Effect of Carbon-Doped Cu(Ni) Alloy Film for Barrierless Copper Interconnect
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, B.; Chen, H.; Asempah, I.; Wang, J.; Zhu, Y.; Wan, J.; Jiang, F.; Wang, Z.; Shui, Y.; Wang, L.; et al. Self-Formed Diffusion Layer in Cu(Re) Alloy Film for Barrierless Copper Metallization. Coatings 2022, 12, 613. [Google Scholar] [CrossRef]
- Kim, J.; Rhee, H.; Son, M.W.; Park, J.; Kim, G.; Jeon, J.B.; Song, H.; Kim, G.; Park, B.G.; Han, J.H.; et al. Electromigration Reliability of Barrierless Ruthenium and Molybdenum for Sub-10 nm Interconnection. ACS Appl. Electron. Mater. 2023, 5, 2447–2453. [Google Scholar] [CrossRef]
- Joi, A.; Lesniewska, A.; Dictus, D.; Tso, K.C.; Venkatraman, K.; Dordi, Y.; Croes, K.; Tokei, Z.; Yadav, S.K.; Wu, P.W. Doped Ru to enable next generation barrier-less interconnect. J. Appl. Phys. 2022, 132, 175704. [Google Scholar] [CrossRef]
- Zhu, H.; Fu, Z.; Xie, Q.; Yue, W.; Wang, C.; Kang, J.; Zhu, L. Effect of deposition temperature on thermal stabilities of copper-carbon films in barrier-less Cu metallization. Appl. Surf. Sci. 2018, 427, 276–281. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, F.; Liu, Y.T.; Ding, M.H. Investigation of Zr-Si-N/Zr bilayered film as diffusion barrier for Cu ultralarge scale integration metallization. Appl. Phys. Lett. 2008, 92, 032108. [Google Scholar] [CrossRef]
- Gall, D. The Search for the Most Conductive Metal for Narrow Interconnect Lines. J. Appl. Phys. 2020, 127, 050901. [Google Scholar] [CrossRef]
- Kohn, A.; Eizenberg, M.; Shacham-Diamand, Y. Copper grain boundary diffusion in electroless deposited cobalt based films and its influence on diffusion barrier integrity for copper metallization. J. Appl. Phys. 2003, 94, 3015. [Google Scholar] [CrossRef]
- Wang, L.; Asempah, I.; Dong, S.-T.; Yin, P.-P.; Jin, L. Quantitative studies of electric field intensity on atom diffusion of Cu/Ta/Si stacks during annealing. Appl. Surf. Sci. 2017, 399, 215–219. [Google Scholar] [CrossRef]
- Wang, L.; Jin, L.; Yu, L.H.; Dong, S.T.; Chen, J.; Xu, J.H. Evaluation of electric field intensity on atom diffusion of Cu/Ta/Si stacks during annealing. Appl. Phys. A 2016, 122, 3. [Google Scholar] [CrossRef]
- Damayanti, M.; Sritharan, T.; Mhaisalkar, S.G.; Phoon, E.; Chan, L. Study of Ru barrier failure in the Cu/Ru/Si system. Mater. Res. 2011, 22, 2505–2511. [Google Scholar] [CrossRef]
- Lin, P.C.; Chen, H.; Hsieh, H.C.; Tseng, T.-H.; Lee, H.Y.; Wu, A.T. Co-sputtered Cu(Ti) thin alloy film for formation of Cu diffusion and chip-level bonding. Mater. Chem. Phys. 2018, 211, 17–22. [Google Scholar] [CrossRef]
- Park, J.-H.; Han, D.-S.; Kim, K.-D.; Park, J.-W. Effects of plasma pretreatment on the process of self-forming Cu–Mn alloy barriers for Cu interconnects. AIP Adv. 2018, 8, 025007. [Google Scholar] [CrossRef]
- Josell, D.; Brongersma, S.H.; Tőkei, Z. Size-Dependent Resistivity in Nanoscale Interconnects. Ann. Rev. Mater. Res. 2009, 39, 231–254. [Google Scholar] [CrossRef]
- Chen, S.-T.; Liu, Y.-Y.; Chen, G.-S. Ultrathin cobalt-alloyed barrier layers for copper metallization by a new seeding and electroless-deposition process. Appl. Surf. Sci. 2015, 354, 144–147. [Google Scholar] [CrossRef]
- Kim, C.; Kang, G.; Jung, Y.; Kim, J.Y.; Lee, G.B.; Hong, D.; Lee, Y.; Hwang, S.G.; Jung, I.H.; Joo, Y.C. Robust Co alloy design for Co interconnects using a self-forming barrier layer. Sci. Rep. 2022, 12, 12291. [Google Scholar] [CrossRef]
- Joi, A.; Venkatraman, K.; Tso, K.-C.; Dictus, D.; Dordi, Y.; Wu, P.-W.; Pao, C.-W.; Akolkar, R. Interface Engineering Strategy Utilizing Electrochemical ALD of Cu-Zn for Enabling Metallization of Sub-10 nm Semiconductor Device Nodes. ECS J. Solid State Sci. Technol. 2019, 8, 516–521. [Google Scholar] [CrossRef]
- Lin, C.-H. Newly-Developed Cu(NbZrNx) Copper-Alloy Films for Microelectronic Manufacture Advancement. Mater. Trans. 2022, 63, 1080–1086. [Google Scholar] [CrossRef]
- Lin, C.-H. A new Cu(NbCNx) film and some of its characteristics. Microelectron. Eng. 2020, 223, 111217. [Google Scholar] [CrossRef]
- Hu, C.K.; Kelly, J.; Huang, H.; Motoyama, K.; Shobha, H.; Ostrovski, Y.; Chen, J.H.C.; Patlolla, R.; Peethala, B.; Adusumilli, P.; et al. Future On-Chip Interconnect Metallization and Electromigration. In Proceedings of the 2018 IEEE International Reliability Physics Symposium, Burlingame, CA, USA, 11–15 March 2018; pp. 4F.11–4F.16. [Google Scholar]
- Cao, F.; Wang, Y.; Li, F.-Y.; Tang, B.-H. Evaluation of Cu(Ti) and Cu(Zr) alloys in barrier-less Cu metallization. Mater. Chem. Phys. 2018, 217, 412–420. [Google Scholar] [CrossRef]
- Li, Z.M.; Meng, W.L.; Hu, Y.L.; Zheng, Y.H.; Liu, R.W.; Li, J.S.; Liu, T.; Liu, Q.; Li, X.N. Differential effects of Sn and Si solutes on the microstructure and properties of Cu–Ni–Al alloys with coherent L12-γ′ phases. Vacuum 2023, 215, 112355. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Du, C.; Du, Y.; Zheng, Z.; Liu, S.; Premovic, M.; Hu, J.; Xie, M. Diffusivity and atomic mobility in fcc Cu–Mn–Si alloys: Measurements and modeling by CALTPP program. J. Mater. Sci. 2022, 57, 5241–5257. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, X.; Cheng, X.; Li, Z.; Liu, Y.; Dong, C. Enhanced thermal stability of Cu alloy films by strong interaction between Ni and Zr (or Fe). J. Phys. D Appl. Phys. 2018, 51, 135304. [Google Scholar] [CrossRef]
- Li, X.; Cheng, B.; Asempah, I.; Shi, Q.; Long, A.Q.; Zhu, Y.L.; Wang, Q.; Li, Y.L.; Wang, L.; Jin, L. Effect of Different Ni Contents on Thermal Stability of Cu(Ni) Alloy Film. J. Electron. Mater. 2020, 49, 5674–5680. [Google Scholar] [CrossRef]
- Nie, L.F.; Li, X.N.; Chu, J.P.; Wang, Q.; Lin, C.H.; Dong, C. High thermal stability and low electrical resistivity carbon-containing Cu film on barrierless Si. Appl. Phys. Lett. 2010, 96, 182105. [Google Scholar] [CrossRef]
- Li, X.N.; Liu, L.J.; Zhang, X.Y.; Chu, J.P.; Wang, Q.; Dong, C. Barrierless Cu-Ni-Mo Interconnect Films with High Thermal Stability Against Silicide Formation. J. Electron. Mater. 2012, 41, 3447–3452. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, B.-H.; Li, F.-Y. The properties of self-formed diffusion barrier layer in Cu(Cr) alloy. Vacuum 2016, 126, 51–54. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, H.; Li, Y. Diffusion barrier performance of nanoscale TaNx thin-film. Trans. Nonferrous Met. Soc. China 2007, 17, 733–738. [Google Scholar] [CrossRef]
- Mansour, A.N. Nickel Mg Kα XPS Spectra from the Physical Electronics Model 5400 Spectrometer. Surf. Sci. Spectra 1994, 3, 211–220. [Google Scholar] [CrossRef]
- Khawaja, E.E.; Salim, M.A.; Khan, M.A.; Al-Adel, F.F.; Khattak, G.D.; Hussain, Z. XPS, auger, electrical and optical studies of vanadium phosphate glasses doped with nickel oxide. J. Non-Cryst. Solids 1989, 110, 33–43. [Google Scholar] [CrossRef]
- Hagio, T.; Takase, A.; Umebayashi, S. X-ray photoelectron spectroscopic studies of β-sialons. J. Mater. Sci. Lett. 1992, 11, 878–880. [Google Scholar] [CrossRef]
- Montero, I.; Galán, L.; de la Cal, E.; Albella, J.M.; Pivin, J.C. Incorporation of OH radicals in anodic silicon oxide films studied by secondary-ion mass spectroscopy, X-ray photoelectron spectroscopy and ir analysis. Thin Solid Films 1990, 193–194, 325–332. [Google Scholar] [CrossRef]
- Miller, A.C.; Simmons, G.W. Copper by XPS. Surf. Sci. Spectra 1993, 2, 55–60. [Google Scholar] [CrossRef]
- Maroie, S.; Haemers, G.; Verbist, J.J. Surface oxidation of polycrystalline α(75%Cu/25%Zn) and β(53%Cu/47%Zn) brass as studied by XPS: Influence of oxygen pressure. Appl. Surf. Sci. 1984, 17, 463–467. [Google Scholar] [CrossRef]
- Contarini, S.; Howlett, S.P.; Rizzo, C.; De Angelis, B.A. XPS study on the dispersion of carbon additives in silicon carbide powders. Appl. Surf. Sci. 1991, 51, 177–183. [Google Scholar] [CrossRef]
- Miller, M.L.; Linton, R.W. X-ray photoelectron spectroscopy of thermally treated silica (SiO2) surfaces. Anal. Chem. 2002, 57, 2314–2319. [Google Scholar] [CrossRef]
- Robert, T.; Bartel, M.; Offergeld, G. Characterization of oxygen species adsorbed on copper and nickel oxides by X-ray photoelectron spectroscopy. Surf. Sci. 1972, 33, 123–130. [Google Scholar] [CrossRef]
Area | Element Content (at.%) | ||
---|---|---|---|
Cu | Ni | Si | |
1 | 68.23 | 5.56 | 26.21 |
2 | 47.62 | 6.02 | 46.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Guo, X.; Dong, S.; Qiao, Y.; Chen, J.; Yan, Z.; Shu, R.; Jin, L. Effect of Carbon-Doped Cu(Ni) Alloy Film for Barrierless Copper Interconnect. Coatings 2024, 14, 68. https://doi.org/10.3390/coatings14010068
Wang L, Guo X, Dong S, Qiao Y, Chen J, Yan Z, Shu R, Jin L. Effect of Carbon-Doped Cu(Ni) Alloy Film for Barrierless Copper Interconnect. Coatings. 2024; 14(1):68. https://doi.org/10.3390/coatings14010068
Chicago/Turabian StyleWang, Lei, Xu Guo, Songtao Dong, Yanxin Qiao, Jian Chen, Zhen Yan, Rong Shu, and Lei Jin. 2024. "Effect of Carbon-Doped Cu(Ni) Alloy Film for Barrierless Copper Interconnect" Coatings 14, no. 1: 68. https://doi.org/10.3390/coatings14010068
APA StyleWang, L., Guo, X., Dong, S., Qiao, Y., Chen, J., Yan, Z., Shu, R., & Jin, L. (2024). Effect of Carbon-Doped Cu(Ni) Alloy Film for Barrierless Copper Interconnect. Coatings, 14(1), 68. https://doi.org/10.3390/coatings14010068