Fluorination of TiN, TiO2, and SiO2 Surfaces by HF toward Selective Atomic Layer Etching (ALE)
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kwak, M.Y.; Shin, D.H.; Kang, T.W.; Kim, K.N. Characteristics of TiN Barrier Layer against Cu Diffusion. Thin Solid Films 1999, 339, 290–293. [Google Scholar] [CrossRef]
- Fillot, F.; Morel, T.; Minoret, S.; Matko, I.; Maîtrejean, S.; Guillaumot, B.; Chenevier, B.; Billon, T. Investigations of Titanium Nitride as Metal Gate Material, Elaborated by Metal Organic Atomic Layer Deposition Using TDMAT and NH3. Microelectron. Eng. 2005, 82, 248–253. [Google Scholar] [CrossRef]
- Lee, C.; Kuo, Y.-L. The Evolution of Diffusion Barriers in Copper Metallization. JOM 2007, 59, 44–49. [Google Scholar] [CrossRef]
- Lima, L.P.B.; Moreira, M.A.; Diniz, J.A.; Doi, I. Titanium Nitride as Promising Gate Electrode for MOS Technology. Phys. Status Solidi C 2012, 9, 1427–1430. [Google Scholar] [CrossRef]
- Lee, B.-J.; Kim, Y.-S.; Seo, D.-W.; Choi, J.-W. The Effect of Deposition Temperature of TiN Thin Film Deposition Using Thermal Atomic Layer Deposition. Coatings 2023, 13, 104. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, W. TiN Coating of Tool Steels: A Review. J. Mater. Process. Technol. 1993, 39, 165–177. [Google Scholar] [CrossRef]
- Santecchia, E.; Hamouda, A.M.S.; Musharavati, F.; Zalnezhad, E.; Cabibbo, M.; Spigarelli, S. Wear Resistance Investigation of Titanium Nitride-Based Coatings. Ceram. Int. 2015, 41, 10349–10379. [Google Scholar] [CrossRef]
- Datta, S.; Das, M.; Balla, V.K.; Bodhak, S.; Murugesan, V.K. Mechanical, Wear, Corrosion and Biological Properties of Arc Deposited Titanium Nitride Coatings. Surf. Coat. Technol. 2018, 344, 214–222. [Google Scholar] [CrossRef]
- Saha, N.C.; Tompkins, H.G. Titanium Nitride Oxidation Chemistry: An X-ray Photoelectron Spectroscopy Study. J. Appl. Phys. 1992, 72, 3072–3079. [Google Scholar] [CrossRef]
- Kanarik, K.J.; Lill, T.; Hudson, E.A.; Sriraman, S.; Tan, S.; Marks, J.; Vahedi, V.; Gottscho, R.A. Overview of Atomic Layer Etching in the Semiconductor Industry. J. Vac. Sci. Technol. A 2015, 33, 020802. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Cao, Y.; Wu, D.; Li, A. Thermal Atomic Layer Etching: Mechanism, Materials and Prospects. Prog. Nat. Sci. Mater. Int. 2018, 28, 667–675. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, J.E.; Gill, Y.J.; Jang, Y.J.; Kim, Y.E.; Kim, K.N.; Yeom, G.Y.; Kim, D.W. Anisotropic/Isotropic Atomic Layer Etching of Metals. Appl. Sci. Converg. Technol. 2020, 29, 41–49. [Google Scholar] [CrossRef]
- Fischer, A.; Routzahn, A.; George, S.M.; Lill, T. Thermal Atomic Layer Etching: A Review. J. Vac. Sci. Technol. A 2021, 39, 030801. [Google Scholar] [CrossRef]
- Hwang, I.-H.; Cha, H.-Y.; Seo, K.-S. Low-Damage and Self-Limiting (Al)GaN Etching Process through Atomic Layer Etching Using O2 and BCl3 Plasma. Coatings 2021, 11, 268. [Google Scholar] [CrossRef]
- Fischer, A.; Mui, D.; Routzahn, A.; Gasvoda, R.; Sims, J.; Lill, T. Surface Reaction Modelling of Thermal Atomic Layer Etching on Blanket Hafnium Oxide and Its Application on High Aspect Ratio Structures. J. Vac. Sci. Technol. A 2023, 41, 012601. [Google Scholar] [CrossRef]
- George, S.M. Mechanisms of Thermal Atomic Layer Etching. Acc. Chem. Res. 2020, 53, 1151–1160. [Google Scholar] [CrossRef]
- Lee, Y.; George, S.M. Thermal Atomic Layer Etching of Titanium Nitride Using Sequential, Self-Limiting Reactions: Oxidation to TiO2 and Fluorination to Volatile TiF4. Chem. Mater. 2017, 29, 8202–8210. [Google Scholar] [CrossRef]
- Shinoda, K.; Miyoshi, N.; Kobayashi, H.; Izawa, M.; Ishikawa, K.; Hori, M. Rapid Thermal-Cyclic Atomic-Layer Etching of Titanium Nitride in CHF3/O2 Downstream Plasma. J. Phys. Appl. Phys. 2019, 52, 475106. [Google Scholar] [CrossRef]
- Miyoshi, N.; McDowell, N.; Kobayashi, H. Atomic Layer Etching of Titanium Nitride with Surface Modification by Cl Radicals and Rapid Thermal Annealing. J. Vac. Sci. Technol. A 2022, 40, 032601. [Google Scholar] [CrossRef]
- Shim, D.; Kim, J.; Kim, Y.; Chae, H. Plasma Atomic Layer Etching for Titanium Nitride at Low Temperatures. J. Vac. Sci. Technol. B 2022, 40, 022208. [Google Scholar] [CrossRef]
- Miki, N.; Kikuyama, H.; Kawanabe, I.; Miyashita, M.; Ohmi, T. Gas-Phase Selective Etching of Native Oxide. IEEE Trans. Electron Devices 1990, 37, 107–115. [Google Scholar] [CrossRef]
- Kim, D.H.; Kwak, S.J.; Jeong, J.H.; Yoo, S.; Nam, S.K.; Kim, Y.; Lee, W.B. Molecular Dynamics Simulation of Silicon Dioxide Etching by Hydrogen Fluoride Using the Reactive Force Field. ACS Omega 2021, 6, 16009–16015. [Google Scholar] [CrossRef] [PubMed]
- Neyts, E.C.; Brault, P. Molecular Dynamics Simulations for Plasma-Surface Interactions. Plasma Process. Polym. 2017, 14, 1600145. [Google Scholar] [CrossRef]
- Vanraes, P.; Parayil Venugopalan, S.; Bogaerts, A. Multiscale Modeling of Plasma–Surface Interaction—General Picture and a Case Study of Si and SiO2 Etching by Fluorocarbon-Based Plasmas. Appl. Phys. Rev. 2021, 8, 041305. [Google Scholar] [CrossRef]
- Kondati Natarajan, S.; Elliott, S.D. Modeling the Chemical Mechanism of the Thermal Atomic Layer Etch of Aluminum Oxide: A Density Functional Theory Study of Reactions during HF Exposure. Chem. Mater. 2018, 30, 5912–5922. [Google Scholar] [CrossRef]
- Mullins, R.; Kondati Natarajan, S.; Elliott, S.D.; Nolan, M. Self-Limiting Temperature Window for Thermal Atomic Layer Etching of HfO2 and ZrO2 Based on the Atomic-Scale Mechanism. Chem. Mater. 2020, 32, 3414–3426. [Google Scholar] [CrossRef]
- Basher, A.H.; Krstić, M.; Fink, K.; Ito, T.; Karahashi, K.; Wenzel, W.; Hamaguchi, S. Formation and Desorption of Nickel Hexafluoroacetylacetonate Ni(Hfac)2 on a Nickel Oxide Surface in Atomic Layer Etching Processes. J. Vac. Sci. Technol. A 2020, 38, 052602. [Google Scholar] [CrossRef]
- Clancey, J.W.; Cavanagh, A.S.; Smith, J.E.T.; Sharma, S.; George, S.M. Volatile Etch Species Produced during Thermal Al2O3 Atomic Layer Etching. J. Phys. Chem. C 2020, 124, 287–299. [Google Scholar] [CrossRef]
- Cheng, E.; Hwang, G.S. Dissociative Chemisorption of Methyl Fluoride and Its Implications for Atomic Layer Etching of Silicon Nitride. Appl. Surf. Sci. 2021, 543, 148557. [Google Scholar] [CrossRef]
- Konh, M.; Janotti, A.; Teplyakov, A. Molecular Mechanism of Thermal Dry Etching of Iron in a Two-Step Atomic Layer Etching Process: Chlorination Followed by Exposure to Acetylacetone. J. Phys. Chem. C 2021, 125, 7142–7154. [Google Scholar] [CrossRef]
- Hu, X.; Schuster, J. Chemical Mechanism of AlF3 Etching during AlMe3 Exposure: A Thermodynamic and DFT Study. J. Phys. Chem. C 2022, 126, 7410–7420. [Google Scholar] [CrossRef]
- Mullins, R.; Gutiérrez Moreno, J.J.; Nolan, M. Origin of Enhanced Thermal Atomic Layer Etching of Amorphous HfO2. J. Vac. Sci. Technol. A 2022, 40, 022604. [Google Scholar] [CrossRef]
- Kondati Natarajan, S.; Cano, A.M.; Partridge, J.L.; George, S.M.; Elliott, S.D. Prediction and Validation of the Process Window for Atomic Layer Etching: HF Exposure on TiO2. J. Phys. Chem. C 2021, 125, 25589–25599. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Han, Y.; Liu, P.; Yao, X.; Zhao, H. A Selective Etching Phenomenon on {001} Faceted Anatase Titanium Dioxide Single Crystal Surfaces by Hydrofluoric Acid. Chem. Commun. 2011, 47, 2829–2831. [Google Scholar] [CrossRef] [PubMed]
- Ande, C.K.; Knoops, H.C.M.; de Peuter, K.; van Drunen, M.; Elliott, S.D.; Kessels, W.M.M. Role of Surface Termination in Atomic Layer Deposition of Silicon Nitride. J. Phys. Chem. Lett. 2015, 6, 3610–3614. [Google Scholar] [CrossRef] [PubMed]
- Yusup, L.L.; Park, J.-M.; Noh, Y.-H.; Kim, S.-J.; Lee, W.-J.; Park, S.; Kwon, Y.-K. Reactivity of Different Surface Sites with Silicon Chlorides during Atomic Layer Deposition of Silicon Nitride. RSC Adv. 2016, 6, 68515–68524. [Google Scholar] [CrossRef]
- Choi, W.; Lee, S.; Han, D.-H.; Lim, H.T.; Park, H.; Lee, G.-D. Reaction Mechanisms of Chlorine Reduction on Hydroxylated Alumina in Titanium Nitride Growth: First Principles Study. Appl. Surf. Sci. 2021, 550, 149391. [Google Scholar] [CrossRef]
- Kim, H.-M.; Lee, J.-H.; Lee, S.-H.; Harada, R.; Shigetomi, T.; Lee, S.; Tsugawa, T.; Shong, B.; Park, J.-S. Area-Selective Atomic Layer Deposition of Ruthenium Using a Novel Ru Precursor and H2O as a Reactant. Chem. Mater. 2021, 33, 4353–4361. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J.-M.; Oh, H.; Kim, C.; Kim, J.; Kim, D.H.; Shong, B.; Park, T.J.; Kim, W.-H. Inherently Area-Selective Atomic Layer Deposition of SiO2 Thin Films to Confer Oxide Versus Nitride Selectivity. Adv. Funct. Mater. 2021, 31, 2102556. [Google Scholar] [CrossRef]
- Ta, H.T.T.; Bui, H.V.; Nguyen, V.-H.; Tieu, A.K. Reactions between SiCl4 and H2O on Rutile TiO2 Surfaces in Atomic Layer Deposition of SiO2 by First-Principles Calculations. Surf. Interfaces 2023, 36, 102454. [Google Scholar] [CrossRef]
- Kamphaus, E.P.; Shan, N.; Jones, J.C.; Martinson, A.B.F.; Cheng, L. Selective Hydration of Rutile TiO2 as a Strategy for Site-Selective Atomic Layer Deposition. ACS Appl. Mater. Interfaces 2022, 14, 21585–21595. [Google Scholar] [CrossRef] [PubMed]
- Walle, L.E.; Borg, A.; Johansson, E.M.J.; Plogmaker, S.; Rensmo, H.; Uvdal, P.; Sandell, A. Mixed Dissociative and Molecular Water Adsorption on Anatase TiO2(101). J. Phys. Chem. C 2011, 115, 9545–9550. [Google Scholar] [CrossRef]
- Zhuravlev, L.T. The Surface Chemistry of Amorphous Silica. Zhuravlev Model. Colloids Surf. Physicochem. Eng. Asp. 2000, 173, 1–38. [Google Scholar] [CrossRef]
- Wang, C.; Dai, Y.; Gao, H.; Ruan, X.; Wang, J.; Sun, B. Surface Properties of Titanium Nitride: A First-Principles Study. Solid State Commun. 2010, 150, 1370–1374. [Google Scholar] [CrossRef]
- Imhoff, L.; Bouteville, A.; Remy, J.C. Kinetics of the Formation of Titanium Nitride Layers by Rapid Thermal Low Pressure Chemical Vapor Deposition from TiCl4-NH3-H2. J. Electrochem. Soc. 1998, 145, 1672. [Google Scholar] [CrossRef]
- You, M.S.; Nakanishi, N.; Kato, E. The Equilibrium of the Chemisorption of TiCl4, H2, and N2 on Titanium Nitride. J. Electrochem. Soc. 1991, 138, 1394. [Google Scholar] [CrossRef]
- Marlo, M.; Milman, V. Density-Functional Study of Bulk and Surface Properties of Titanium Nitride Using Different Exchange-Correlation Functionals. Phys. Rev. B 2000, 62, 2899–2907. [Google Scholar] [CrossRef]
- Siodmiak, M.; Govind, N.; Andzelm, J.; Tanpipat, N.; Frenking, G.; Korkin, A. Theoretical Study of Hydrogen Adsorption and Diffusion on TiN(100) Surface. Phys. Status Solidi B 2001, 226, 29–36. [Google Scholar] [CrossRef]
- Phung, Q.M.; Vancoillie, S.; Pourtois, G.; Swerts, J.; Pierloot, K.; Delabie, A. Atomic Layer Deposition of Ruthenium on a Titanium Nitride Surface: A Density Functional Theory Study. J. Phys. Chem. C 2013, 117, 19442–19453. [Google Scholar] [CrossRef]
- Seifitokaldani, A.; Savadogo, O.; Perrier, M. Density Functional Theory (DFT) Computation of the Oxygen Reduction Reaction (ORR) on Titanium Nitride (TiN) Surface. Electrochim. Acta 2014, 141, 25–32. [Google Scholar] [CrossRef]
- Kura, C.; Kunisada, Y.; Tsuji, E.; Zhu, C.; Habazaki, H.; Nagata, S.; Müller, M.P.; De Souza, R.A.; Aoki, Y. Hydrogen Separation by Nanocrystalline Titanium Nitride Membranes with High Hydride Ion Conductivity. Nat. Energy 2017, 2, 786–794. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, Z.; Zhang, X.; Yang, Z. Understanding the Correlation between the Electronic Structure and Catalytic Behavior of TiC(001) and TiN(001) Surfaces: DFT Study. Appl. Surf. Sci. 2019, 494, 57–62. [Google Scholar] [CrossRef]
- Sharma, V.; Kondati Natarajan, S.; Elliott, S.D.; Blomberg, T.; Haukka, S.; Givens, M.E.; Tuominen, M.; Ritala, M. Combining Experimental and DFT Investigation of the Mechanism Involved in Thermal Etching of Titanium Nitride Using Alternate Exposures of NbF5 and CCl4, or CCl4 Only. Adv. Mater. Interfaces 2021, 8, 2101085. [Google Scholar] [CrossRef]
- Fang, Z.; Zhang, Y.; Li, R.; Liang, Y.; Deng, H. An Efficient Approach for Atomic-Scale Polishing of Single-Crystal Silicon via Plasma-Based Atom-Selective Etching. Int. J. Mach. Tools Manuf. 2020, 159, 103649. [Google Scholar] [CrossRef]
- Gerritsen, S.H.; Chittock, N.J.; Vandalon, V.; Verheijen, M.A.; Knoops, H.C.M.; Kessels, W.M.M.; Mackus, A.J.M. Surface Smoothing by Atomic Layer Deposition and Etching for the Fabrication of Nanodevices. ACS Appl. Nano Mater. 2022, 5, 18116–18126. [Google Scholar] [CrossRef]
- Helms, C.R.; Deal, B.E. Mechanisms of the HF/H2O Vapor Phase Etching of SiO2. J. Vac. Sci. Technol. A 1992, 10, 806–811. [Google Scholar] [CrossRef]
- Yu, S.; Zeng, Q.; Oganov, A.R.; Frapper, G.; Zhang, L. Phase Stability, Chemical Bonding and Mechanical Properties of Titanium Nitrides: A First-Principles Study. Phys. Chem. Chem. Phys. 2015, 17, 11763–11769. [Google Scholar] [CrossRef] [Green Version]
TiN | (reaction 1) | |
(reaction 2) | ||
(reaction 3) | ||
(reaction 4) | ||
(reaction 5) | ||
TiO2 | (reaction 6) | |
(reaction 7) | ||
(reaction 8) | ||
(reaction 9) | ||
(reaction 10) | ||
SiO2 | (reaction 11) | |
(reaction 12) | ||
(reaction 13) | ||
(reaction 14) | ||
(reaction 15) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.H.; Oh, H.; Shong, B. Fluorination of TiN, TiO2, and SiO2 Surfaces by HF toward Selective Atomic Layer Etching (ALE). Coatings 2023, 13, 387. https://doi.org/10.3390/coatings13020387
Jung JH, Oh H, Shong B. Fluorination of TiN, TiO2, and SiO2 Surfaces by HF toward Selective Atomic Layer Etching (ALE). Coatings. 2023; 13(2):387. https://doi.org/10.3390/coatings13020387
Chicago/Turabian StyleJung, Ju Hyeon, Hongjun Oh, and Bonggeun Shong. 2023. "Fluorination of TiN, TiO2, and SiO2 Surfaces by HF toward Selective Atomic Layer Etching (ALE)" Coatings 13, no. 2: 387. https://doi.org/10.3390/coatings13020387