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Abstract: At present, LiNi1/3Co1/3Mn1/3O2 (NCM) is a widely used material in the commercial
market due to the easy control of the preparation process and usage environment. However, its
capacity keeps fading when the cut-off voltage increases. In this research, an Li1.3Al0.3Ti1.7(PO4)3

(LATP) coating method is proposed to improve the cycle performance of LiNi1/3Co1/3Mn1/3O2 at a
high cut-off voltage of 4.6 V. The battery prepared with LATP-modified NCM exhibits an increased
discharge capacity retention of 92.37% after 100 cycles at 0.2C (1C = 200 mA g−1), while the bare
NCM only presents 64.28%. Our results indicate that LATP-surface coating might be a useful method
to increase the cycle stability of NCM and other high-capacity cathode materials.

Keywords: lithium-ion batteries; cathode; LiNi1/3Co1/3Mn1/3O2 ; Li1.3Al0.3Ti1.7(PO4)3 ; surface
modification

1. Introduction

Recently, the dramatic development of the automobile industry has put forward higher
requirements for batteries with high specific energy densities. Cathode is an important com-
ponent of lithium-ion batteries, and improving its electrochemical performance is one of the
hot spots at present [1–3]. Typical cathode materials include α-NaFeO2-type LiCoO2 and
LiNiO2, spinel LiMn2O4, and olivine LiFePO4 [4]. Among them, LiCoO2 is the first commer-
cial cathode material, but the high cost of Co elements limits its applications in new electric
vehicles [5–7]. In 1999, based on the study of layered binary cathode materials, Liu et al.
first proposed to replace Ni in LiNiO2 with Co and Mn to prepare LiNi1-x-yCoxMnyO2
cathode materials [8]. This kind of material shows some advantages, such as low cost high
specific capacity. Therefore, this type of ternary material is considered to be an important
material to substitute commercial LiCoO2 [9–12]. Currently, the elemental ratios of ternary
materials used in industry are 111, 523, 622, and 811, among which NCM111(NCM) is a
widely used material in the industry due to the easy control of the preparation process
and usage environment [13,14]. However, compared with other ternary materials, the
energy density of NCM material is still unsatisfactory and needs to be improved [15,16].
The easiest way to do so is to increase the cut-off voltage. Unfortunately, when the cut-off
voltage reaches a certain value, the cathode electrolyte interphase (CEI) becomes unstable,
and it continuously decomposes and regenerates in the charge and discharge cycles [17–20].
This continuous side reactions leads to increased internal resistance, which leads to poor
battery performance.

Surface modification is a widely used and effective way to alleviate the surface side
reactions of cathodes [21,22]. Huang et al. employed a one-step method and successfully
coated carbon on the NCM surface [23]. This surface layer effectively enhanced the electron
conductivity and inhibited the occurrence of side reactions between the cathode and
electrolyte. Similarly, Wang et al. reported coating AlPO4 on NCM by a chemical deposition
method and improved the electrochemical performance [24]. Besides, several metal oxide
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layers have been reported to improve the performance of NCM, such as Li2MoO4 [25],
B2O3 [26], Al2O3 [27], Sb2O3 [28], and V2O5 [29], and they all show promising effects.

Li1.3Al0.3Ti1.7(PO4)3 (LATP) is a lithium ionic conductor and considered to be a promis-
ing solid-state electrolyte in lithium batteries [30–32]. It is reported to be an effective layer
on a LiCoO2 surface to increase the electrochemical performance. The reason may be that it
could protect the surface from the corrosion by HF, which is generated from the electrolyte
decomposition at a high cut-off voltage of 4.6V [33,34]. Layered Li-Ni-Co-Mn-O based
material is also a widely applied commercial material. Till now, an LATP layer has been
used as a surface layer in NCM811 [35] and NCM622 materials [36]. In this case, the effects
of an LATP layer on the performance of NCM111 material is a worthy question to study. In
this work, LATP was employed on the surface of NCM to alleviate surface side reactions.
The LATP layer was prepared with a simple wet chemical method. It was found that the
LATP-modified NCM exhibits an increased discharge capacity retention of 92.37% after
100 cycles at 0.2C, while the bare NCM only presents 64.28%. This result indicates that
LATP-surface coating might be an effective method to increase the cycle stability of NCM
at a high cut-off voltage of 4.6 V, which would improve the energy density of NCM in
practical usage.

2. Experimental
2.1. Preparation of Materials

Commercial LiNi1/3Co1/3Mn1/3O2 (NCM) powder was used in this research. The
Li1.3Al0.3Ti1.7(PO4)3-modified NCM samples (NCM@LATP) were synthesized by a wet
chemical method, and the schematic diagram is shown in Figure 1. The precursors were
LiNO3 (99%,), AlNO3·9H2O (AR), C12H28O4Ti (98%), and NH4H2PO4 (98%). Typically,
stoichiometric amounts of precursors were dissolved in a beaker, then commercial NCM
was added in. The weight ratio of LATP was set to be 0.5 wt% (NCM@0.5LATP) and
1 wt% (NCM@1LATP), respectively. The mixture was heated and stirred for 8 h. When
the solution was about to evaporate to dryness, it was put into an oven and dried at 60 ◦C
to completely evaporate the remaining solvent. The collected powder was pre-heated at
300 ◦C for 3 h, and then sintered at 800 ◦C for 2 h to obtain the final sample.
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Figure 1. Schematic illustration for the LATP coating process.

2.2. Characterization of Materials

Crystalline structures of the samples were identified by X-ray diffraction (XRD, D8
Advance, Bruker, Karlsruhe, Germany). Scanning electron microscopy (SEM, Hitachi
SU3500, Hitachi, Tokyo, Japan) was performed to check the morphology of the samples.
Detailed morphological and lattice information were tested using a transmission electron
microscopy instrument (TEM, Tecnai G2 F20, FEI, Eindhoven, The Netherland). X-ray
photoelectron spectroscope (XPS, Thermo Scientific K-Alpha, Waltham, MA, USA) was
used to detect the surface composition. Surface area analyzer (ASAP2460, Micromeritics,
Norcross, GA, USA) was used to obtain the N2 adsorption/desorption isotherms.
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2.3. Electrochemical Characterization

Electrochemical characterization was performed following earlier reports [34]. The
cells were cycled between 2.5 and 4.6 V at a rate of 0.2C or 1C (1C = 200 mA g−1).

3. Results and Discussion

Figure 2 shows the XRD patterns of the two modified materials with different ratios
(NCM@0.5LATP and NCM@1LATP) and the untreated material (bare NCM). All the diffrac-
tion peaks can be ascribed to the layered hexagonal α-NaFeO2 type structure. The two
obvious split peaks from (006)/(012) and (018)/(110) also infer that all three sample presents
typical layered structures [37]. This means the structure of NCM remained unchanged after
the treatment. According to the XRD results, no diffraction peaks of LATP were observed.
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Figure 2. XRD patterns of bare NCM, NCM@0.5LATP, and NCM@1LATP.

Figure 3a–c show the SEM images of the three samples. According to the results,
the bare NCM is basically uniform in size with a micron-level structure. The particles
are in the shape of small spheres with good crystallization. Due to the relatively large
size of the particles, it is difficult to see whether the coating is successful based on the
particle morphology alone. In this case, NCM@0.5LATP was chosen for further study. EDS
result confirms the existence of P, Al, and Ti elements in this sample. Elemental mapping
results are shown in Figure 3e–k. It can be seen that the elements of Ni, Co, and Mn are
distributed uniformly in the NCM@0.5LATP, and the shape of spherical particles can be
clearly observed. By comparison, for the results of P, Al, and Ti, the spherical contour is not
obvious. The reason may be that the coating layer is very thin and the element contents
of P, Ti, and Al are very low. These results indicate that LTAP exists on the surface of
NCM particles.

To further demonstrate the existence of the LATP layer more intuitively, the surfaces
of the bare NCM and NCM@0.5LATP samples were inspected by TEM. As illustrated in
the TEM images shown in Figure 4a,b, clear lattice fringes can be observed up to the edge.
The interplanar distance was calculated to be 0.23 nm, and it should be related to the (003)
crystal plane. For the NCM@0.5LATP sample, an amorphous layer can be seen on the
surface. This should be the LATP layer, which indicates LATP might coat on the surface in
the amorphous form.
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(e) area for the elemental mapping; elemental mapping of Co (f), Mn (g), Ni (h), P (i), Al (j), and
Ti (k).
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Surface compositions of bare NCM and NCM@0.5LATP were analyzed with XPS.
Firstly, the presence of characteristic peaks of Ni, Co, O, Mn, and C elements can be
observed from the full spectrum of bare NCM, which is consistent with the previous EDS
results. While for the NCM@0.5LATP sample, extra characteristic peaks of Al, Ti, and
P are also observed in the spectrum. This result indicates that Al, Ti and P exist on the
surface of NCM@0.5LATP. Figure 5b,c show the high-resolution XPS spectra of the P and Ti
elements in the NCM@0.5LATP sample. Peaks at 458.3 eV and 463.9 eV can be ascribed to
the binding energies of Ti 2p3/2 and Ti 2p1/2, which correspond to Ti4+ ions in the Ti-based
compounds [38]. Figure 5d–f show the high-resolution XPS spectra of the Co, Mn, and
Ni elements. The peaks of the three elements are nearly the same in the bare NCM and
NCM@0.5LATP samples, which indicates the valence states of Ni, Co, and Mn remained
unchanged after the LATP modification [39].



Coatings 2022, 12, 1964 5 of 9

Coatings 2022, 12, x FOR PEER REVIEW 5 of 10 
 

 

Surface compositions of bare NCM and NCM@0.5LATP were analyzed with XPS. 

Firstly, the presence of characteristic peaks of Ni, Co, O, Mn, and C elements can be ob-

served from the full spectrum of bare NCM, which is consistent with the previous EDS 

results. While for the NCM@0.5LATP sample, extra characteristic peaks of Al, Ti, and P 

are also observed in the spectrum. This result indicates that Al, Ti and P exist on the sur-

face of NCM@0.5LATP. Figure 5b,c show the high-resolution XPS spectra of the P and Ti 

elements in the NCM@0.5LATP sample. Peaks at 458.3 eV and 463.9 eV can be ascribed to 

the binding energies of Ti 2p3/2 and Ti 2p1/2, which correspond to Ti4+ ions in the Ti-based 

compounds [38]. Figure 5d–f show the high-resolution XPS spectra of the Co, Mn, and Ni 

elements. The peaks of the three elements are nearly the same in the bare NCM and 

NCM@0.5LATP samples, which indicates the valence states of Ni, Co, and Mn remained 

unchanged after the LATP modification [39]. 

 

Figure 5. XPS spectra of (a) bare NCM and NCM@0.5LATP; high resolution spectra of (b) P 2p, (c) 

P 2p, (d) Ti 2p for NCM@0.5LATP, and € Co 2p, (f) Ni 2p, and (g) Mn 2p for bare NCM and 

NCM@0.5LATP. 

  

Figure 5. XPS spectra of (a) bare NCM and NCM@0.5LATP; high resolution spectra of (b) P 2p,
(c) P 2p, (d) Ti 2p for NCM@0.5LATP, and (e) Co 2p, (f) Ni 2p, and (g) Mn 2p for bare NCM and
NCM@0.5LATP.

Figure 6 shows the N2 adsorption/desorption isotherms, and the shapes of the two
samples are similar. However, for both samples, the end point of the desorption curve
cannot match the start point of the adsorption curve. The reason may be the surface areas
of two samples are relatively small [40,41]. Based on present data, the surface areas of
bare NCM and NCM@0.5%LATP are calculated to be ~4.7661 m2 g−1 and ~5.7378 m2 g−1,
respectively.

Galvanostatic charge–discharge and rate performances were tested for all three sam-
ples. For the bare NCM sample (Figure 7a), a significant declination in both voltage and
capacity appears during the cycles. The reason is related to the HF corrosion of electrode
materials by point decompression decomposition at high voltage [42]. The discharge capac-
ity of bare NCM drops to 122.4 mAh g−1 after 50 cycles at 0.2C, with a capacity retention of
only 64.28%. The NCM@0.5LATP (Figure 7b) and NCM@1LATP (Figure 7c) samples share
similar discharge curves and are both much better than the bare NCM. While the discharge
capacity of NCM@0.5LATP is slightly larger than that of NCM@1LATP, which suggests
the former sample presents a better performance at this rate. This result indicates that
though LATP is a Li-ion conductor, a thick layer of LATP might decrease the conductivity
of the electrode and degrade the discharge capacity [35,43–45]. Results in Figure 7e show
that when the rate is increased to 1C, the discharge-specific capacities of all three sample
materials decrease. The capacity decay of the bare NCM sample is more obvious than that
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of the other samples. Figure 7f shows the rate performance of the three samples, and the
chosen rates are 0.2C, 0.5C, 1C, 2C, and 5C, respectively. At small rates such as 0.2C, 0.5C,
and 1C, the capacity of the bare NCM sample is larger than the other two samples, which is
coincident with the cycle performances shown in Figure 7d,e. When the rate increases to 2C
and 5C, the capacity of the bare NCM become much lower. At this time, the NCM@1LATP
sample shows the largest capacity. It can still deliver a capacity of 70 mAh g−1 at 5C. The
above results indicate that NCM@0.5LATP exhibits the best cycling performance in the
three samples at a cut-off voltage of 4.6 V. Earlier reports suggest some undesirable spinel
phases grow during the cycles, and they will cause the decrease in voltage and capacity [46].
According to our results, the growth of spinel phase would be attenuated by the LATP
layer, and the electrochemical performances are increased.
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To reveal the effect of the LATP layer on the electrochemical internal resistances, EIS
experiments were performed on bare NCM and NCM@0.5LATP (Figure 8). The Nyquist
curves of the two samples are similar. The equivalent circuit model used for fitting is shown
in the inset. R1 in the model represents the Ohmic resistance, which may mainly come
from the electrolyte, while R2 represents the charge transfer resistance. Table 1 shows the
fitted parameters. According to the data, R2 of the bare NCM is 93.1 Ω before cycle, and
increases to 146.7 Ω after 50 cycles, with a growth rate of 57.6%. While for NCM@0.5LATP,
R2 increases from 59.6 Ω to 75.3 Ω, with a growth rate of only 26.3%. This result indicates
the surface layer of NCM@0.5LATP is much stable than that of the bare NCM. The reason
may be the protective layer prevents the side reactions of the electrolyte from occurring,
and forms a stable cathode–electrolyte interphase, which provides a better microporous
channel for lithium-ion diffusion [13,14].
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Table 1. Fitted impedance parameters.

Cycle Number Before Cycle
R2 (Ω)

50th Cycle
R2 (Ω)

NCM@0.5LATP 59.6 75.3
Bare-NCM 93.1 146.7

4. Conclusions

In summary, a homogeneous LATP layer was prepared on an NCM surface by a simple
wet chemical method. The sample with 0.5 wt% LATP presents an increased capacity
retention of 92.17% after 100 cycles at 0.2C. It also exhibits a better rate performance than
the other two samples. EIS result indicates the surface layer of NCM@0.5LATP is much
stable than that of the bare NCM. Our results suggest that LATP-surface coating might be
an effective method to improve the cycle stability of NCM, and it might also be useful for
other high-capacity cathode materials.
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editing, R.W. All authors have read and agreed to the published version of the manuscript.
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