The Influence of H Content on the Properties of a-C(W):H Coatings
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matthews, A.; Eskildsen, S.S. Engineering applications for diamond-like carbon. Diam. Relat. Mater. 1994, 3, 902–911. [Google Scholar] [CrossRef]
- Czyzniewski, A. Optimising deposition parameters of W-DLC coatings for tool materials of high speed steel and cemented carbide. Vacuum 2012, 86, 2140–2147. [Google Scholar] [CrossRef]
- Czyzniewski, A. The effect of air humidity on tribological behaviours of W–C:H coatings with different tungsten contents sliding against bearing steel. Wear 2012, 296, 547–557. [Google Scholar] [CrossRef]
- Voevodin, A.A.; Prasad, S.V.; Zabinski, J.S. Nanocrystalline carbide/amorphous carbon composites. J. Appl. Phys. 1997, 82, 855–858. [Google Scholar] [CrossRef]
- Corbella, C.; Oncins, G.; Gómez, M.; Polo, M.; Pascual, E.; García-Céspedes, J.; Andújar, J.; Bertran, E. Structure of diamond-like carbon films containing transition metals deposited by reactive magnetron sputtering. Diam. Relat. Mater. 2005, 14, 1103–1107. [Google Scholar] [CrossRef]
- Nilsson, D.; Svahn, F.; Wiklund, U.; Hogmark, S. Low-friction carbon-rich carbide coatings deposited by co-sputtering. Wear 2003, 254, 1084–1091. [Google Scholar] [CrossRef]
- Meng, W.J.; Gillispie, B.A. Mechanical properties of Ti-containing and W-containing diamond-like carbon coatings. J. Appl. Phys. 1998, 84, 4314–4321. [Google Scholar] [CrossRef]
- Suzuki, M.; Ohana, T.; Tanaka, A. Tribological properties of DLC films with different hydrogen contents in water environment. Diam. Relat. Mater. 2004, 13, 2216–2220. [Google Scholar] [CrossRef]
- Casiraghi, C.; Piazza, F.; Ferrari, A.; Grambole, D.; Robertson, J. Bonding in hydrogenated diamond-like carbon by Raman spectroscopy. Diam. Relat. Mater. 2005, 14, 1098–1102. [Google Scholar] [CrossRef]
- Lofaj, F.; Kabátová, M.; Kvetková, L.; Dobrovodský, J. The effects of deposition conditions on hydrogenation, hardness and elastic modulus of W-C:H coatings. J. Eur. Ceram. Soc. 2020, 40, 2721–2730. [Google Scholar] [CrossRef]
- Lofaj, F.; Kabátová, M.; Dobrovodský, J.; Cempura, G. Hydrogenation and hybridization in hard W-C:H coatings prepared by hybrid PVD-PECVD method with methane and acetylene. Int. J. Refract. Met. Hard Mater. 2020, 88, 105211. [Google Scholar] [CrossRef]
- Libardi, J.; Grigorov, K.; Massi, M.; Otani, C.; Ravagnani, S.; Maciel, H.; Guerino, M.; Ocampo, J. Comparative studies of the feed gas composition effects on the characteristics of DLC films deposited by magnetron sputtering. Thin Solid Films 2004, 459, 282–285. [Google Scholar] [CrossRef]
- Robertson, J. Requirements of ultrathin carbon coatings for magnetic storage technology. Tribol. Int. 2003, 36, 405–415. [Google Scholar] [CrossRef]
- Kahn, M.; Paskvale, S.; Čekada, M.; Schöberl, T.; Waldhauser, W.; Mitterer, C.; Pelicon, P.; Brandstätter, E. The relationship between structure and mechanical properties of hydrogenated amorphous carbon films. Diam. Relat. Mater. 2010, 19, 1245–1248. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.C.; Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 2001, 64, 075414. [Google Scholar] [CrossRef] [Green Version]
- Robertson, J. Daimond–Like amorphous carbon. Mat. Sci. Eng. 2002, R37, 129. [Google Scholar] [CrossRef] [Green Version]
- Dai, W.; Wu, G.; Wang, A. Structure and elastic recovery of Cr–C:H films deposited by a reactive magnetron sputtering technique. Appl. Surf. Sci. 2010, 257, 244–248. [Google Scholar] [CrossRef]
- Jeynes, C.; Colaux, J.L. Thin film depth profiling by ion beam analysis. Analyst 2016, 141, 5944–5985. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, J.; Trindade, A.; Menezes, L.; Cavaleiro, A. A model for coated surface hardness. Surf. Coat. Technol. 2000, 131, 457–461. [Google Scholar] [CrossRef]
- Gurbich, A. Evaluated differential cross-sections for IBA. Nucl. Instrum. Methods B 2010, 268, 1703–1710. [Google Scholar] [CrossRef]
- Jeynes, C.; Palitsin, V.; Grime, G.; Pascual-Izarra, C.; Taborda, A.; Reis, M.; Barradas, N. External beam Total-IBA using DataFurnace. Nucl. Instrum. Methods B 2020, 481, 47–61. [Google Scholar] [CrossRef]
- Barradas, N.P.; Jeynes, C. Advanced physics and algorithms in the IBA DataFurnace. Nucl. Instruments Methods B 2008, 266, 1875–1879. [Google Scholar] [CrossRef] [Green Version]
- Casiraghi, C.; Ferrari, A.C.; Robertson, J. Raman spectroscopy of hydrogenated amorphous carbons. Phys. Rev. B 2005, 72, 085401. [Google Scholar] [CrossRef] [Green Version]
- Henley, S.J.; Carey, J.D.; Silva, S.R.P. Room temperature photoluminescence from nanostructured amorphous carbon. Appl. Phys. Lett. 2004, 85, 6236–6238. [Google Scholar] [CrossRef] [Green Version]
- Rodil, S.E.; Muhl, S.; Maca, S.; Ferrari, A.C. Optical gap in carbon nitride films. Thin Solid Film 2003, 433, 119. [Google Scholar] [CrossRef]
- Fanchini, G.; Ray, S.; Tagliaferro, A. Photoluminescence investigation of carbon nitride-based films deposited by reactive sputtering. Diam. Relat. Mater. 2003, 12, 1084–1087. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, W.; Gong, C.; Wang, W.; He, Z.; Li, J.; Ju, X.; Tang, Y.; Xie, E. Structural and optical properties of Fe-doped hydrogenated amorphous carbon films prepared from trans-2-butene by plasma enhanced metal organic chemical vapor deposition. Appl. Phys. A 2010, 98, 895–900. [Google Scholar] [CrossRef]
- Pardo, A.; Gómez-Aleixandre, C.; Orwa, J.; Cimmino, A.; Prawer, S. Modification of characteristics of diamond-like carbon thin films by low chromium content addition. Diam. Relat. Mater. 2012, 26, 39–44. [Google Scholar] [CrossRef]
- Lugo, D.; Silva, P.; Ramirez, M.; Pillaca, E.; Rodrigues, C.; Fukumasu, N.; Corat, E.; Tabacniks, M.; Trava-Airoldi, V. Characterization and tribologic study in high vacuum of hydrogenated DLC films deposited using pulsed DC PECVD system for space applications. Surf. Coat. Technol. 2017, 332, 135–141. [Google Scholar] [CrossRef]
- Boudreault, G.; Elliman, R.G.; Grötzschel, R.; Gujrathi, S.C.; Jeynes, C.; Lennard, W.N.; Rauhala, E.; Sajavaara, T.; Timmers, H.; Wang, Y.Q.; et al. Round Robin: Measurement of H implantation distributions in Si by elastic recoil detection. Nucl. Instrum. Methods B 2004, 222, 547–566. [Google Scholar] [CrossRef]
- Abriola, D.; Barradas, N.P.; Bogdanović-Radović, I.; Chiari, M.; Gurbich, A.F.; Jeynes, C.; Kokkoris, M.; Mayer, M.; Ramos, A.R.; Shi, L.; et al. Development of a reference database for Ion Beam Analysis and future perspectives. Nucl. Instrum. Methods B 2011, 269, 2972–2978. [Google Scholar] [CrossRef]
- Ziegler, J.F. SRIM-2003. Nucl. Instrum. Methods B 2004, 219, 1027–1036. [Google Scholar] [CrossRef] [Green Version]
- Wielopolski, L.; Gardner, R.P. Prediction of the pulse-height spectral distortion caused by the peak pile-up effect. Nucl. Instrum. Methods B 1976, 133, 303–309. [Google Scholar] [CrossRef]
- Molodtsov, S.L.; Gurbich, A.F. Simulation of the pulse pile-up effect on the pulse-height spectrum. Nucl. Instrum. Methods B 2009, 267, 3484–3487. [Google Scholar] [CrossRef]
- Pascual-Izarra, C.; Barradas, N.P. Introducing routine pulse height defect corrections in IBA. Nucl. Instrum. Methods B 2008, 266, 266–270. [Google Scholar] [CrossRef]
- Barradas, N.P. Rutherford backscattering analysis of thin films and superlattices with roughness. J. Phys. D Appl. Phys. 2001, 34, 2109–2116. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.; Jeynes, C.; Webb, R.P.; Finnis, R.; Tabatabaian, Z.; Sellin, P.J.; Breese, M.B.H.; Fellows, D.F.; van den Broek, R.; Gwilliam, R.M. The new Surrey ion beam analysis facility. Nucl. Instrum. Methods B 2004, 219, 405–409. [Google Scholar] [CrossRef]
- Grime, G.W.; Dawson, M. Recent developments in data acquisition and processing on the Oxford scanning proton microprobe. Nucl. Instrum. Methods B 1995, 104, 107–113. [Google Scholar] [CrossRef]
- Blaauw, M.; Campbell, J.L.; Fazinić, S.; Jakšić, M.; Orlic, I.; van Espen, P. The 2000 IAEA intercomparison of PIXE spectrum analysis software. Nucl. Instrum. Methods B 2002, 189, 113–122. [Google Scholar] [CrossRef]
- Jeynes, C.; Barradas, N.P.; Marriott, P.K.; Boudreault, G.; Jenkin, M.; Wendler, E.; Webb, R.P. Elemental thin film depth profiles by ion beam analysis using simulated annealing-a new tool. J. Phys. D 2003, 36, R97. [Google Scholar] [CrossRef] [Green Version]
- Boudreault, G.; Jeynes, C.; Wendler, E.; Nejim, A.; Webb, R.P.; Wätjen, U. Accurate RBS measurement of ion implant doses in silicon. Surf. Interface Anal. 2002, 33, 478–486. [Google Scholar] [CrossRef]
- Barradas, N.P.; Arstila, K.; Battistig, G.; Bianconi, M.; Dytlewski, N.; Jeynes, C.; Kótai, E.; Lulli, G.; Mayer, M.; Rauhala, E.; et al. Summary of “IAEA intercomparison of IBA software”. Nucl. Instrum. Methods B 2008, 266, 1338–1342. [Google Scholar] [CrossRef] [Green Version]
- Pascual-Izarra, C.; Barradas, N.P.; Reis, M.A.; Jeynes, C.; Menu, M.; Lavedrine, B.; Ezrati, J.J.; Röhrs, S. Towards truly simultaneous PIXE and RBS analysis of layered objects in cultural heritage. Nucl. Instrum. Methods B 2007, 261, 426–429. [Google Scholar] [CrossRef]
CH4 (sccm) | H (at.%) | C (at.%) | W (at.%) | Ar (at.%) | O (at.%) | Density (g/cm3) |
---|---|---|---|---|---|---|
10 | 26.4 ± 1.3 | 65.6 ± 3.3 | 5.0 ±0.25 | 1.58 ± 0.08 | 1.40 ± 0.07 | 3.9 ± 0.20 |
15 | 26.6 ± 1.3 | 65.8 ± 3.3 | 4.6 ±0.23 | 1.50 ± 0.08 | 1.50 ± 0.08 | 3.6 ± 0.18 |
20 | 28.3 ± 1.4 | 64.9 ± 3.2 | 4.3 ±0.22 | 1.00 ± 0.05 | 1.50 ± 0.08 | 3.2 ± 0.16 |
25 | 29.1 ± 1.5 | 65.5 ± 3.3 | 4.0 ± 0.20 | 0.45 ± 0.02 | 0.90 ± 0.05 | 3.4 ± 0.17 |
30 | 30.8 ± 1.5 | 64.3 ± 3.2 | 3.5 ± 0.13 | 0.20 ± 0.01 | 1.30 ± 0.07 | 3.0 ± 0.15 |
40 | 30.5 ± 1.5 | 65.1 ± 3.3 | 2.9 ± 0.15 | 0.04 ± 0.00 | 1.40 ± 0.07 | 2.1 ± 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evaristo, M.; Fernandes, F.; Jeynes, C.; Cavaleiro, A. The Influence of H Content on the Properties of a-C(W):H Coatings. Coatings 2023, 13, 92. https://doi.org/10.3390/coatings13010092
Evaristo M, Fernandes F, Jeynes C, Cavaleiro A. The Influence of H Content on the Properties of a-C(W):H Coatings. Coatings. 2023; 13(1):92. https://doi.org/10.3390/coatings13010092
Chicago/Turabian StyleEvaristo, Manuel, Filipe Fernandes, Chris Jeynes, and Albano Cavaleiro. 2023. "The Influence of H Content on the Properties of a-C(W):H Coatings" Coatings 13, no. 1: 92. https://doi.org/10.3390/coatings13010092
APA StyleEvaristo, M., Fernandes, F., Jeynes, C., & Cavaleiro, A. (2023). The Influence of H Content on the Properties of a-C(W):H Coatings. Coatings, 13(1), 92. https://doi.org/10.3390/coatings13010092