Study of the Effects of Cu/Cu-Zn Alloy Components Adjacent to Wood in Historic Architecture: Surface Performance Changes by Artificial Wood Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Exposure Conditions for Artificial Degradation
2.2. Evaluation Methods
2.2.1. Confirmation of the Generation of Metal Oxalates on the Wood Surface
- Fourier-Transform Infrared Attenuated Total Reflection (FTIR-ATR) Analysis
- Scanning Electron Microscopy Equipped with an Electron Probe Micro-Analyser (SEM-EPMA) Analysis
2.2.2. Mechanical Tests
- Static Method
- Dynamic Method
2.2.3. Colorimetric Measurements
3. Results
3.1. Detection of Metal Oxalates
3.2. Particles in Wood Tissues
3.3. Distribution of Elements
3.4. Mechanical Performances
3.5. Colour Change
4. Discussion
4.1. Mechanical Performance of Wood under the Effect from Cu(II)
4.2. Different Effects of Cu(II) and Zn(II)
4.3. Discolouration of Wood in Artificial Degradation
4.4. Topics for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- 末廣農場跡地等賑わい拠点基本計画 (案). Basic Plan for the Former Suehiro Farm Site and Other Prosperity Centers (Draft). Available online: https://www.city.tomisato.lg.jp/cmsfiles/contents/0000009/9510/plan.pdf (accessed on 1 April 2019).
- Zhou, Y.; Matsui, T. A Study of the Effects of Adjacent Cu/Cu-Zn Alloy Components on Wood in Historic Architecture: IC, HPLC, and FTIR-ATR Analyses of Degraded Cu(II)/Zn(II) Impregnated Wood. Stud. Conserv. 2021, 66, 423–436. [Google Scholar] [CrossRef]
- Zhou, Y.; Matsui, T.; Koakutsu, N. Nondestructive investigation of whitening phenomenon occurred on wood components of historic architecture: In the case of the Confucian Temple of the Kodokan of Mito Domain. J. World Herit. Stud. 2017, 48–59. [Google Scholar] [CrossRef]
- Zhou, Y.; Matsui, T. Whitening Phenomenon of Wood Adjacent to Metal Components of Historic Architecure: In the Case of the Old Iwasaki-ke Suehiro-bettei Villa. 文化財科学 = Sci. Stud. Cult. Prop. 2018, 77, 29–45. [Google Scholar]
- Blanchette, R.A. A Review of Microbial Deterioration Found in Archaeological Wood from Different Environments. Int. Biodeterior. Biodegrad. 2000, 46, 189–204. [Google Scholar] [CrossRef]
- Feist, W.C. Outdoor Wood Weathering and Protection. In Archaeological Wood: Properties, Chemistry, and Preservation; Advances in Chemistry Series 225; Rowell, R.M.B., James, R., Eds.; American Chemical Society: Washington, DC, USA, 2007; pp. 263–297. [Google Scholar]
- Yamamoto, K.; Kataoka, Y.; Furuyama, Y.; Matsuura, T.; Kiguchi, M. The Effect of Irradiation Wavelength on the Discoloration of Wood. Mokuzai Gakkaishi = J. Jpn. Wood Res. Soc. 2007, 53, 320–326. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Matsui, T.; Liu, C.; Wang, F. Degradation Phenomena of Wooden Pillars in the Main Hall of the Fengguo Monastery, Yixian, Liaoning, China- Scientific Investigation with XRD, IC, and FTIR Analysis. J. Conserv. Sci. 2020, 36, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Shahani, C.J.; Hengemihle, F.H. Effect of Some Deacidification Agents on Copper-Catalyzed Degradation of Paper; Preservation Research and Testing Series No. 9501; Library of congress: Washington, DC, USA, 1995. Available online: https://www.loc.gov/preservation/resources/rt/copper.pdf (accessed on 1 April 2019).
- Strlič, M.; Kolar, J.K.; Šelih, V.S.; Kočar, D.; Pihlara, B. A comparative study of several transition metals in Fenton-like reaction systems at circum-neutral pH. Acta Chim. Slov. 2003, 50, 619–632. [Google Scholar]
- Ihara, E. The types and locations of wood used in ancient architecture: From the Middle Ages to the Early Modern Period (古建築に用いられた木の種類と使用位置について—中世から近世への変化を中心として). Sci. Conserv. 1989, 28, 25–62. [Google Scholar]
- Norbakhsh, S.; Bjurhager, I.; Almkvist, G. Mimicking of the Strength Loss in the Vasa: Model Experiments with Iron-Impregnated Recent Oak. Holzforschung 2013, 67, 707–714. [Google Scholar] [CrossRef]
- Norbakhsh, S.; Bjurhager, I.; Almkvist, G. Impact of Iron(II) and Oxygen on Degradation of Oak—Modeling of the Vasa Wood. Holzforschung 2014, 68, 649–655. [Google Scholar] [CrossRef]
- Almkvist, G.; Norbakhsh, S.; Bjurhager, I.; Varmuza, K. Prediction of Tensile Strength in Iron-Contaminated Archaeological Wood by FT-IR Spectroscopy—A Study of Degradation in Recent oak and Vasa oak. Holzforschung 2016, 70, 855–865. [Google Scholar] [CrossRef]
- Chandler, H. Hardness Testing; ASM International: Novelty, OH, USA, 1999; ISBN 978-0-87170-640-9. [Google Scholar]
- Record, S.J. The Mechanical Properties of Wood, Including a Discussion of the Factors Affecting the Mechanical Properties, and Methods of Timber Testing; J. Wiley & Sons: New York, NY, USA, 1914. [Google Scholar]
- Haines, D.W.; Leban, J.M.; Herbe, C. Determination of Young’s modulus for spruce, fir and isotropic materials by the resonance flexure method with comparisons to static flexure and other dynamic methods. Wood Sci. Technol. 1996, 30, 253–263. [Google Scholar] [CrossRef]
- Guan, C.; Zhang, H.; Zhou, L.; Wang, X. Dynamic determination of modulus of elasticity of full-size wood composite panels using a vibration method. Constr. Build. Mater. 2015, 100, 201–206. [Google Scholar] [CrossRef]
- Obataya, E.; Ono, T.; Norimoto, M. Vibrational properties of wood along the grain. J. Ma Terials Sci. 2000, 35, 2993–3001. [Google Scholar] [CrossRef]
- Obataya, E.; Zeniya, N.; Endo-Ujiie, K. Effects of seasoning on the vibrational properties of wood for the soundboards of string instruments. J. Acoust. Soc. Am. 2020, 147, 998. [Google Scholar] [CrossRef] [PubMed]
- Johnston-Feller, R. Colour Science in the Examination of Museum Objects: Nondestructive Procedures; Getty Conservation Institute: Los Angeles, CA, USA, 2001; pp. 34–35. ISBN 0-89236-586-2. [Google Scholar]
- Nevin, A.; Melia, J.L.; Osticioli, I.; Gautier, G.; Colombini, M.P. The identification of copper oxalates in a 16th century Cypriot exterior wall painting using micro FTIR, micro Raman spectroscopy and Gas Chromatography-Mass Spectrometry. J. Cult. Herit. 2008, 9, 154–161. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, C.; Wu, J.; Zhan, J.; Yang, P. Composition and morphology of complicated copper oxalate powder. Trans. Nonferrous Met. Soc. China 2010, 20, 165–170. [Google Scholar] [CrossRef]
- Derrick, M.R.; Stulik, D.; Landry, J.M. Infrared Spectroscopy in Conservation Science; The Getty Conservation Institute: Los Angeles, CA, USA, 1999; ISBN 0-89236-469-6. [Google Scholar]
- Zeniya, N.; Obataya, E.; Endo-Ujiie, K.; Matsuo-Ueda, M. Changes in vibrational properties and colour of spruce wood by hygrothermally accelerated ageing at 95–140 °C and different relative humidity levels. SN Appl. Sci. 2019, 1, 7. [Google Scholar] [CrossRef] [Green Version]
- Weenen, H. Reactive Intermediates and Carbohydrate Fragmentation in Maillard Chemistry. Food Chem. 1998, 62, 393–401. [Google Scholar] [CrossRef]
- Novotný, O.; Cejpek, K.; Velíšek, J. Formation of Carboxylic Acids During Degradation of Monosaccharides. Czech J. Food Sci. 2008, 26, 113–131. [Google Scholar] [CrossRef] [Green Version]
- Cotton, F.A.; Wilkinson, G.; Gaus, P.L. Basic Inorganic Chemistry, 3rd ed.; J. Wiley & Sons: New York, NY, USA, 1995; ISBN 978-0-471-50532-7. [Google Scholar]
- Bekhta, P.; Niemz, P. Effect of High Temperature on the Change in Color, Dimensional Stability and Mechanical Properties of Spruce Wood. Holzforschung 2003, 57, 539–546. [Google Scholar] [CrossRef]
- Matsuo, M.; Yokoyama, M.; Umenura, K.; Sugiyama, J.; Kawai, S.; Gril, J.; Kubodera, S.; Mitsutani, T.; Ozaki, H.; Sakamoto, M.; et al. Aging of wood: Analysis of color changes during natural aging and heat treatment. Holzforschung 2011, 65, 361–368. [Google Scholar] [CrossRef] [Green Version]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 13148, Cupric Oxalate. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Cupric-oxalate (accessed on 1 April 2019).
Concentration of the CuCl2/ZnCl2 Solutions | Samples | Cu(II) Content (wt %: mg/mg) | Samples | Zu(II) Content (wt %: mg/mg) | |||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
Sugi group | 100 ppm | S-A/B-Cu 1 | 0.04 | 0.02 | S-A/B-Zn 1 | 0.03 | 0.01 |
1000 ppm | S-A/B-Cu 2 | 0.31 | 0.12 | S-A/B-Zn 2 | 0.3 | 0.01 | |
10,000 ppm | S-A/B-Cu 3 | 3.41 | 1.2 | S-A/B-Zn 3 | 1.53 | 0.15 | |
No impregnation treatment | S-A/B-0 | ||||||
Keyaki group | 200 ppm | K-A/B-Cu 1 | 0.08 | 0.03 | K-A/B-Zn 1 | 0.02 | 0 |
2000 ppm | K-A/B-Cu 2 | 0.29 | 0.04 | K-A/B-Zn 2 | 0.19 | 0.03 | |
20,000 ppm | K-A/B-Cu 3 | 2.53 | 0.44 | K-A/B-Zn 3 | 1.74 | 0.23 | |
No impregnation treatment | K-A/B-Cu 3 |
Wavenumber (cm−1) | Functional Group | Assignment |
---|---|---|
1740–1720 | Unconjugated C=O stretching of the acetyl group | Xylans (hemicellulose) or carboxylic acid |
1233–1225 | (a) C–O stretching (b) CH and OH waging | (a) Syringyl derivatives (the major type of hardwood lignin) (b) Cellulose and xylan |
1040–1020 | C–O stretching | Cellulose and hemicelluloses |
896 | C–H deformations | Cellulose |
832 | Out-of-plane aromatic C–H deformations of the tetrasubstituted rings | Syringyl nuclei (the major type of hardwood lignin) |
810 | Out-of-plane aromatic C–H deformations of the trisubstituted rings | Guaiacyl nuclei (the major type of softwood lignin) |
1630 | Asymmetric C–O stretching | Oxalate functional group |
1363–1360 | Symmetric C=O stretching | |
1317 | Symmetric C=O stretching | |
822 | Symmetric C=O stretching | |
510–400 | Metal–O stretching | Zn–O, Cu–O |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Matsui, T.; Obataya, E.; Li, L. Study of the Effects of Cu/Cu-Zn Alloy Components Adjacent to Wood in Historic Architecture: Surface Performance Changes by Artificial Wood Degradation. Coatings 2022, 12, 352. https://doi.org/10.3390/coatings12030352
Zhou Y, Matsui T, Obataya E, Li L. Study of the Effects of Cu/Cu-Zn Alloy Components Adjacent to Wood in Historic Architecture: Surface Performance Changes by Artificial Wood Degradation. Coatings. 2022; 12(3):352. https://doi.org/10.3390/coatings12030352
Chicago/Turabian StyleZhou, Yishan, Toshiya Matsui, Eiichi Obataya, and Li Li. 2022. "Study of the Effects of Cu/Cu-Zn Alloy Components Adjacent to Wood in Historic Architecture: Surface Performance Changes by Artificial Wood Degradation" Coatings 12, no. 3: 352. https://doi.org/10.3390/coatings12030352
APA StyleZhou, Y., Matsui, T., Obataya, E., & Li, L. (2022). Study of the Effects of Cu/Cu-Zn Alloy Components Adjacent to Wood in Historic Architecture: Surface Performance Changes by Artificial Wood Degradation. Coatings, 12(3), 352. https://doi.org/10.3390/coatings12030352