel, F.F.; Khattak, G.D.; Hussain, Z. XPS, auger, electrical and optical studies of vanadium phosphate glasses doped with nickel oxide. J. Non-Cryst. Solids 1989, 110, 33–43. [Google Scholar] [CrossRef]
- Hagio, T.; Takase, A.; Umebayashi, S. X-ray photoelectron spectroscopic studies of β-sialons. J. Mater. Sci. Lett. 1992, 11, 878–880. [Google Scholar] [CrossRef]
- Montero, I.; Galán, L.; de la Cal, E.; Albella, J.M.; Pivin, J.C. Incorporation of OH radicals in anodic silicon oxide films studied by secondary-ion mass spectroscopy, X-ray photoelectron spectroscopy and ir analysis. Thin Solid Films 1990, 193–194, 325–332. [Google Scholar] [CrossRef]
- Miller, A.C.; Simmons, G.W. Copper by XPS. Surf. Sci. Spectra 1993, 2, 55–60. [Google Scholar] [CrossRef]
- Maroie, S.; Haemers, G.; Verbist, J.J. Surface oxidation of polycrystalline α(75%Cu/25%Zn) and β(53%Cu/47%Zn) brass as studied by XPS: Influence of oxygen pressure. Appl. Surf. Sci. 1984, 17, 463–467. [Google Scholar] [CrossRef]
- Contarini, S.; Howlett, S.P.; Rizzo, C.; De Angelis, B.A. XPS study on the dispersion of carbon additives in silicon carbide powders. Appl. Surf. Sci. 1991, 51, 177–183. [Google Scholar] [CrossRef]
- Miller, M.L.; Linton, R.W. X-ray photoelectron spectroscopy of thermally treated silica (SiO2) surfaces. Anal. Chem. 2002, 57, 2314–2319. [Google Scholar] [CrossRef]
- Robert, T.; Bartel, M.; Offergeld, G. Characterization of oxygen species adsorbed on copper and nickel oxides by X-ray photoelectron spectroscopy. Surf. Sci. 1972, 33, 123–130. [Google Scholar] [CrossRef]
Area | Element Content (at.%) | ||
---|---|---|---|
Cu | Ni | Si | |
1 | 68.23 | 5.56 | 26.21 |
2 | 47.62 | 6.02 | 46.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Guo, X.; Dong, S.; Qiao, Y.; Chen, J.; Yan, Z.; Shu, R.; Jin, L. Effect of Carbon-Doped Cu(Ni) Alloy Film for Barrierless Copper Interconnect. Coatings 2024, 14, 68. https://doi.org/10.3390/coatings14010068
Wang L, Guo X, Dong S, Qiao Y, Chen J, Yan Z, Shu R, Jin L. Effect of Carbon-Doped Cu(Ni) Alloy Film for Barrierless Copper Interconnect. Coatings. 2024; 14(1):68. https://doi.org/10.3390/coatings14010068
Chicago/Turabian StyleWang, Lei, Xu Guo, Songtao Dong, Yanxin Qiao, Jian Chen, Zhen Yan, Rong Shu, and Lei Jin. 2024. "Effect of Carbon-Doped Cu(Ni) Alloy Film for Barrierless Copper Interconnect" Coatings 14, no. 1: 68. https://doi.org/10.3390/coatings14010068
APA StyleWang, L., Guo, X., Dong, S., Qiao, Y., Chen, J., Yan, Z., Shu, R., & Jin, L. (2024). Effect of Carbon-Doped Cu(Ni) Alloy Film for Barrierless Copper Interconnect. Coatings, 14(1), 68. https://doi.org/10.3390/coatings14010068