Enhanced Electrochemical Performance of LiNi1/3Co1/3Mn1/3O2 at a High Cut-Off Voltage of 4.6 V by Li1.3Al0.3Ti1.7(PO4)3 Coating
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of Materials
2.2. Characterization of Materials
2.3. Electrochemical Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kim, T.; Song, W.T.; Son, D.Y.; Ono, L.K.; Qi, Y.B. Lithium-ion batteries: Outlook on present, future, and hybridized technologies. J. Mater. Chem. A 2019, 7, 2942–2964. [Google Scholar] [CrossRef]
- Liu, W.Y.; Yi, C.J.; Li, L.P.; Liu, S.L.; Gui, Q.Y.; Ba, D.L.; Li, Y.Y.; Peng, D.L.; Liu, J.P. Designing Polymer-in-Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solid-State Lithium Batteries. Angew. Chem. Int. Ed. 2021, 60, 12931–12940. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, X.; Liu, L.; Lee, J.; Seo, D.H.; Bo, S.H.; Urban, A.; Ceder, G. A disordered rock-salt Li-excess cathode material with high capacity and substantial oxygen redox activity: Li1.25Nb0.25Mn0.5O2. Electrochem. Commun. 2015, 60, 70–73. [Google Scholar] [CrossRef]
- Wang, R.; He, X.Q.; He, L.H.; Wang, F.W.; Xiao, R.J.; Gu, L.; Li, H.; Chen, L.Q. Atomic Structure of Li2MnO3 after Partial Delithiation and Re-Lithiation. Adv. Energy Mater. 2013, 3, 1358–1367. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Park, K.S. The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Yu, X.Q.; Bai, J.M.; Li, H.; Huang, X.J.; Chen, L.Q.; Yang, X.Q. Electrochemical decomposition of Li2CO3 in NiO-Li2CO3 nanocomposite thin film and powder electrodes. J. Power Sources 2012, 218, 113–118. [Google Scholar] [CrossRef]
- Zhang, J.N.; Li, Q.H.; Ouyang, C.Y.; Yu, X.Q.; Ge, M.Y.; Huang, X.J.; Hu, E.Y.; Ma, C.; Li, S.F.; Xiao, R.J.; et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6V. Nat. Energy 2019, 4, 594–603. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.L.; Yu, A.S.; Lee, J.Y. Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries. J. Power Sources 1999, 81, 416–419. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, W.M.; Zhang, Q.H.; Yang, G.Z.; Zheng, J.M.; Tang, W.; Xu, Q.J.; Lai, C.Y.; Yang, J.H.; Peng, C.X. Armoring LiNi1/3Co1/3Mn1/3O2 Cathode with Reliable Fluorinated Organic-Inorganic Hybrid Interphase Layer toward Durable High Rate Battery. Adv. Funct. Mater. 2020, 30, 2000396. [Google Scholar] [CrossRef]
- Gao, A.; Sun, Y.; Zhang, Q.H.; Zheng, J.Y.; Lu, X. Evolution of Ni/Li antisites under the phase transition of a layered LiNi1/3Co1/3Mn1/3O2 cathode. J. Mater. Chem. A 2020, 8, 6337–6348. [Google Scholar] [CrossRef]
- Lee, G.H.; Wu, J.P.; Kim, D.; Cho, K.; Cho, M.; Yang, W.L.; Kang, Y.M. Reversible Anionic Redox Activities in Conventional LiNi1/3Co1/3Mn1/3O2 Cathodes. Angew. Chem. Int. Ed. 2020, 59, 8681–8688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.J.; Wang, M.R.; Li, J.; Cui, H.T.; Su, H.J.; Liu, Y.Y. Controllable synthesis of LiNi1/3Co1/3Mn1/3O2 electrode material via a high shear mixer-assisted precipitation process. Chem. Eng. J. 2021, 419, 129281. [Google Scholar] [CrossRef]
- Hwang, B.J.; Tsai, Y.W.; Chen, C.H.; Santhanam, R. Influence of Mn content on the morphology and electrochemical performance of LiNi1-x-yCoxMnyO2 cathode materials. J. Mater. Chem. 2003, 13, 1962–1968. [Google Scholar] [CrossRef]
- Lee, K.S.; Myung, S.T.; Amine, K.; Yashiro, H.; Sun, Y.K. Structural and electrochemical properties of layered Li Ni1-2xCoxMnxO2 (x=0.1-0.3) positive electrode materials for Li-ion batteries. J. Electrochem. Soc. 2007, 154, A971–A977. [Google Scholar] [CrossRef]
- Liu, X.P.; Chen, Q.Q.; Li, Y.W.; Chen, C.; Zeng, W.; Yuan, M.; Wang, R.H.; Xiao, S.H. Synergistic Modification of Magnesium Fluoride/Sodium for Improving the Electrochemical Performances of High-Nickel Ternary (NCM811) Cathode Materials. J. Electrochem. Soc. 2019, 166, A3480–A3486. [Google Scholar] [CrossRef]
- Wu, K.; Li, Q.; Dang, R.B.; Deng, X.; Chen, M.M.; Lee, Y.L.; Xiao, X.L.; Hu, Z.B. A novel synthesis strategy to improve cycle stability of LiNi0.8Mn0.1Co0.1O2 at high cut-off voltages through core-shell structuring. Nano Res. 2019, 12, 2460–2467. [Google Scholar] [CrossRef]
- Shi, C.G.; Shen, C.H.; Peng, X.X.; Luo, C.X.; Shen, L.F.; Sheng, W.J.; Fan, J.J.; Wang, Q.; Zhang, S.J.; Xu, B.B.; et al. A special enabler for boosting cyclic life and rate capability of LiNi0.8Co0.1Mn0.1O2: Green and simple additive. Nano Energy 2019, 65, 104084. [Google Scholar] [CrossRef]
- Yoon, T.; Soon, J.; Lee, T.J.; Ryu, J.H.; Oh, S.M. Dissolution of cathode-electrolyte interphase deposited on LiNi0.5Mn1.5O4 for lithium-ion batteries. J. Power Sources 2021, 503, 230051. [Google Scholar] [CrossRef]
- Zhang, J.N.; Li, Q.H.; Wang, Y.; Zheng, J.Y.; Yu, X.Q.; Li, H. Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy Storage Mater. 2018, 14, 1–7. [Google Scholar] [CrossRef]
- Zhao, J.T.; Liang, Y.; Zhang, X.; Zhang, Z.H.; Wang, E.R.; He, S.M.; Wang, B.Y.; Han, Z.J.; Lu, J.; Amine, K.; et al. In Situ Construction of Uniform and Robust Cathode-Electrolyte Interphase for Li-Rich Layered Oxides. Adv. Funct. Mater. 2021, 31, 2009192. [Google Scholar] [CrossRef]
- Hossain, M.K.; Raihan, G.A.; Akbar, M.A.; Kabir Rubel, M.H.; Ahmed, M.H.; Khan, M.I.; El-Denglawey, A. Current Applications and Future Potential of Rare Earth Oxides in Sustainable Nuclear, Radiation, and Energy Devices: A Review. ACS Appl. Electron. Mater. 2022, 4, 3327. [Google Scholar] [CrossRef]
- Li, Z.C.; Zhang, Z.H.; Huang, B.J.; Wang, H.W.; He, B.B.; Gong, Y.S.; Jin, J.; Wang, R. Improved Cycling Performance of Cation-Disordered Rock-Salt Li1.2Ti0.4Mn0.4O2 Cathode through Mo-Doping and Al2O3-Coating. Coatings 2022, 12, 1613. [Google Scholar] [CrossRef]
- Yang, C.F.; Zhang, X.S.; Huang, M.Y.; Huang, J.J.; Fang, Z.B. Preparation and Rate Capability of Carbon Coated LiNi1/3Co1/3Mn1/3O2 as Cathode Material in Lithium Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 12408–12415. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Wang, Y.; Guo, Y.Z.; Liu, C.W.; Dan, L.L. Electrochemical characterization of AlPO4 coated LiNi1/3Co1/3Mn1/3O2 cathode materials for high temperature lithium battery application. Rare Metals 2021, 40, 78–83. [Google Scholar] [CrossRef]
- Ren, X.Y.; Du, J.L.; Pu, Z.H.; Wang, R.B.; Gan, L.; Wu, Z. Facile synthesis of Li2MoO4 coated LiNi1/3Co1/3Mn1/3O2 composite as a novel cathode for high-temperature lithium batteries. Ionics 2020, 26, 1617–1627. [Google Scholar] [CrossRef]
- Li, J.H.; Liu, Z.Q.; Wang, Y.F.; Wang, R.G. Investigation of facial B2O3 surface modification effect on the cycling stability and high-rate capacity of LiNi1/3Co1/3Mn1/3O2 cathode. J. Alloys Compd. 2020, 834, 155150. [Google Scholar] [CrossRef]
- Araki, K.; Taguchi, N.; Sakaebe, H.; Tatsumi, K.; Ogumi, Z. Electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode material modified by coating with Al2O3 nanoparticles. J. Power Sources 2014, 269, 236–243. [Google Scholar] [CrossRef]
- Ilango, P.R.; Subburaj, T.; Prasanna, K.; Jo, Y.N.; Lee, C.W. Physical and electrochemical performance of LiNi1/3Co1/3Mn1/3O2 cathodes coated by Sb2O3 using a sol-gel process. Mater. Chem. Phys. 2015, 158, 45–51. [Google Scholar] [CrossRef]
- Lv, F.; Cheng, H.W.; Nie, W.; Sun, Q.C.; Liu, Y.B.; Duan, T.; Xu, Q.; Lu, X.G. Enhancing Rate Capacity and Cycle Stability of LiNi1/3Co1/3Mn1/3O2 Cathode Material by Laminar V2O5 Coating for Lithium-Ion Batteries. Chemistryselect 2021, 6, 6339–6347. [Google Scholar] [CrossRef]
- Monchak, M.; Hupfer, T.; Senyshyn, A.; Boysen, H.; Chernyshov, D.; Hansen, T.; Schell, K.G.; Bucharsky, E.C.; Hoffmann, M.J.; Ehrenberg, H. Lithium Diffusion Pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) Superionic Conductor. Inorg. Chem. 2016, 55, 2941–2945. [Google Scholar] [CrossRef]
- DeWees, R.; Wang, H. Synthesis and Properties of NaSICON-type LATP and LAGP Solid Electrolytes. Chemsuschem 2019, 12, 3713–3725. [Google Scholar] [CrossRef] [PubMed]
- Zhao, E.Q.; Ma, F.R.; Jin, Y.C.; Kanamura, K. Pechini synthesis of high ionic conductivity Li1.3Al0.3Ti1.7 (PO4)3 solid electrolytes: The effect of dispersant. J. Alloys Compd. 2016, 680, 646–653. [Google Scholar] [CrossRef]
- Kalluri, S.; Yoon, M.; Jo, M.; Liu, H.K.; Dou, S.X.; Cho, J.; Guo, Z.P. Feasibility of Cathode Surface Coating Technology for High-Energy Lithium-ion and Beyond-Lithium-ion Batteries. Adv. Mater. 2017, 29, 1605807. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.T.; Liu, S.T.; Zhang, P.; Wang, R.; Wang, H.W.; He, B.B.; Gong, Y.S.; Jin, J.; Li, S. Enhanced eletrochemical performances of LiCoO2 at high cut-off voltage by introducing LiF additive. Solid State Ion. 2021, 365, 115654. [Google Scholar] [CrossRef]
- Kim, M.-Y.; Song, Y.-W.; Lim, J.; Park, S.-J.; Kang, B.-S.; Hong, Y.; Kim, H.-S.; Han, J.H. LATP-coated NCM-811 for high-temperature operation of all-solid lithium battery. Mater. Chem. Phys. 2022, 290, 126644. [Google Scholar] [CrossRef]
- Song, G.W.; Zhong, H.; Wang, Z.; Dai, Y.Y.; Zhou, X.Y.; Yang, J. Interfacial Film Li1.3Al0.3Ti1.7PO4-Coated LiNi0.6Co0.2Mn0.2O2 for the Long Cycle Stability of Lithium-Ion Batteries. ACS Appl. Energy Mater. 2019, 2, 7923. [Google Scholar] [CrossRef]
- Kobylianska, S.; Demchuk, D.; Khomenko, V.; Barsukov, V.; Belous, A. Surface Modification of the LiNi0.5Co0.2Mn0.3O2 Cathode by a Protective Interface Layer of Li1.3Ti1.7Al0.3(PO4)3. J. Electrochem. Soc. 2019, 166, A1920–A1925. [Google Scholar] [CrossRef]
- Jin, Y.M.; Zong, X.; Zhang, X.B.; Liu, C.J.; Li, D.; Jia, Z.G.; Li, G.; Zhou, X.G.; Wei, J.H.; Xiong, Y.P. Interface regulation enabling three-dimensional Li1.3Al0.3Ti1.7(PO4)3-reinforced composite solid electrolyte for high-performance lithium batteries. J. Power Sources 2021, 501, 230027. [Google Scholar] [CrossRef]
- Huang, B.J.; Wang, R.; Gong, Y.S.; He, B.B.; Wang, H.W. Enhanced Cycling Stability of Cation Disordered Rock-Salt Li1.2Ti0.4Mn0.4O2 Material by Surface Modification with Al2O3. Front. Chem. 2019, 7, 107. [Google Scholar] [CrossRef]
- Kamiyama, A.; Kubota, K.; Nakano, T.; Fujimura, S.; Shiraishi, S.; Tsukada, H.; Komaba, S. High-Capacity Hard Carbon Synthesized from Macroporous Phenolic Resin for Sodium-Ion and Potassium-Ion Battery. ACS Appl. Energy Mater. 2020, 3, 135. [Google Scholar] [CrossRef]
- Kubota, K.; Shimadzu, S.; Yabuuchi, N.; Tominaka, S.; Shiraishi, S.; Abreu-Sepulveda, M.; Manivannan, A.; Gotoh, K.; Fukunishi, M.; Dahbi, M.; et al. Structural Analysis of Sucrose-Derived Hard Carbon and Correlation with the Electrochemical Properties for Lithium, Sodium, and Potassium Insertion. Chem. Mater. 2020, 32, 2961. [Google Scholar] [CrossRef]
- Nie, K.H.; Sun, X.R.; Wang, J.Y.; Wang, Y.; Qi, W.B.; Xiao, D.D.; Zhang, J.N.; Xiao, R.J.; Yu, X.Q.; Li, H.; et al. Realizing long-term cycling stability and superior rate performance of 4.5 V-LiCoO2 by aluminum doped zinc oxide coating achieved by a simple wet-mixing method. J. Power Sources 2020, 470, 228423. [Google Scholar] [CrossRef]
- Myung, S.-T.; Amine, K.; Sun, Y.-K. Surface modification of cathode materials from nano- to microscale for rechargeable lithium-ion batteries. J. Mater. Chem. 2010, 20, 7074. [Google Scholar] [CrossRef]
- Sari, H.M.K.; Li, X. Controllable Cathode-Electrolyte Interface of Li[Ni0.8Co0.1Mn0.1]O2 for Lithium Ion Batteries: A Review. Adv. Energy Mater. 2019, 9, 1901597. [Google Scholar] [CrossRef]
- Chen, Z.; Qin, Y.; Amine, K.; Sun, Y.K. Role of surface coating on cathode materials for lithium-ion batteries. J. Mater. Chem. 2010, 20, 7606. [Google Scholar] [CrossRef]
- Li, Q.; Li, G.S.; Fu, C.C.; Luo, D.; Fan, J.M.; Li, L.P. K+-Doped Li1.2Mn0.54Co0.13Ni0.13O2: A Novel Cathode Material with an Enhanced Cycling Stability for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2014, 6, 10330–10341. [Google Scholar] [CrossRef]
Cycle Number | Before Cycle R2 (Ω) | 50th Cycle R2 (Ω) |
---|---|---|
NCM@0.5LATP | 59.6 | 75.3 |
Bare-NCM | 93.1 | 146.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Zhang, P.; Wen, W.; Wang, H.; He, B.; Gong, Y.; Jin, J.; Wang, R. Enhanced Electrochemical Performance of LiNi1/3Co1/3Mn1/3O2 at a High Cut-Off Voltage of 4.6 V by Li1.3Al0.3Ti1.7(PO4)3 Coating. Coatings 2022, 12, 1964. https://doi.org/10.3390/coatings12121964
Zhang M, Zhang P, Wen W, Wang H, He B, Gong Y, Jin J, Wang R. Enhanced Electrochemical Performance of LiNi1/3Co1/3Mn1/3O2 at a High Cut-Off Voltage of 4.6 V by Li1.3Al0.3Ti1.7(PO4)3 Coating. Coatings. 2022; 12(12):1964. https://doi.org/10.3390/coatings12121964
Chicago/Turabian StyleZhang, Ming, Peng Zhang, Weidong Wen, Huanwen Wang, Beibei He, Yansheng Gong, Jun Jin, and Rui Wang. 2022. "Enhanced Electrochemical Performance of LiNi1/3Co1/3Mn1/3O2 at a High Cut-Off Voltage of 4.6 V by Li1.3Al0.3Ti1.7(PO4)3 Coating" Coatings 12, no. 12: 1964. https://doi.org/10.3390/coatings12121964
APA StyleZhang, M., Zhang, P., Wen, W., Wang, H., He, B., Gong, Y., Jin, J., & Wang, R. (2022). Enhanced Electrochemical Performance of LiNi1/3Co1/3Mn1/3O2 at a High Cut-Off Voltage of 4.6 V by Li1.3Al0.3Ti1.7(PO4)3 Coating. Coatings, 12(12), 1964. https://doi.org/10.3390/coatings12121964