A Transparent, and Self-Healable Strain-Sensor E-Skin Based on Polyurethane Membrane with Silver Nanowires
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of PU
2.3. Preparation of AgNWs
2.4. Preparation of the Strain-Sensor E-Skin
2.5. Measurements and Characterizations
3. Results and Discussion
3.1. Measurements and Characterizations of Flexible Film
3.2. Performance Testing of the E-Skin
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
E-skin | Electronic skin |
PU | Polyurethane |
AgNWs | Sliver nanowires |
GF | Gauge factor |
HDI | Hexamethylene diisocyanate |
PTMEG | Polytetramethylene ether glycol |
TBBPA | 3,5,3′,5′-Tetrabromobisphenol A |
PG | Propyl gallate |
DBTDL | Dibutyltin dilaurate |
References
- Wang, W.; Yan, Y. Suboptimal health: A new health dimension for translational medicine. Clin. Transl. Med. 2012, 1, 28. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bi, J.; Huang, Y.; Xiao, Y.; Cheng, J.; Li, F.; Wang, T.; Chen, J.; Wu, L.; Liu, Y.; Luo, R.; et al. Association of lifestyle factors and suboptimal health status: A cross-sectional study of Chinese students. BMJ Open 2014, 4, e005156. [Google Scholar] [CrossRef][Green Version]
- Strommer, E.; Kaartinen, J.; Parkka, J.; Ylisaukko-Oja, A.; Korhonen, I. Application of near field communication for health monitoring in daily life. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2006, 2006, 3246–3249. [Google Scholar] [CrossRef]
- Yi, T.H.; Li, H.N.; Gu, M. Optimal sensor placement for structural health monitoring based on multiple optimization strategies. Struct. Des. Tall. Spec. 2011, 20, 881–900. [Google Scholar] [CrossRef]
- Chen, X.; Villa, N.S.; Zhuang, Y.F.; Chen, L.Z.; Wang, T.F.; Li, Z.D.; Kong, T.T. Stretchable Supercapacitors as Emergent Energy Storage Units for Health Monitoring Bioelectronics. Adv. Energy Mater. 2020, 10, 1902769. [Google Scholar] [CrossRef]
- Chang, F.Y.; Wang, R.H.; Yang, H.; Lin, Y.H.; Chen, T.M.; Huang, S.J. Flexible strain sensors fabricated with carbon nano-tube and carbon nano-fiber composite thin films. Thin Solid Film. 2010, 518, 7343–7347. [Google Scholar] [CrossRef]
- Xu, S.H.; Fan, Z.; Yang, S.T.; Zhao, Y.P.; Pan, L.J. Flexible, self-powered and multi-functional strain sensors comprising a hybrid of carbon nanocoils and conducting polymers. Chem. Eng. J. 2021, 404, 126064. [Google Scholar] [CrossRef]
- He, J.; Zhou, R.H.; Zhang, Y.F.; Gao, W.C.; Chen, T.; Mai, W.J.; Pan, C.F. Strain-Insensitive Self-Powered Tactile Sensor Arrays Based on Intrinsically Stretchable and Patternable Ultrathin Conformal Wrinkled Graphene-Elastomer Composite. Adv. Funct. Mater. 2022, 32, 2107281. [Google Scholar] [CrossRef]
- Zhang, J.P.; Hu, Y.; Zhang, L.A.; Zhou, J.P.; Lu, A. Transparent, Ultra-Stretching, Tough, Adhesive Carboxyethyl Chitin/Polyacrylamide Hydrogel Toward High-Performance Soft Electronics. Nano-Micro Lett. 2023, 15, 8. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Wang, X.; Xia, Y.F.; Zhu, Y.; Zhu, S.L.; Jia, C.Y.; Guo, W.Y.; Li, Q.Q.; Yan, Z.G. Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy 2022, 95, 106967. [Google Scholar] [CrossRef]
- Bai, Z.X.; Wang, X.C.; Zheng, M.H.; Yue, O.Y.; Huang, M.C.; Zou, X.L.; Cui, B.Q.; Xie, L.; Dong, S.Y.; Shang, J.J.; et al. Mechanically Robust and Transparent Organohydrogel-Based E-Skin Nanoengineered from Natural Skin. Adv. Funct. Mater. 2023, 33, 2212856. [Google Scholar] [CrossRef]
- Pei, D.F.; Yu, S.Y.; Zhang, X.F.; Chen, Y.J.; Li, M.J.; Li, C.X. Zwitterionic dynamic elastomer with high ionic conductivity for self-adhesive and transparent electronic skin. Chem. Eng. J. 2022, 445, 136741. [Google Scholar] [CrossRef]
- Wu, H.; Hu, L.B.; Rowell, M.W.; Kong, D.S.; Cha, J.J.; McDonough, J.R.; Zhu, J.; Yang, Y.A.; McGehee, M.D.; Cui, Y. Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode. Nano Lett. 2010, 10, 4242–4248. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Tang, Z.; Tian, D.; Liu, K.Y.; Wu, W. A self-healing flexible transparent conductor made of copper nanowires and polyurethane. Mater. Res. Bull. 2017, 90, 175–181. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Wang, N.; Li, C.Z. Highly stretchable and transparent triboelectric nanogenerator based on multilayer structured stable electrode for self-powered wearable sensor. Nano Energy 2020, 78, 105385. [Google Scholar] [CrossRef]
- Cha, S.; Kim, I.; Lee, E.; Jang, E.; Cho, G. AgNW Treated PU Nanofiber/PDMS Composites as Wearable Strain Sensors for Joint Flexion Monitoring. Fiber Polym. 2020, 21, 2479–2484. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, Y.X.; Wang, W.; Yu, D. A wearable strain sensor based on polyurethane nanofiber membrane with silver nanowires/polyaniline electrically conductive dual-network. Colloids Surf. A 2021, 629, 127477. [Google Scholar] [CrossRef]
- Li, X.-P.; Li, Y.; Li, X.; Song, D.; Min, P.; Hu, C.; Zhang, H.-B.; Koratkar, N.; Yu, Z.-Z. Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets. J. Colloid Interface Sci. 2019, 542, 54–62. [Google Scholar] [CrossRef]
- Li, H.; Ding, G.; Yang, Z. A High Sensitive Flexible Pressure Sensor Designed by Silver Nanowires Embedded in Polyimide (AgNW-PI). Micromachines 2019, 10, 206. [Google Scholar] [CrossRef][Green Version]
- Feng, W.; Chen, Y.; Wang, W.; Yu, D. A waterproof and breathable textile pressure sensor with high sensitivity based on PVDF/ZnO hierarchical structure. Colloids Surf. A Physicochem. Eng. Asp. 2022, 633, 127890. [Google Scholar] [CrossRef]
- Liu, L.L.; Chen, S.X.; Xu, A.C.; Cai, G.M. Manufacturing High Sensitive Strain Sensor of Polyurethane Nanofiber Mat/AgNWs by Simple Dip-dry Method. Fiber Polym. 2020, 21, 359–365. [Google Scholar] [CrossRef]
- Cui, T.; Qiao, Y.; Li, D.; Huang, X.; Yang, L.; Yan, A.; Chen, Z.; Xu, J.; Tan, X.; Jian, J.; et al. Multifunctional, breathable MXene-PU mesh electronic skin for wearable intelligent 12-lead ECG monitoring system. Chem. Eng. J. 2023, 455, 140690. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.; Zhou, Y.; Dong, F.; Liu, H.; Xu, X. A self-healing and antibacterial electronic skin based on a natural small molecule. J. Mater. Chem. C 2023, 11, 1879–1890. [Google Scholar] [CrossRef]
- Prabhakar, P.K.; Raj, S.; Anuradha, P.R.; Sawant, S.N.; Doble, M. Biocompatibility studies on polyaniline and polyaniline–silver nanoparticle coated polyurethane composite. Colloids Surf. B Biointerfaces 2011, 86, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; Cho, G. Polyurethane Nanofiber Strain Sensors via In-situ Polymerization of Polypyrrole and Application to Monitoring Joint Flexion. Smart Mater. Struct. 2018, 27, 075006. [Google Scholar] [CrossRef]
- Sharma, S.; Mishra, S.S.; Kumar, R.; Yadav, R.M. Recent progress on polyvinylidene difluoride-based nanocomposites: Applications in energy harvesting and sensing. New J. Chem. 2022, 46, 18613–18646. [Google Scholar] [CrossRef]
- Shi, K.M.; Sun, B.; Huang, X.Y.; Jiang, P.K. Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators. Nano Energy 2018, 52, 153–162. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, H.; Xie, G.Z.; Jiang, Y.D.; Chen, C.X.; Su, Y.J.; Wang, Y.; Tai, H.L. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring. Sens. Actuators A Phys. 2020, 301, 111789. [Google Scholar] [CrossRef]
- Xu, D.; Su, Y.; Zhao, L.; Meng, F.; Liu, C.; Guan, Y.; Zhang, J.; Luo, J. Antibacterial and antifouling properties of a polyurethane surface modified with perfluoroalkyl and silver nanoparticles. J. Biomed. Mater. Res. Part A 2017, 105, 531–538. [Google Scholar] [CrossRef]
- Haghgoo, M.; Ansari, R.; Kazem Hassanzadeh-Aghdam, M.; Tian, L.; Nankali, M. Analytical formulation of the piezoresistive behavior of carbon nanotube polymer nanocomposites: The effect of temperature on strain sensing performance. Compos. Part A Appl. Sci. Manuf. 2022, 163, 107244. [Google Scholar] [CrossRef]
- Haghgoo, M.; Ansari, R.; Jang, S.-H.; Kazem Hassanzadeh-Aghdam, M.; Nankali, M. Developing a high-efficiency predictive model for self-temperature-compensated piezoresistive properties of carbon nanotube/graphene nanoplatelet polymer-based nanocomposites. Compos. Part A Appl. Sci. Manuf. 2023, 166, 107380. [Google Scholar] [CrossRef]
- Baldelli, A.; Esmeryan, K.D.; Popovicheva, O. Turning a negative into a positive: Trends, guidelines and challenges of developing multifunctional non-wettable coatings based on industrial soot wastes. Fuel 2021, 301, 121068. [Google Scholar] [CrossRef]
- Cuasay, L.O.M.; Salazar, F.L.M.; Balela, M.D.L. Flexible tactile sensors based on silver nanowires: Material synthesis, microstructuring, assembly, performance, and applications. Emergent Mater. 2022, 5, 51–76. [Google Scholar] [CrossRef]
- Du, R.; Jin, Q.; Zhu, T.; Wang, C.; Li, S.; Li, Y.; Huang, X.; Jiang, Y.; Li, W.; Bao, T.; et al. Sliding Cyclodextrin Molecules along Polymer Chains to Enhance the Stretchability of Conductive Composites. Small 2022, 18, 2200533. [Google Scholar] [CrossRef]
- Liu, H.; Wang, F.; Yang, D.; Ou, J.; Baldelli, A. Solar reflective superhydrophobic coatings with phase change function. J. Alloys Compd. 2023, 953, 170021. [Google Scholar] [CrossRef]
- Khatib, M.; Zohar, O.; Saliba, W.; Haick, H. A Multifunctional Electronic Skin Empowered with Damage Mapping and Autonomic Acceleration of Self-Healing in Designated Locations. Adv. Mater. 2020, 32, 2000246. [Google Scholar] [CrossRef]
- Tran, H.; Feig, V.R.; Liu, K.; Zheng, Y.; Bao, Z. Polymer Chemistries Underpinning Materials for Skin-Inspired Electronics. Macromolecules 2019, 52, 3965–3974. [Google Scholar] [CrossRef][Green Version]
- Baldelli, A.; Ou, J.; Barona, D.; Li, W.; Amirfazli, A. Sprayable, Superhydrophobic, Electrically, and Thermally Conductive Coating. Adv. Mater. Interfaces 2021, 8, 1902110. [Google Scholar] [CrossRef]
- Baldelli, A.; Ou, J.; Barona, D.; Li, W.; Amirfazli, A. Conductive Coating: Sprayable, Superhydrophobic, Electrically, and Thermally Conductive Coating (Adv. Mater. Interfaces 2/2021). Adv. Mater. Interfaces 2021, 8, 2170008. [Google Scholar] [CrossRef]
- Liu, R.; Lai, Y.; Li, S.; Wu, F.; Shao, J.; Liu, D.; Dong, X.; Wang, J.; Wang, Z.L. Ultrathin, transparent, and robust self-healing electronic skins for tactile and non-contact sensing. Nano Energy 2022, 95, 107056. [Google Scholar] [CrossRef]
- Chen, B.; Cao, Y.; Li, Q.; Yan, Z.; Liu, R.; Zhao, Y.; Zhang, X.; Wu, M.; Qin, Y.; Sun, C.; et al. Liquid metal-tailored gluten network for protein-based e-skin. Nat. Commun. 2022, 13, 1206. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, L.; Kong, X.; Lu, H.; Wang, C.; Huang, Y.; Wu, M. Fabrication of an ion-enhanced low-temperature tolerant graphene/PAA/KCl hydrogel and its application for skin sensors. Nanoscale 2023, 15, 5938–5947. [Google Scholar] [CrossRef]
- Pan, W.; Wang, J.; Li, Y.-P.; Sun, X.-B.; Wang, J.-P.; Wang, X.-X.; Zhang, J.; You, H.-D.; Yu, G.-F.; Long, Y.-Z. Facile Preparation of Highly Stretchable TPU/Ag Nanowire Strain Sensor with Spring-Like Configuration. Polymers 2020, 12, 339. [Google Scholar] [CrossRef][Green Version]
- Zhang, Y.; Guo, X.; Wang, W.; Chen, L.; Liu, L.; Liu, H.; He, Y. Highly Sensitive, Low Hysteretic and Flexible Strain Sensor Based on Ecoflex-AgNWs- MWCNTs Flexible Composite Materials. IEEE Sens. J. 2020, 20, 14118–14125. [Google Scholar] [CrossRef]
- Li, F.; Xu, Z.; Hu, H.; Kong, Z.; Chen, C.; Tian, Y.; Zhang, W.; Bin Ying, W.; Zhang, R.; Zhu, J. A polyurethane integrating self-healing, anti-aging and controlled degradation for durable and eco-friendly E-skin. Chem. Eng. J. 2021, 410, 128363. [Google Scholar] [CrossRef]
- Yun, Y.; Nandanapalli, K.R.; Choi, J.-H.; Son, W.; Choi, C.; Lee, S. Extremely flexible and mechanically durable planar supercapacitors: High energy density and low-cost power source for E-skin electronics. Nano Energy 2020, 78, 105356. [Google Scholar] [CrossRef]
- Haghgoo, M.; Ansari, R.; Hassanzadeh-Aghdam, M.K. The effect of nanoparticle conglomeration on the overall conductivity of nanocomposites. Int. J. Eng. Sci. 2020, 157, 103392. [Google Scholar] [CrossRef]
- Gu, J.H.; Hu, S.W.; Ji, H.J.; Feng, H.H.; Zhao, W.W.; Wei, J.; Li, M.Y. Multi-layer silver nanowire/polyethylene terephthalate mesh structure for highly efficient transparent electromagnetic interference shielding. Nanotechnology 2020, 31, 185303. [Google Scholar] [CrossRef]
- Sun, Y.G.; Gates, B.; Mayers, B.; Xia, Y.N. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002, 2, 165–168. [Google Scholar] [CrossRef]
- Fahad, S.; Yu, H.; Wang, L.; Liu, J.; Li, S.; Fu, J.; Amin, B.U.; Khan, R.U.; Mehmood, S.; Haq, F.; et al. Synthesis of AgNWs using copper bromide as stabilizing agent and oxygen scavenger and their application in conductive thin films. Mater. Chem. Phys. 2021, 267, 124643. [Google Scholar] [CrossRef]
- Sun, S.J.; Gan, X.P.; Wang, Z.H.; Fu, D.H.; Pu, W.L.; Xia, H.S. Dynamic healable polyurethane for selective laser sintering. Addit. Manuf. 2020, 33, 101176. [Google Scholar] [CrossRef]
- Khan, A.; Huang, K.; Sarwar, M.G.; Rabnawaz, M. High modulus, fluorine-free self-healing anti-smudge coatings. Prog. Org. Coat. 2020, 145, 105703. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, X.B.; Chen, J.T.; Zhao, J.P. Large-size graphene microsheets as a protective layer for transparent conductive silver nanowire film heaters. Carbon 2014, 69, 437–443. [Google Scholar] [CrossRef]
- Li, H.; Chen, Q.M.; Zhang, G.C.; Zhang, Z.; Fang, J.; Zhao, C.W.; Li, W.W. Stable, highly conductive and orthogonal silver nanowire networks via zwitterionic treatment. J. Mater. Chem. A 2022, 11, 158–166. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Feng, S.; Wang, Y.; Li, C.; Bu, X.; Huang, Y.; He, M.; Zhou, Y. A Transparent, and Self-Healable Strain-Sensor E-Skin Based on Polyurethane Membrane with Silver Nanowires. Coatings 2023, 13, 829. https://doi.org/10.3390/coatings13050829
Wang R, Feng S, Wang Y, Li C, Bu X, Huang Y, He M, Zhou Y. A Transparent, and Self-Healable Strain-Sensor E-Skin Based on Polyurethane Membrane with Silver Nanowires. Coatings. 2023; 13(5):829. https://doi.org/10.3390/coatings13050829
Chicago/Turabian StyleWang, Rundong, Shuangjiang Feng, Yanyun Wang, Chengqian Li, Xiaohai Bu, Yuzhong Huang, Man He, and Yuming Zhou. 2023. "A Transparent, and Self-Healable Strain-Sensor E-Skin Based on Polyurethane Membrane with Silver Nanowires" Coatings 13, no. 5: 829. https://doi.org/10.3390/coatings13050829
APA StyleWang, R., Feng, S., Wang, Y., Li, C., Bu, X., Huang, Y., He, M., & Zhou, Y. (2023). A Transparent, and Self-Healable Strain-Sensor E-Skin Based on Polyurethane Membrane with Silver Nanowires. Coatings, 13(5), 829. https://doi.org/10.3390/coatings13050829