Nondestructive Evaluation of Thermal Barrier Coatings Thickness Using Terahertz Time-Domain Spectroscopy Combined with Hybrid Machine Learning Approaches
Abstract
:1. Introduction
2. Simulation Experiment Method
2.1. FDTD Simulation
2.2. Signal Pre-Processing
2.3. PCA-WOA-Elman Machine Learning Model
2.3.1. Principal Component Analysis
- (1)
- Data decentralization
- (2)
- Calculate the covariance matrix
- (3)
- Calculate the eigenvalues and eigenvectors, as well as the corresponding eigenvectors
- (4)
- Finding the γ principal components of the sample feature matrix
2.3.2. Elman Neural Network
2.3.3. Principle of The Whale Optimization Algorithm
- (1)
- Surrounding and hunting
- (2)
- The position of the bubble net in the updated encircling pattern
- (3)
- Search for prey
2.3.4. Whale Optimization Algorithm to Optimize Elman Neural Network
3. Simulation Analysis
3.1. Results of Principal Component Analysis
3.2. Model Training and Results Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, P.; Yue, W.; Li, J.; Bin, G.; Li, C. Review of damage mechanism and protection of aero-engine blades based on impact properties. Eng. Fail. Anal. 2022, 140, 106570. [Google Scholar] [CrossRef]
- Cao, B.; Wang, M.; Li, X.; Fan, M.; Tian, G. Noncontact thickness measurement of multilayer coatings on metallic substrate using pulsed terahertz technology. IEEE Sens. J. 2020, 20, 3162–3171. [Google Scholar] [CrossRef]
- Fukuchi, T.; Fuse, N.; Okada, T.; Fujii, T.; Mizuno, M.; Fukunaga, K. Topcoat thickness measurement of thermal barrier coating of gas turbine blade using terahertz wave. Electr. Eng. Jpn. 2014, 189, 1–8. [Google Scholar] [CrossRef]
- Liu, J.; Lv, Z.; Zhou, Y.; Huang, S.; Chen, H.; Xu, N. Research progress of advanced ceramic materials for thermal barrier coatings. Surf. Technol. 2022, 51, 42–52. [Google Scholar]
- Yang, S.; Yan, X.; Guo, H. Failure mechanism and protection strategy of thermal barrier coatings under CMAS attack. Acta Aeronaut. Astronaut. Sin. 2022, 42, 1–17. [Google Scholar]
- Cheng, B.; Wang, Y.; Zhang, X.; An, G.; Chu, Q.; Zhang, X.; He, D.; Zhai, H.; Li, W. Sintering governing the cracking behaviors of different La2Zr2O7/YSZ ceramic layer combination TBCs at 1150 °C. Surf. Coat. Technol. 2021, 428, 127910. [Google Scholar] [CrossRef]
- Shang, Y.; Aderonke, A.; Tohren, C. A boosted decision tree approach to shadow detection in scanning electron microscope (SEM) images for machine vision applications. Ultramicroscopy 2019, 197, 122–128. [Google Scholar]
- Bu, C.; Zhao, B.; Liu, T.; Liu, G.; Liao, C.; Tang, Q. Infrared thermal imaging detection of debonding defects in carbon fiber reinforced polymer based on pulsed thermal wave excitation. Thermal. Sci. 2020, 24, 3887–3892. [Google Scholar] [CrossRef]
- Ren, X. Research on main defects and prevention measures of metal material welding based on ultrasonic nondestructive testing technology. J. Phys. Conf. Ser. 2022, 2321, 012023. [Google Scholar] [CrossRef]
- Queralt, I.; Ibañez, J.; Marguí, E.; Pujol, J. Thickness measurement of semiconductor thin films by energy dispersive X-ray fluorescence benchtop instrumentation: Application to GaN epilayers grown by molecular beam epitaxy. Spectrochim. Acta. Part B 2010, 65, 583–586. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; Chen, Y.; Carr, J.; Jacques, S.; Behnsen, J.; Michiel, M.; Xiao, P.; Cernik, R. Understanding the residual stress distribution through the thickness of atmosphere plasma sprayed (APS) thermal barrier coatings (TBCs) by high energy synchrotron XRD; digital image correlation (DIC) and image based modelling. Acta Mater. 2017, 132, 1–12. [Google Scholar] [CrossRef]
- Chen, W.; Wu, D.; Wang, X.; Wang, T. A self-frequency-conversion eddy current testing method. Measurement 2022, 195, 111129. [Google Scholar] [CrossRef]
- Cao, B.; Zheng, D.; Fan, M.; Sun, F.; Liu, L. Efficient and reliable thickness measurement method for multilayer coatings based on terahertz Time-Domain spectroscopy technology. Acta Opt. Sin. 2022, 42, 127–137. [Google Scholar]
- Zhang, D.; Ren, J.; Gu, J.; Li, L.; Zhang, J.; Xiong, W.; Zhong, Y.; Zhou, T. Nondestructive testing of bonding defects in multilayered ceramic matrix composites using THz time-domain spectroscopy and imaging. Compos. Struct. 2020, 251, 112624. [Google Scholar] [CrossRef]
- Ye, D.; Wang, W.; Yin, C.; Xu, Z.; Zhou, H.; Fang, H.; Li, Y.; Huang, J. Pulsed terahertz spectroscopy combined with hybrid machine learning approaches for structural health monitoring of multilayer thermal barrier coatings. Opt. Express 2020, 28, 34875–34893. [Google Scholar] [CrossRef]
- Ye, D.; Wang, W.; Xu, Z.; Yin, C.; Zhou, H.; Li, Y. Prediction of thermal barrier coatings microstructural features based on support vector machine optimized by cuckoo search algorithm. Coatings 2020, 10, 704. [Google Scholar] [CrossRef]
- Xu, Z.; Ye, D.; Chen, J.; Zhou, H. Novel terahertz nondestructive method for measuring the thickness of thin oxide scale using different hybrid machine learning models. Coatings 2020, 10, 805. [Google Scholar] [CrossRef]
- Zhang, H.; He, M.; Shi, L.; Wang, P. Terahertz thickness measurement based on stochastic optimization algorithm. Spectrosc. Spect. Anal. 2020, 40, 3066–3070. [Google Scholar]
- Zhong, S. Progress in terahertz nondestructive testing: A review. Front. Mech. Eng. 2019, 14, 273–281. [Google Scholar] [CrossRef]
- Zhai, M.; Ahmed, M.; Locquet, A.; Schneider, G.; Kalmar, R.; Fendler, M.; Declercq, N.; Citrin, S. Diagnosis of injection-molded weld lines in ABS thermoplastic by polarized terahertz reflective imaging. NDT E Int. 2021, 122, 102497. [Google Scholar] [CrossRef]
- Fukuchi, T.; Fuse, N.; Fujii, T.; Okada, M.; Fukunaga, K.; Mizuno, M. Measurement of topcoat thickness of thermal barrier coating for gas turbines using terahertz waves. Electr. Eng. Jpn. 2013, 183, 1–9. [Google Scholar] [CrossRef]
- Fukuchi, T.; Fuse, N.; Okada, M.; Fujii, T.; Mizuno, M.; Fukunaga, K. Measurement of refractive index and thickness of topcoat of thermal barrier coating by reflection measurement of terahertz waves. Electron. Commun. Jpn. 2013, 96, 37–45. [Google Scholar] [CrossRef]
- Tipler, S.; D’ Alessio, G.; Van Haute, Q.; Parente, A.; Contino, F.; Coussement, A. Predicting octane numbers relying on principal component analysis and artificial neural network. Comput. Chem. Eng. 2022, 161, 107784. [Google Scholar] [CrossRef]
- Ocampo-Marulanda, C.; Fernández-álvarez, C.; Cerón Wilmar, L.; Canchala, T.; Carvajal-Escobar, Y.; Alfonso-Morales, W. A spatiotemporal assessment of the high-resolution CHIRPS rainfall dataset in southwestern Colombia using combined principal component analysis. Ain. Shams. Eng. J. 2022, 13, 101739. [Google Scholar] [CrossRef]
- Zhou, Z.; Wei, D. Analysis of ultrasonic sound field characteristic with FDTD. J. Mech. Eng. 2010, 46, 9–13. [Google Scholar] [CrossRef]
- Li, L.; Zhou, M.; Ren, J. Test of the adhesive thickness uniformity based on terahertz time-Domain spectroscopy. Laser Infrared 2014, 44, 801–804. [Google Scholar]
- Krimi, S.; Klier, J.; Jonuscheit, J.; Freymann, G.; Urbansky, R.; Beigang, R. Self-calibrating approach for terahertz thickness measurements of ceramic coatings. In Proceedings of the 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Copenhagen, Denmark, 25–30 September 2016; pp. 1–2. [Google Scholar]
- Gungo, M. A comparative study on wavelet denoising for high noisy CT images of COVID-19 disease. Optik 2021, 235, 166652. [Google Scholar] [CrossRef]
- Liu, L.; Huan, H.; Li, W.; Mandelis, A.; Wang, Y.; Zhang, L.; Zhang, X.; Yin, X.; Wu, Y.; Shao, X. Highly sensitive broadband differential infrared photoacoustic spectroscopy with wavelet denoising algorithm for trace gas detection. J. Photoacoust. 2021, 21, 100228. [Google Scholar] [CrossRef]
- Firoozi, P.; Mansour, V.; Amin, G. Lung sound signal denoising using discrete wavelet transform and artificial neural network. Biomed. Signal. Process. Control. 2022, 72, 103329. [Google Scholar]
- Claudia, L.; Jillian, J.H.; Anne-Louise, M.H.; Gerald, W.T.; Blair, L.; Sonya, L.C.; Ewa, A.S.; Andrew, R.; Barry, J.T.; Barbara, C.G.; et al. Compositional principal component analysis generates gut microbiota profiles that associate with children’s diet and body composition. Proc. Nutr. Soc. 2020, 79, E284. [Google Scholar]
- Geng, Z.; Duan, X.; Han, Y.; Liu, F.; Xu, W. Novel variation mode decomposition integrated adaptive sparse principal component analysis and it application in fault diagnosis. ISA Trans. 2021, 128, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Cheng, Q.; Yan, S.; Yang, D. Situation awareness method of the distribution network based on EMD-SVD and Elman neural network. Energy Rep. 2022, 8, 632–639. [Google Scholar] [CrossRef]
- An, Y.; Sun, X.; Ren, B.; Li, H.; Zhang, M. A data-driven method for IGBT open-circuit fault diagnosis for the modular multilevel converter based on a modified Elman neural network. Energy Rep. 2022, 8, 80–88. [Google Scholar] [CrossRef]
- Masoud, F.; Michael, S.; Pankaj, J.; Christopher, H.; Erik, M.; Hamilton, L. Fully Elman neural network: A novel deep recurrent neural network optimized by an improved Harris Hawks algorithm for classification of pulmonary arterial wedge pressure. IEEE. Trans. Biomed. Eng. 2021, 69, 1733–1744. [Google Scholar]
- Ji, G. Prediction of Zhaoqing API based on factor analysis and WOA-Elman neural network. Math. Pract. Theory 2021, 51, 265–276. [Google Scholar]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Song, Z.; Zhao, Y.; Liu, G.; Cao, C.; Liu, Q.; Zhang, X.; Dai, D.; Zheng, Z. Surface roughness prediction and process parameter optimization of magnetic abrasive finishing based on WOA-LSSVM. Surf. Technol. 2022, 1–14. [Google Scholar]
- Andrzej, B.; Michal, P.; Joanna, J. The whale optimization algorithm approach for deep neural networks. Sensors 2021, 21, 8003. [Google Scholar]
- Chen, Z.; Li, C. Prediction of blasting flyrock distance based on KPCA-WOA-ELM. Exp. Mater. 2022, 51, 47–51. [Google Scholar]
- Zhang, C.; Ji, C.; Hua, L.; Ma, M.; Peng, T. Evolutionary quantile regression gated recurrent unit network based on variational mode decomposition, improved whale optimization algorithm for probabilistic short-term wind speed prediction. Renew. Energy 2022, 197, 668–682. [Google Scholar] [CrossRef]
- Zhu, C.; Kang, L.; Feng, W. Stock closing price prediction algorithm using adaptive whale optimization algorithm and Elman neural network. J. Comput. Appl. 2020, 40, 1501–1509. [Google Scholar]
- Kong, D.; Chen, H.; Chen, X.; Dong, R.; Wang, S. Research on oil identification method based on three-dimensional fluorescence spectroscopy combined with sparse principal component analysis and support vector machine. Spectrosc. Spect. Anal. 2021, 41, 3474–3479. [Google Scholar]
- Gao, S.; Zhao, H.; Bai, Z.; Han, B.; Zhao, R.; Zhang, N.; Li, C.; Lei, X.; Shi, W.; Zhan, L.; et al. Combined use of principal component analysis and artificial neural network approach to improve estimates of PM 2.5 personal exposure: A case study on older adults. Sci. Total Environ. 2020, 726, 138533. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Wang, W.; Ye, D.; Zhang, Z.; Fang, H.; Yang, T.; Wang, Y.; Zhong, S. Nondestructive evaluation of thermal barrier coatings thickness using terahertz technique combined with PCA-GA-ELM algorithm. Coatings 2022, 12, 390. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Tang, H. An improved Elman neural network with piecewise weighted gradient for time series prediction. Neurocomputing 2019, 359, 199–208. [Google Scholar] [CrossRef]
- Lin, P.; Peng, Z.; Lai, Y.; Cheng, S.; Chen, Z.; Wu, L. Short-term power prediction for photovoltaic power plants using a hybrid improved Kmeans-GRA-Elman model based on multivariate meteorological factors and historical power datasets. Energy Convers. Manag. 2018, 177, 704–717. [Google Scholar] [CrossRef]
- Krishnan, S.; Lokesh, S.; Devi, M. An efficient Elman neural network classifier with cloud supported internet of things structure for health monitoring system. Comput. Netw. 2019, 151, 201–210. [Google Scholar] [CrossRef]
Parameter | Setting Conditions |
---|---|
Simulation thickness | 101–300 μm |
Step length | 1 μm |
THz frequency | 0.3–1 THz |
THz wavelength | 300–1000 μm |
YSZ refractive index | 4.7 |
Mesh accuracy | 2 |
Simulation time | 100 ps |
Boundary conditions (X,Y) | Periodic |
Boundary conditions (Z) | PML |
Principal Component | Eigenvalue | Contribution Rate/% | Cumulative Contribution Rate/% |
---|---|---|---|
1 | 931.27 | 30.51 | 30.51 |
2 | 894.60 | 29.31 | 59.83 |
3 | 404.06 | 13.24 | 73.07 |
4 | 214.04 | 7.01 | 80.08 |
5 | 101.68 | 3.33 | 83.41 |
6 | 94.43 | 3.09 | 86.51 |
7 | 79.76 | 2.61 | 89.12 |
8 | 65.06 | 2.13 | 91.25 |
9 | 61.68 | 2.02 | 93.28 |
10 | 49.16 | 1.61 | 94.89 |
11 | 39.41 | 1.29 | 96.18 |
Algorithm | Parameter | Parameter Value |
---|---|---|
WOA | Population size | 40 |
Maximum number of iterations | 60 | |
Independent variable range | [−3, 3] | |
Constant | 1 |
Neural Network | Parameter | Parameter Value |
---|---|---|
Elman | Hidden layer function | tansig |
Output layer function | purelin | |
Training times | 1000 | |
Learning rate | 0.01 | |
Training target error | 0.0001 | |
Momentum factor | 0.01 |
Prediction Model | MAE | RMSE | MAPE/% | R2 |
---|---|---|---|---|
ELM | 10.78 | 12.92 | 6.11 | 0.850 |
BP | 6.04 | 7.77 | 3.20 | 0.882 |
Elman | 3.34 | 4.43 | 1.55 | 0.892 |
PCA-WOA-Elman | 0.16 | 0.28 | 0.09 | 0.999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Ye, D.; Xu, Z.; Yin, C.; Xu, H.; Zhou, H.; Yi, J.; Chen, Y.; Pan, J. Nondestructive Evaluation of Thermal Barrier Coatings Thickness Using Terahertz Time-Domain Spectroscopy Combined with Hybrid Machine Learning Approaches. Coatings 2022, 12, 1875. https://doi.org/10.3390/coatings12121875
Li R, Ye D, Xu Z, Yin C, Xu H, Zhou H, Yi J, Chen Y, Pan J. Nondestructive Evaluation of Thermal Barrier Coatings Thickness Using Terahertz Time-Domain Spectroscopy Combined with Hybrid Machine Learning Approaches. Coatings. 2022; 12(12):1875. https://doi.org/10.3390/coatings12121875
Chicago/Turabian StyleLi, Rui, Dongdong Ye, Zhou Xu, Changdong Yin, Huachao Xu, Haiting Zhou, Jianwu Yi, Yajuan Chen, and Jiabao Pan. 2022. "Nondestructive Evaluation of Thermal Barrier Coatings Thickness Using Terahertz Time-Domain Spectroscopy Combined with Hybrid Machine Learning Approaches" Coatings 12, no. 12: 1875. https://doi.org/10.3390/coatings12121875
APA StyleLi, R., Ye, D., Xu, Z., Yin, C., Xu, H., Zhou, H., Yi, J., Chen, Y., & Pan, J. (2022). Nondestructive Evaluation of Thermal Barrier Coatings Thickness Using Terahertz Time-Domain Spectroscopy Combined with Hybrid Machine Learning Approaches. Coatings, 12(12), 1875. https://doi.org/10.3390/coatings12121875