Waste Biopolymers for Eco-Friendly Agriculture and Safe Food Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication and Composition of SPC Composites
2.3. Plant Growth Trials
- Trial 0: control (growing substrate) containing 25 mg organic N.
- Trial 1: growing substrate + SPC (4.1 g per pot, 283 mg N).
- Trial 2: growing substrate + SPC-U (2.7 g per pot, 284 mg N).
- Trial 3: growing substrate + SPC-BP (4.0 g per pot, 280 mg N).
- Trial 4: growing substrate + SPC-BP-U (3.3 g per pot, 281 mg N).
- Trial 5: growing substrate + urea (0.6 g per pot, 280 mg N).
- Trial 6: growing substrate + BP (4.3 g per pot, 284 mg N).
- Trial 7: growing substrate + urea (0.3 g per pot, 140 mg N) + BP (2.2 g per pot, 145 mg N).
- Trial 8: Osmocote® (1.8 g per pot, 282 mg N).
2.4. Analyses
2.5. Statistical Treatment of Data
3. Results
4. Discussion
4.1. Effect of BP on Plant Performances
4.2. Plausible Explanation of the BP Effects
+ 2 H2O
4.3. Perspectives for a New Biowaste-Based Chemical Industry
5. Conclusions
6. Patent
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. Biodegradable Waste. Available online: https://ec.europa.eu/environment/topics/waste-and-recycling/biodegradable-waste_en (accessed on 30 December 2021).
- Eurostat. Municipal Waste Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Municipal_waste_statistics (accessed on 30 December 2021).
- IFA. Fertilizers, for Productive and Sustainable Agriculture Systems. Available online: https://www.fertilizer.org/ (accessed on 30 December 2021).
- Montoneri, E. Municipal waste treatment, technological scale up and commercial exploitation: The case of bio-waste lignin to soluble lignin-like polymers. In Food Waste Reduction and Valorisation; Morone, P., Papendiek, F., Tartiu, V.E., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Chapter 6. [Google Scholar]
- Evon, P.; Labonne, L.; Padoan, E.; Vaca-Garcia, C.; Montoneri, E.; Boero, V.; Negre, M. A new composite biomaterial made from sunflower proteins, urea, and soluble polymers obtained from industrial and municipal biowastes to perform as slow release fertiliser. Coatings 2021, 11, 43. [Google Scholar] [CrossRef]
- IFA. Consumption Urea World. Available online: https://www.ifastat.org/databases/plant-nutrition (accessed on 30 December 2021).
- Sigurdarson, J.J.; Svane, S.; Karring, H. The molecular processes of urea hydrolysis in relation to ammonia emissions from agriculture. Agric. Rev. Environ. Sci. Biotechnol. 2018, 17, 241–258. [Google Scholar] [CrossRef] [Green Version]
- Beig, B.; Niazi, M.B.K.; Jahan, Z.; Kakar, S.J.; Shah, G.A.; Shahi, M.; Zia, M.; Haq, M.U.; Rashid, M.I. Biodegradable polymer coated granular urea slows down N release kinetics and improves spinach productivity. Polymers 2020, 12, 2623. [Google Scholar] [CrossRef] [PubMed]
- Leip, A.; Billen, G.; Garnier, J.; Grizzetti, B.; Lassaletta, L.; Reis, S.; Simpson, D.; Sutton, M.A.; Vries, W.; Weiss, F.; et al. Impacts of European live-stock production: Nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environ. Res. Lett. 2015, 10, 115004. [Google Scholar] [CrossRef]
- Anjana, A.; Umar, S.; Iqbal, M. Nitrate accumulation in plants, factors affecting the process, and human health implications. A review. Agron. Sustain. Dev. 2007, 27, 45–77. [Google Scholar] [CrossRef]
- Breimer, T. Environmental Factors and Cultural Measures Affecting the Nitrate Content in Spinachs. Doctoral Dissertation, Wageningen University & Research (WUR), Wageningen, The Netherlands, 1982. Available online: https://library.wur.nl/WebQuery/wurpubs/fulltext/201755 (accessed on 30 December 2021).
- Chen, B.; Wang, Z.; Li, S.; Wang, G.; Song, H.; Wang, X. Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Sci. 2004, 167, 635–643. [Google Scholar] [CrossRef]
- Shoji, S. Innovative use of controlled availability fertilizers with high performance for intensive agriculture and environmental conservation. Sci. China Life Sci. 2005, 48, 912–920. [Google Scholar]
- Heinrich, A.; Smith, R.; Cahn, M. Nutrient and water use of fresh market spinach. Horttechnology 2013, 23, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Chan-Navarrete, R.; Kawai, A.; Dolstra, O.; Lammerts van Bueren, E.T.; van der Linden, C.G. Genetic diversity for nitrogen use efficiency in spinach (Spinacia oleracea L.) cultivars using the ingestad model on hydroponics. Euphytica 2014, 199, 155–166. [Google Scholar] [CrossRef]
- European Commission. Regulation n° 1258/2011 of 2 December 2011 Amending Regulation (EC) n° 1881/2006 as Regards Maximum Levels for Nitrates in Foodstuffs. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:320:0015:0017:EN:PDF (accessed on 30 December 2021).
- Trenkel, M.E. Slow- and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture; International Fertilizer Industry Association (IFA): Paris, France, 2010; Available online: https://www.fertilizer.org/images/Library_Downloads/2010_Trenkel_slow%20release%20book.pdf (accessed on 30 December 2021).
- Incrocci, L.; Maggini, R.; Cei, T.; Carmassi, G.; Botrini, L.; Filippi, F.; Clemens, R.; Terrones, C.; Pardossi, A. Innovative controlled-release polyurethane-coated urea could reduce n leaching in tomato crop in comparison to conventional and stabilized fertilizers. Agronomy 2020, 10, 1827. [Google Scholar] [CrossRef]
- Naz, M.Y.; Sulaiman, S.A. Slow release coating remedy for nitrogen loss from conventional urea: A review. J. Control. Release 2016, 225, 109–120. [Google Scholar] [CrossRef]
- European Commission. Bio-Based Products. Available online: http://ec.europa.eu/growth/sectors/biotechnology/bio-based-products_it (accessed on 30 December 2021).
- Khalid, N.N.A.; Ashaari, Z.; Mohd, A.H.; Mohamed, H.A.; Lee, S.H. Nitrogen deposition and release pattern of slow release fertiliser made from urea-impregnated oil palm frond and rubberwood chips. J. For. Res. 2019, 30, 208762094. [Google Scholar]
- Osmocote®. Product Information. Available online: https://icl-sf.com/uploads/ITALY/Ita_PI/Ita_PI_OH/8756_PI%20OsmocotePro_12-14M%20new.pdf (accessed on 30 December 2021).
- Miranda, K.M.; Espey, M.G.; Wink, D.A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 2001, 5, 61–71. [Google Scholar] [CrossRef]
- Wellburn, A.R.; Lichtenthaler, H. Formulae and program determine carotenoids and chlorophyll a and b of leaf extracts inferent solvents. Adv. Photosyn. Res. 1984, 2, 272–284. [Google Scholar]
- Ikeura, H.; Tsukad, K.; Tamaki, M. Effect of microbubbles in deep flow hydroponic culture on spinach growth. J. Plant Nutr. 2017, 40, 2358–2364. [Google Scholar] [CrossRef]
- Liu, I.J.; Tong, Y.; Zhu, Y.; Ding, H.; Smith, F.A. Leaf chlorophyll readings as an indicator for spinach yield and nutritional quality with different nitrogen fertilizer applications. J. Plant Nutr. 2006, 29, 1207–1217. [Google Scholar] [CrossRef]
- Ebid, E.A.; Ueno, H.; Ghoneim, A.; Asagi, N. Nitrogen uptake by radish, spinach and “chingensai” from composted tea leaves, coffee waste and kitchen garbage. Compost. Sci. Util. 2008, 16, 152–158. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, Z.; Jiao, D.; Tian, X.; Wang, C. Different water and nitrogen fertilizer rates effects on growth and development of spinach. Comm. Soil Sci. Plant Anal. 2018, 49, 1922–1933. [Google Scholar] [CrossRef]
- Lefsrud, M.; Kopsell, D.; Sams, C.; Wills, J.; Both, A.J. Dry matter content and stability of carotenoids in kale and spinach during drying. Hort. Sci. 2008, 43, 1731–1736. [Google Scholar] [CrossRef] [Green Version]
- Fascella, G.; Montoneri, E.; Francavilla, M. Biowaste versus fossil sourced auxiliaries for plant cultivation: The lantana case study. J. Clean. Prod. 2018, 185, 322–330. [Google Scholar] [CrossRef]
- Fascella, G.; Montoneri, E.; Rouphael, Y. Biowaste-derived humic-like substances improve growth and quality of Orange Jasmine (Murraya paniculata L. Jacq.) plants in soilless potted culture. Resources 2021, 10, 80. [Google Scholar] [CrossRef]
- Fascella, G.; Mammano, M.M.; D’Angiolillo, F.; Rouphael, Y. Effects of conifers wood biochar as substrate component on ornamental performance, photosynthetic activity and mineral composition of potted Rosa rugosa. J. Hort. Sci. Biotech. 2017, 93, 519–528. [Google Scholar] [CrossRef]
- Fascella, G.; Mammano, M.; D’Angiolillo, F.; Pannico, A.; Rouphael, Y. Coniferous wood biochar as substrate component of two containerized Lavender species: Effects on morpho- physiological traits and nutrients partitioning. Sci. Hort. 2020, 267, 109356. [Google Scholar] [CrossRef]
- Massa, D.; Lenzi, A.; Montoneri, E.; Ginepro, M.; Prisa, D.; Burchi, G. Plant response to biowaste soluble hydrolysates in hibiscus grown under limiting nutrient availability. J. Plant Nutr. 2018, 41, 396–409. [Google Scholar] [CrossRef]
- Gülser, F. Effects of ammonium sulphate and urea on NO3− and NO2− accumulation, nutrient contents and yield criteria in spinach. Sci. Hortic. 2005, 106, 330–340. [Google Scholar] [CrossRef]
- Stagnari, F.; Di Bitetto, V.; Pisante, M. Effects of N fertilizers and rates on yield, safety and nutrients in processing spinach genotypes. Sci. Hortic. 2007, 114, 225–233. [Google Scholar] [CrossRef]
- Francavilla, M.; Beneduce, L.; Gatta, G.; Montoneri, E.; Monteleone, M.; Mainero, D. Biochemical and chemical technology for a virtuous bio-waste cycle to produce biogas without ammonia and speciality bio-based chemicals with reduced entrepreneurial risk. J. Chem. Technol. Biotechnol. 2016, 91, 2679–2687. [Google Scholar] [CrossRef]
- Photiou, P.; Kallis, M.; Samanides, C.; Vyrides, I.; Padoan, E.; Montoneri, E.; Koutinas, M. Integrated chemical biochemical technology to reduce ammonia emission from fermented municipal biowaste. ACS Sustain. Chem. Eng. 2021, 9, 8402–8413. [Google Scholar] [CrossRef]
- Montoneri, C.; Montoneri, E.; Tomasso, L.; Piva, A. Compost derived substances decrease feed protein N mineralization in swine cecal fermentation. J. Agric. Sci. 2013, 13, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Biagini, D.; Montoneri, E.; Rosato, R.; Lazzaroni, C.; Dinuccio, E. Reducing ammonia and GHG emissions from rabbit rearing through a feed additive produced from green urban residues. Sustain. Prod. Consum. 2021, 27, 1–9. [Google Scholar] [CrossRef]
- Baglieri, A.; Cadilia, V.; Mozzetti Monterumici, C.; Gennari, M.; Tabasso, S.; Montoneri, E.; Nardi, S.; Negre, M. Fertilization of bean plants with tomato plants hydrolysates. Effect on biomass production, chlorophyll content and N assimilation. Sci. Hortic. 2016, 176, 194–199. [Google Scholar]
- Gomis, J.; Bianco Prevot, A.; Montoneri, E.; González, M.C.; Amat, A.M.; Mártire, D.O.; Arque, A.; Carlos, L. Waste sourced biobased substances for solar-driven wastewater remediation: Photodegradation of emerging pollutants. Chem. Eng. J. 2014, 235, 236–243. [Google Scholar] [CrossRef]
- Rossini, F.D.; Wagman, D.D.; Evans, W.H.; Levine, S.; Jaffe, I. Circular of the Bureau of Standards n° 500: Selected Values of Chemical Thermodynamic Properties; Nat. Bureau of Standards, Circ.; U.S. Government, Printing Office: Washington, DC, USA, 1952.
- Tabasso, S.; Ginepro, M.; Tomasso, L.; Nisticò, R.; Francavilla, M. Integrated biochemical and chemical processing of municipal bio-waste to obtain bio based products for multiple uses. The case of soil remediation. J. Clean. Prod. 2020, 245, 119191. [Google Scholar] [CrossRef]
Formulation | C | N | P2O5 | K2O |
---|---|---|---|---|
BP | 39.6 | 6.6 | 1.1 | 5.5 |
U | 20.0 | 46.6 | - | - |
SPC | 38.7 ± 5.2 a | 6.9 ± 0.9 a | 2.5 ± 0.1 a | 1.5 ± 0.1 a |
SPC-U | 37.7 ± 0.2 a | 10.5 ± 0.1 c | 2.3 ± 0.1 a | 1.3 ± 0.1 a |
SPC-BP | 39.5 ± 2.6 a | 7.0 ± 0.6 a | 2.6 ± 0.3 a | 1.8 ± 0.1 b |
SPC-BP-U | 38.6 ± 0.4 a | 8.5 ± 0.0 b | 2.1 ± 0.1 a | 1.5 ± 0.1 a |
Trial | Leaves | Roots | ||
---|---|---|---|---|
Fresh Weight (g) | Dry Weight (g) | Fresh Weight (g) | Dry Weight (g) | |
0 | 18.7 ± 3.2 ab | 1.6 ± 0.55 a | 0.86 ± 0.29 a | 0.11 ± 0.04 a |
1 | 25.6 ± 5.3 ab | 2.3 ± 0.56 a | 1.16 ± 0.22 a | 0.13 ± 0.02 a |
2 | 27.3 ± 4.5 a | 2.4 ± 0.39 a | 1.08 ± 0.23 a | 0.12 ± 0.03 a |
3 | 27.7 ± 6.1 a | 2.3 ± 0.61 a | 0.99 ± 0.26 a | 0.10 ± 0.03 a |
4 | 23.5 ± 5.1 ab | 2.2 ± 0.54 a | 0.99 ± 0.18 a | 0.11 ± 0.03 a |
5 | 24.5 ± 5.0 ab | 2.3 ± 0.60 a | 0.98 ± 0.16 a | 0.12 ± 0.03 a |
6 | 18.1 ± 1.9 b | 1.8 ± 0.20 a | 0.89 ± 0.10 a | 0.12 ± 0.02 a |
7 | 23.2 ± 3.4 ab | 2.3 ± 0.54 a | 1.08 ± 0.14 a | 0.13 ± 0.03 a |
8 | 22.8 ± 2.7 ab | 2.2 ± 0.27 a | 1.04 ± 0.08 a | 0.13 ± 0.01 a |
Trial | Chlorophyll a | Chlorophyll b | Carotenoids |
---|---|---|---|
0 | 242 ± 49.0 a | 123 ± 28.9 a | 19 ± 0.9 a |
1 | 330 ± 32.3 b | 176 ± 11.0 b | 8 ± 0.3 a |
2 | 323 ± 46.6 ab | 172 ± 15.0 b | 8 ± 0.4 a |
3 | 258 ± 41.0 ab | 125 ± 26.9 a | 16 ± 0.8 a |
4 | 321 ± 29.4 ab | 158 ± 11.0 ab | 7 ± 0.3 a |
5 | 341 ± 29.9 b | 172 ± 34.1 ab | 18 ± 0.6 a |
6 | 241 ± 55.4 a | 138 ± 23.3 ab | 24 ± 0.7 a |
7 | 309 ± 22.1 ab | 158 ± 19.4 ab | 11 ± 0.4 a |
8 | 289 ± 42.2 ab | 168 ± 34.5 ab | 17 ± 0.6 a |
Trial | Total N (g kg−1 Dry Matter) | N Uptake (mg Plant−1) | ||
---|---|---|---|---|
Leaves | Roots | Leaves | Roots | |
0 | 34.0 ± 1.82 a | 20.9 ± 2.15 a | 54.4 ± 21.6 a | 2.3 ± 1.01 a |
1 | 51.9 ± 1.32 bcd | 29.8 ± 1.72 bc | 117.6 ± 32.0 b | 3.7 ± 0.88 a |
2 | 52.7 ± 1.31 bd | 30.4 ± 2.09 bc | 128.3 ± 23.6 bc | 3.6 ± 1.09 a |
3 | 48.5 ± 2.04 bce | 28.2 ± 0.81 bcd | 113.0 ± 34.3 ab | 2.9 ± 1.01 a |
4 | 52.1 ± 2.99 bcd | 29.1 ± 1.77 bc | 114.5 ± 34.5 b | 3.3 ± 1.12 a |
5 | 55.5 ± 1.71 d | 30.7 ± 2.36 b | 129.7 ± 37.4 bc | 3.6 ± 1.20 a |
6 | 34.3 ± 3.44 a | 20.7 ± 3.44 a | 63.1 ± 13.3 ab | 2.6 ± 0.87 a |
7 | 47.2 ± 2.55 ce | 26.9 ± 2.14 bc | 106.2 ± 31.1 ab | 3.5 ± 0.96 a |
8 | 45.1 ± 3.47 e | 26.5 ± 2.11 c | 99.8 ± 19.8 ab | 3.3 ± 0.57 a |
Trial | NO3− N (g kg−1 Dry Matter) | NO3−/Total N (w w−1) | NO3− N (mg kg−1 Fresh Matter) |
---|---|---|---|
0 | 1.1 ± 0.60 a | 1.0 ± 0.58 a | 101 ± 53.7 a |
1 | 26.0 ± 4.9 bcd | 15.3 ± 3.3 c | 2281 ± 410 bcd |
2 | 28.6 ± 2.8 bc | 16.5 ± 2.0 c | 2559 ± 297 bc |
3 | 15.4 ± 7.5 e | 9.6 ± 5.1 b | 1373 ± 575 e |
4 | 20.5 ± 7.0 bde | 12.0 ± 4.8 bc | 1890 ± 593 bde |
5 | 29.8 ± 1.9 c | 16.3 ± 1.5 c | 2816 ± 125 c |
6 | 2.5 ± 1.4 a | 2.2 ± 1.5 a | 247 ± 122 a |
7 | 16.4 ± 5.1 de | 10.5 ± 3.9 b | 1541 ± 398 de |
8 | 14.9 ± 4.0 e | 10.1 ± 3.5 b | 1438 ± 323 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padoan, E.; Montoneri, E.; Bordiglia, G.; Boero, V.; Ginepro, M.; Evon, P.; Vaca-Garcia, C.; Fascella, G.; Negre, M. Waste Biopolymers for Eco-Friendly Agriculture and Safe Food Production. Coatings 2022, 12, 239. https://doi.org/10.3390/coatings12020239
Padoan E, Montoneri E, Bordiglia G, Boero V, Ginepro M, Evon P, Vaca-Garcia C, Fascella G, Negre M. Waste Biopolymers for Eco-Friendly Agriculture and Safe Food Production. Coatings. 2022; 12(2):239. https://doi.org/10.3390/coatings12020239
Chicago/Turabian StylePadoan, Elio, Enzo Montoneri, Giorgio Bordiglia, Valter Boero, Marco Ginepro, Philippe Evon, Carlos Vaca-Garcia, Giancarlo Fascella, and Michéle Negre. 2022. "Waste Biopolymers for Eco-Friendly Agriculture and Safe Food Production" Coatings 12, no. 2: 239. https://doi.org/10.3390/coatings12020239
APA StylePadoan, E., Montoneri, E., Bordiglia, G., Boero, V., Ginepro, M., Evon, P., Vaca-Garcia, C., Fascella, G., & Negre, M. (2022). Waste Biopolymers for Eco-Friendly Agriculture and Safe Food Production. Coatings, 12(2), 239. https://doi.org/10.3390/coatings12020239