Enhancing Coating Adhesion on Fibre-Reinforced Composite by Femtosecond Laser Texturing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laser Texturing Apparatus
2.2. Coating
3. Results and Discussion
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siddiquee, S.; Hong, M.G.J.; Rahman, M.M. Composite Materials: Applications in Engineering, Biomedicine and Food Science; Siddiquee, S., Hong, M.G.J., Rahman, M.M., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Zhang, J.; Lin, G.; Vaidya, U.; Wang, H. Past, Present and Future Prospective of Global Carbon Fibre Composite Developments and Applications. Compos. B Eng. 2023, 250, 110463. [Google Scholar] [CrossRef]
- Barile, C.; Casavola, C.; de Cillis, F. Mechanical Comparison of New Composite Materials for Aerospace Applications. Compos. B Eng. 2019, 162, 122–128. [Google Scholar] [CrossRef]
- Mike Richardson Coatings for Composites. Available online: https://www.aero-mag.com/coatings-for-composites/ (accessed on 5 May 2023).
- Sala, G. Composite Degradation Due to Fluid Absorption. Compos. Part. B 2000, 31, 357–373. [Google Scholar] [CrossRef]
- Shunmugapriya, K.; Shirish, S.; Kale, G.; Gouda, P.; Jayapal, K. Tamilmani Paints for Aerospace Applications. In Aerospace Materials and Material Technologies; Prasad, N.E., Wanhill, R.J.H., Eds.; Springer: Singapore, 2016; Volume 1, pp. 539–562. [Google Scholar]
- Smith, C.T.G.; Delkowki, M.; Anguita, J.V.; Cox, D.C.; Haas, C.; Silva, S.R.P. Complete Atomic Oxygen and UV Protection for Polymer and Composite Materials in a Low Earth Orbit. ACS Appl. Mater. Interfaces 2021, 13, 6670–6677. [Google Scholar] [CrossRef] [PubMed]
- Prapan, C.; Sukantarat, C.; Maneephrom, T. Painting for Aircraft. Proceedings 2019, 39, 21. [Google Scholar] [CrossRef]
- La Nasa, J.; Blaensdorf, C.; Dolcher, E.; Del Seppia, S.; Micheluz, A.; Modugno, F.; Pamplona, M.; Bonaduce, I. Historical Aircraft Paints: Analytical Pyrolysis for the Identification of Paint Binders Used on Two Messerschmitt Bf 109 Planes. J. Anal. Appl. Pyrolysis 2022, 163, 105468. [Google Scholar] [CrossRef]
- Ghosh, S.K. Functional Coatings and Microencapsulation: A General Perspective; Wiley-VCH: Weinheim, Germany, 2006; p. 357. ISBN 352731296X. [Google Scholar]
- Iroh, J.O.; Zhu, Y.; Shah, K.; Levine, K.; Rajagopalan, R.; Uyar, T.; Donley, M.; Mantz, R.; Johnson, J.; Voevodin, N.N.; et al. Electrochemical Synthesis: A Novel Technique for Processing Multi-Functional Coatings. Prog. Org. Coat. 2003, 47, 365–375. [Google Scholar] [CrossRef]
- Huang, X.; Tepylo, N.; Pommier-Budinger, V.; Budinger, M.; Bonaccurso, E.; Villedieu, P.; Bennani, L. A Survey of Icephobic Coatings and Their Potential Use in a Hybrid Coating/Active Ice Protection System for Aerospace Applications. Progress. Aerosp. Sci. 2019, 105, 74–97. [Google Scholar] [CrossRef]
- Schulz, M.; Sinapius, M. Evaluation of Different Ice Adhesion Tests for Mechanical Deicing Systems. In Proceedings of the SAE Technical Paper 2015-01-2135. 2015. Available online: https://saemobilus.sae.org/content/2015-01-2135/ (accessed on 5 May 2023).
- Zhao, Z.; Chen, H.; Liu, X.; Liu, H.; Zhang, D. Development of High-Efficient Synthetic Electric Heating Coating for Anti-Icing/de-Icing. Surf. Coat. Technol. 2018, 349, 340–346. [Google Scholar] [CrossRef]
- Filburn, T. Anti-Ice and Deice Systems for Wings, Nacelles, and Instruments. In Commercial Aviation in the Jet. Era and the Systems that Make it Possible; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Villeneuve, E.; Samad, A.; Volat, C.; Béland, M.; Lapalme, M. Experimental Investigation of Icing Effects on a Hovering Drone Rotor Performance. Drones 2022, 6, 345. [Google Scholar] [CrossRef]
- See, T.L.; Liu, Z.; Cheetham, S.; Dilworth, S.; Li, L. Laser Abrading of Carbon Fibre Reinforced Composite for Improving Paint Adhesion. Appl. Phys. A Mater. Sci. Process. 2014, 117, 1045–1054. [Google Scholar] [CrossRef]
- Buske, C. Aircraft Painting: Efficient and Environmentally Friendly Pretreatment of Fibre-Composite Materials by Means of Innovative Process Technology. Besser Lack. 2008, 9, 5. [Google Scholar]
- Dillingham, G.; Oakley, B.; Voast, P.J.V.; Shelley, P.H.; Blakley, R.L.; Smith, C.B. Quantitative Detection of Peel Ply Derived Contaminants via Wettability Measurements. J. Adhes. Sci. Technol. 2012, 26, 1563–1571. [Google Scholar] [CrossRef]
- Asgharifar, M.; Kong, F.; Abramovitch, J.; Carlson, B.; Kovacevic, R. Wettability Characterization and Adhesion Enhancement of Arc-Treated Surface of Aluminum Alloys. Int. J. Adv. Manuf. Technol. 2014, 71, 1463–1481. [Google Scholar] [CrossRef]
- Packham, D.E. Surface Energy, Surface Topography and Adhesion. Int. J. Adhes. Adhes. 2003, 23, 437–448. [Google Scholar] [CrossRef]
- Ragoubi, M.; George, B.; Molina, S.; Bienaimé, D.; Merlin, A.; Hiver, J.M.; Dahoun, A. Effect of Corona Discharge Treatment on Mechanical and Thermal Properties of Composites Based on Miscanthus Fibres and Polylactic Acid or Polypropylene Matrix. Compos. Part. A Appl. Sci. Manuf. 2012, 43, 675–685. [Google Scholar] [CrossRef]
- Kanerva, M.; Saarela, O. The Peel Ply Surface Treatment for Adhesive Bonding of Composites: A Review. Int. J. Adhes. Adhes. 2013, 43, 60–69. [Google Scholar] [CrossRef]
- Avcu, E.; Yıldıran Avcu, Y.; Baştan, F.E.; Rehman, M.A.U.; Üstel, F.; Boccaccini, A.R. Tailoring the Surface Characteristics of Electrophoretically Deposited Chitosan-Based Bioactive Glass Composite Coatings on Titanium Implants via Grit Blasting. Prog. Org. Coat. 2018, 123, 362–373. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, H.; Zhu, Z.; Xiang, N.; Wang, Z.; Sun, G. Switchable Wettability Control of Titanium via Facile Nanosecond Laser-Based Surface Texturing. Surf. Interfaces 2021, 24, 101122. [Google Scholar] [CrossRef]
- Pan, Z.; Cheng, F.; Zhao, B. Bio-Inspired Polymeric Structures with Special Wettability and Their Applications: An Overview. Polymer 2017, 9, 725. [Google Scholar] [CrossRef]
- Wilson, A.; Jones, I.; Salamat-Zadeh, F.; Watts, J.F. Laser Surface Modification of Poly(Etheretherketone) to Enhance Surface Free Energy, Wettability and Adhesion. Int. J. Adhes. Adhes. 2015, 62, 69–77. [Google Scholar] [CrossRef]
- Moldovan, E.R.; Doria, C.C.; Ocaña, J.L.; Baltes, L.S.; Stanciu, E.M.; Croitoru, C.; Pascu, A.; Roata, I.C.; Tierean, M.H. Wettability and Surface Roughness Analysis of Laser Surface Texturing of AISI 430 Stainless Steel. Materials 2022, 15, 2955. [Google Scholar] [CrossRef] [PubMed]
- Volpe, A.; Gaudiuso, C.; Di Venere, L.; Licciulli, F.; Giordano, F.; Ancona, A. Direct Femtosecond Laser Fabrication of Superhydrophobic Aluminum Alloy Surfaces with Anti-Icing Properties. Coatings 2020, 10, 587. [Google Scholar] [CrossRef]
- Volpe, A.; Covella, S.; Gaudiuso, C.; Ancona, A. Improving the Laser Texture Strategy to Get Superhydrophobic Aluminum Alloy Surfaces. Coatings 2021, 11, 369. [Google Scholar] [CrossRef]
- De Palo, R.; Volpe, A.; Gaudiuso, C.; Patimisco, P.; Spagnolo, V.; Ancona, A. Threshold Fluence and Incubation during Multi-Pulse Ultrafast Laser Ablation of Quartz. Opt. Express 2022, 30, 44908–44917. [Google Scholar] [CrossRef]
- Costa, H.L.; Schille, J.; Rosenkranz, A. Tailored Surface Textures to Increase Friction—A Review. Friction 2022, 10, 1285–1304. [Google Scholar] [CrossRef]
- Riveiro, A.; Pou, P.; del Val, J.; Comesaña, R.; Arias-González, F.; Lusquiños, F.; Boutinguiza, M.; Quintero, F.; Badaoui, A.; Pou, J. Laser Texturing to Control the Wettability of Materials. Procedia CIRP 2020, 94, 879–884. [Google Scholar] [CrossRef]
- Piscitelli, F.; Tescione, F.; Mazzola, L.; Bruno, G.; Lavorgna, M. On a Simplified Method to Produce Hydrophobic Coatings for Aeronautical Applications. Appl. Surf. Sci. 2019, 472, 71–81. [Google Scholar] [CrossRef]
- Piscitelli, F. Substrate Superhydrophobic and Icephobic Coating, Method for Obtaining It and Substrate Thus Coated. International Patent Application N° PCT/IB2022/062672 2022, 22 December 2022. [Google Scholar]
- Piscitelli, F. Rivestimento Superidrofobico e Ghiacciofobico Di Un Substrato, Metodo per Il Suo Ottenimento e Substrato Così Rivestito. Italian Patent Application N. IT102021000032444, 23 December 2021. [Google Scholar]
- ASTM D7490-13; Standard Test Method for Measurement of the Surface Tension of Solid Coatings, Substrates and Pigments Using Contact Angle Measurements. American Society for Testing and Materials: West Conshohocken, PA, USA, 2013.
- Piscitelli, F.; Chiariello, A.; Dabkowski, D.; Corraro, G.; Marra, F.; Di Palma, L. Superhydrophobic Coatings as Anti-Icing Systems for Small Aircraft. Aerospace 2020, 7, 2. [Google Scholar] [CrossRef]
- Raza, M.S.; Datta, S.; Bule, B.; Saha, P. Parametric Study of Laser Cutting of Carbon Fibre Reinforced Polymer (CFRP) and the Effect of Fibre Orientation on Cutting Quality. Adv. Mater. Process. Technol. 2019, 5, 202–212. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Quã, D. Rough Ideas on Wetting. Phys. A Stat. Mech. Its Appl. 2002, 313, 32–46. [Google Scholar]
- Wang, X.; Zhang, Q. Role of Surface Roughness in the Wettability, Surface Energy and Flotation Kinetics of Calcite. Powder Technol. 2020, 371, 55–63. [Google Scholar] [CrossRef]
- Bormashenko, E.Y. 11. Superhydrophobicity and Superoleophobicity: The Wenzel and Cassie Wetting Regimes. In Physics of Wetting; De Gruyter: Berlin, Germany, 2017; pp. 177–200. [Google Scholar]
- Antonini, C.; Villa, F.; Marengo, M. Oblique Impacts of Water Drops onto Hydrophobic and Superhydrophobic Surfaces: Outcomes, Timing, and Rebound Maps. Exp. Fluids 2014, 55, 1713. [Google Scholar] [CrossRef]
- Backholm, M.; Molpeceres, D.; Vuckovac, M.; Nurmi, H.; Hokkanen, M.J.; Jokinen, V.; Timonen, J.V.I.; Ras, R.H.A. Water Droplet Friction and Rolling Dynamics on Superhydrophobic Surfaces. Commun. Mater. 2020, 1, 64. [Google Scholar] [CrossRef]
- Lambley, H.; Schutzius, T.M.; Poulikakos, D. Superhydrophobic Surfaces for Extreme Environmental Conditions. Proc. Natl. Acad. Sci. USA 2020, 117, 27188–27194. [Google Scholar] [CrossRef]
- Awaja, F.; Gilbert, M.; Kelly, G.; Fox, B.; Pigram, P.J. Adhesion of Polymers. Progress. Polym. Sci. 2009, 34, 948–968. [Google Scholar] [CrossRef]
Wavelength | Pulse Duration | Pulse Energy | Scan Speed | Repetition Rate | Hatch d | Loops L |
---|---|---|---|---|---|---|
1030 nm | 190 fs | 12.5 µJ | 0.5 m/s | 200 kHz | 10 µm | 1-2-3 |
P | L1 | L2 | L3 | |
---|---|---|---|---|
Ra (µm) | ||||
C/O (%) |
P | L1 | L2 | L3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
H2O | D | F | H2O | D | F | H2O | D | F | H2O | D | F | |
CONTACT ANGLE [°] | 52 ± 4 | 28 ± 3 | 35 ± 3 | 45 ± 10 | 17 ± 3 | 29 ± 8 | 31 ± 4 | 13 ± 3 | 22 ± 5 | 25 ± 6 | 13 ± 3 | 22 ± 1 |
SFE [mN/m] | 57.0 | 68.1 | 73.3 | 74.0 |
# CLEANING STEP | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 5 | 10 | 20 | |||||||||
CONTACT ANGLE [DEG] | H2O | D | F | H2O | D | F | H2O | D | F | H2O | D | F |
C | 165 ± 3 | 137 ± 8 | 141 ± 8 | 139 ± 7 | 89 ± 8 | 126 ± 6 | 132 ± 2 | 88 ± 3 | 128 ± 2 | 126 ± 5 | 86 ± 7 | 125 ± 8 |
L1-C | 161 ± 3 | 136 ± 6 | 150 ± 5 | 144 ± 7 | 105 ± 9 | 134 ± 7 | 140 ± 1 | 111 ± 6 | 127 ± 3 | 133 ± 1 | 110 ± 12 | 120 ± 2 |
L2-C | 156 ± 5 | 130 ± 8 | 147 ± 7 | 137 ± 3 | 111 ± 7 | 140 ± 6 | 142 ± 4 | 104 ± 2 | 126 ± 5 | 134 ± 3 | 101 ± 12 | 123 ± 4 |
L3-C | 155 ± 8 | 125 ± 7 | 144 ± 8 | 146 ± 4 | 97 ± 12 | 138 ± 3 | 144 ± 6 | 111 ± 14 | 128 ± 5 | 140 ± 3 | 96 ± 7 | 133 ± 6 |
# CLEANING STEP | 0 | 5 | 10 | 20 |
---|---|---|---|---|
SFE [m/N/m] | ||||
C | 2.0 | 6.5 | 6.5 | 11.4 |
L1-C | 0.5 | 4.0 | 5.5 | 7.5 |
L2-C | 0.8 | 3.2 | 5.0 | 5.8 |
L3-C | 1.5 | 3.0 | 4.2 | 5.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piscitelli, F.; De Palo, R.; Volpe, A. Enhancing Coating Adhesion on Fibre-Reinforced Composite by Femtosecond Laser Texturing. Coatings 2023, 13, 928. https://doi.org/10.3390/coatings13050928
Piscitelli F, De Palo R, Volpe A. Enhancing Coating Adhesion on Fibre-Reinforced Composite by Femtosecond Laser Texturing. Coatings. 2023; 13(5):928. https://doi.org/10.3390/coatings13050928
Chicago/Turabian StylePiscitelli, Filomena, Raffaele De Palo, and Annalisa Volpe. 2023. "Enhancing Coating Adhesion on Fibre-Reinforced Composite by Femtosecond Laser Texturing" Coatings 13, no. 5: 928. https://doi.org/10.3390/coatings13050928
APA StylePiscitelli, F., De Palo, R., & Volpe, A. (2023). Enhancing Coating Adhesion on Fibre-Reinforced Composite by Femtosecond Laser Texturing. Coatings, 13(5), 928. https://doi.org/10.3390/coatings13050928