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Abstract: To ensure the thermal stability of aero-engine blades under high temperature and harsh
service environments, it is necessary to quickly and accurately evaluate the thickness of thermal
barrier coatings (TBCs). In this work, it was proposed to use the terahertz nondestructive testing
(NDT) technique combined with the hybrid machine learning algorithm to measure the thickness of
TBCs. The finite difference time-domain (FDTD) method was used to model the optical propagation
characteristics of TBC samples with different thicknesses (101–300 µm) in the frequency band. To
make the terahertz time-domain signal obtained simulation more realistic, uniform white noise
was added to the simulation data and wavelet denoising was conducted to mimic the real testing
environment. Principal components analysis (PCA) algorithm and whale optimization algorithm
(WOA) combined with an optimized Elman neural network algorithm was employed to set up the
hybrid machine learning model. Finally, the hybrid thickness regression prediction model shows low
error, high accuracy, and an exceptional coefficient of determination R2 of 0.999. It was demonstrated
that the proposed hybrid algorithm could meet the thickness evaluation requirements. Meanwhile, a
novel, efficient, safe, and accurate terahertz nondestructive testing method has shown great potential
in the evaluation of structural integrity of thermal barrier coatings in the near future.

Keywords: thermal barrier coatings; thickness; terahertz; finite difference time-domain; machine learning

1. Introduction

Aerospace manufacturing engineering is a vital part of modern industry, in which
turbine blades are the core elements of aero-engines under harsh working conditions and
severe service environments [1]. The blade life is mainly affected by high temperature,
so the blade material needs to have excellent resistance to high temperature. Superalloy
is applied to the blade manufacturing of traditional materials, but the single superalloy
material is inefficient in practice. The aim is to extend the service life of engine turbine
blades and strengthen the safety of use. Thermal barrier coatings (TBCs) are deposited
on its surface to reduce the working temperature, prevent the high temperature corrosion,
enhance the blade anti-erosion ability, and extend the service life [2,3].

TBCs are a complex multi-layer structure, which is usually composed of three layers.
The topcoat (TC) is a ceramic layer with a typical thickness of 100 to 600 µm. Yttria stabilized
zirconia (YSZ) is currently the most widely used topcoat material for TBCs, owing to its
excellent insulation capacity and high fracture toughness [4,5]. The bottom layer is the
substrate, which is usually made of Ni superalloy material. With a metal bond coating
(BC) between the ceramic layer and the substrate, the BC material is alloy such as NiCrAlY.

Coatings 2022, 12, 1875. https://doi.org/10.3390/coatings12121875 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings12121875
https://doi.org/10.3390/coatings12121875
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://orcid.org/0000-0003-4593-5099
https://orcid.org/0000-0003-1433-459X
https://doi.org/10.3390/coatings12121875
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings12121875?type=check_update&version=1


Coatings 2022, 12, 1875 2 of 16

With the increase of blade service time, thermal growth oxides (TGO) would appear at the
interface between the bond layer and the ceramic layer, which is a vital factor to weaken
the TBC performance [6]. Factors that affect the performance of the TBCs or directly lead to
the failure are complex. Thickness is an important index to analyze coating properties and
can be used to evaluate whether the coating structure is damaged or has failed. Therefore,
in terms of coating structural integrity evaluation, the thickness measurement of TBCs is
the emphasis attention problem.

TBC thickness measurement methods are mainly classified into two categories, de-
structive testing and nondestructive testing (NDT). Destructive testing usually destroys
the characterization of the coating. For example, the scanning electron microscopy (SEM)
observation method requires the TBC sample to be ground before testing to obtain the elec-
tron micrograph and then analyze the microstructure [7]. Currently, NDT techniques are
more applicable to the measurement of TBC thickness, such as infrared thermography [8],
ultrasonic testing technology [9], X-ray inspection [10], digital image analysis [11], eddy
current method, and microwave detection [12]. Various testing techniques have excellent
characteristics and could be applied to samples under different experimental conditions,
but there are some drawbacks and limitations. A coupling agent is needed for ultrasonic
detection, and signal aliasing would occur when detecting multilayer coatings. Infrared
thermal imaging is suitable for samples with high thermal conductivity, X-ray is harmful to
human health, and so on. Compared with the above traditional testing techniques, tera-
hertz technology is a unique nondestructive testing technique. With transient, penetrating,
coherent, and low energy, it could be used in imaging and thickness measurement. High
detection accuracy and efficiency can be maintained without touching the sample. Because
terahertz energy is so small, it is not destructive to substances or harmful to humans. Be-
cause of the high terahertz frequency, the spatial resolution is also high, and the penetration
of multilayer coatings is strong.

Recently, terahertz detection technology has become popular and widely used. For ex-
ample, Fukuchi et al. [3] used terahertz waves to obtain the refractive index of YSZ ceramic
coatings and the time delay of reflection echo to determine the thickness; Cao et al. [13]
proposed an efficient and reliable measurement method for multilayer coatings based on
terahertz time-domain spectroscopy; Zhang et al. [14] used terahertz time-domain spec-
troscopy and imaging to detect multilayered ceramic matrix composites, and analyzed
the bonding defects by extracting waveform characteristics. Ye et al. [15] used terahertz
technology to monitor the lifetime of multilayer coatings. The common feature of these pre-
vious works was the extraction of the time-domain signal using the terahertz propagation
principle. The characteristic parameters of terahertz waves were extracted by signal pro-
cessing and the sample information was obtained by calculation. Nevertheless, traditional
NDT methods cannot meet the requirements under certain specific conditions, and the
processing of echo signals is strict. Due to the difficulty of extracting feature information, it
leads to the decrease of detection accuracy and increase of error when the signal is aliased.
Moreover, it cannot meet the requirements of rapid and intelligent detection of TBC thick-
ness. On the other hand, inspection personnel are required to have professional knowledge,
and the practicability is poor. Consequently, the application of machine learning methods
to nondestructive testing was put forward [16,17]. Zhang et al. [18] mentioned that the
random optimization algorithm combined with terahertz technology can solve the problem
when the sample thickness is too thin to obtain accurate flight time directly from the pulse
echo. Through previous studies, it has been confirmed that terahertz technology is relevant
in nondestructive testing and has promoted the development of the field of nondestructive
testing [19–22].

In this work, a new TBC thickness measurement method combining terahertz tech-
nology and hybrid machine learning was proposed. Machine learning is used to optimize
data processing, extract distinct features, ensure high detection accuracy, improve detec-
tion efficiency, and make the measurement of TBC thickness more intelligent. Simulated
terahertz time-domain signal was obtained using the finite difference time-domain (FDTD)
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method. To be closer to the real test, the simulated signal was pre-processed by adding
uniform white noise and using wavelet denoising. Since the data were high-dimensional
and unsuitable as input to the model, principal component analysis (PCA) was used to
reduce the dimensionality of the pre-processed data [23,24]. Signal features were extracted
and input to the whale optimization algorithm (WOA) - Elman model, and squared correla-
tion coefficient (R2), root mean square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE) were calculated for the prediction model. Comparing
the prediction results of the four machine learning models, it was obvious that PCA-WOA-
Elman was the most accurate. It was proved that the proposed algorithm can accurately
measure the thickness of TBCs.

2. Simulation Experiment Method
2.1. FDTD Simulation

The finite difference time-domain (FDTD) module of the Lumerical 2020 R2.1 software
was used to simulate the electromagnetic field through the time-domain recursive simula-
tion of the wave propagation process. An excellent feature of the model was the ability to
specify the mesh and assign the corresponding variables so that complex structures can be
modeled to meet the modeling needs. It was suitable for simulated terahertz signals and
obtained signals and waveforms clearly [25].

As shown in Figure 1, it reflected the terahertz waves propagation in TBCs. S indicated
interface reflected waves, R1 indicated that internal reflected waves are received for the
first time, and R2 indicated that internal reflected waves are received for the second time.
For the simplification of the model, the direction of terahertz wave incidence was kept
perpendicular to the sample [26]. Since terahertz waves could only propagate in non-
metallic media or metallic materials with high dielectric properties. While encountering
metallic materials with low dielectric properties, the reflection phenomena would occur
on the metal surface. Accordingly, terahertz can be transmitted in a ceramic layer, and
reflection and refraction occur. Part of the vertically incident terahertz waves was reflected
into the air on the surface of the ceramic layer, while the rest was transmitted through
the ceramic layer and reflected off the metal substrate. The terahertz waves propagated
through the ceramic layer again in the form of echoes so that multiple echoes could be
received. Figure 2 shows five simulated terahertz time-domain signals for measuring the
thickness of the TBCs. Several echoes were received from the incident terahertz waves
in contact with the ceramic layer. The fluctuations gradually weaken with time and the
waveform tended to be flat. Since the terahertz signal of 0–35 ps is 0, it was not shown in
the figure in order to make the waveform easier to observe.
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Figure 1. Model for the propagation of terahertz signals in TBCs [3,27].

In this work, the terahertz frequency range was 0.3 to 1 THz, and the simulation TBC
thickness was 101 to 300 µm, in 1 µm step, for a total of 200 sets of data. The refractive
index of YSZ at this frequency range was usually 3.7 to 5.6; previous studies have shown
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that the error of thickness measurement was smaller when the refractive index was 4.7 [3].
Table 1 presents the details of the parameter settings of the FDTD software simulation.
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Figure 2. Terahertz time-domain signal diagram.

Table 1. FDTD simulation parameter settings.

Parameter Setting Conditions

Simulation thickness 101–300 µm
Step length 1 µm

THz frequency 0.3–1 THz
THz wavelength 300–1000 µm

YSZ refractive index 4.7
Mesh accuracy 2
Simulation time 100 ps

Boundary conditions (X,Y) Periodic
Boundary conditions (Z) PML

2.2. Signal Pre-Processing

The input of the machine learning model proposed was a terahertz time-domain signal,
which was obtained by the FDTD software. Terahertz waves were perturbed by external
factors during actual experiments. To make the simulated signal closer to the actual test,
uniform white noise and wavelet denoising were added, with the rest of the data processed
in the same way.

As shown in Figure 3, uniform white noise was distributed continuously and uniformly
within a certain frequency range, with the equivalent noise energy density. In the simulation,
the power spectrum density of uniform white noise was 0.1 and the distribution range
was 0 to 1. This method is commonly used in the study of terahertz NDT and is a method
widely accepted by researchers.

Dmey wavelet analysis denoising has been widely used in fault diagnosis, image
processing, speech recognition, spectral analysis, and other fields [28–30]. Since wavelet
analysis has excellent multi-resolution analysis characteristics, it can better achieve the
denoising function. As shown in Figure 4, the Dmey wavelet denoising method was
selected, and the terahertz time-domain signal with superimposed uniform white noise
needed to be denoised to obtain a smooth signal curve.
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2.3. PCA-WOA-Elman Machine Learning Model
2.3.1. Principal Component Analysis

Principal component analysis (PCA) is usually an excellent choice among many data
dimensionality reduction algorithms. Its primary function is to reduce the high-dimensional
data, extract the significant features of a huge data set, and compose representative and
comprehensive new low-dimensional data [31]. The specific process is to calculate the
eigenvectors and eigenvalues of the covariance matrix, and select a few eigenvectors with
the highest eigenvalue ranking to form a new matrix. This method may reduce the data
dimensions without losing the characteristics of the data, which is an effective method to
simplify the data.

The following describes in detail the process of dimensionality reduction using the
PCA technique, assuming that given the m× n sample matrix H, hj denotes the sample
feature variable in column j, where j = [1, 2... n]. The process of PCA is shown in detail
below [32].

(1) Data decentralization

The given sample feature data are decentered to obtain the sample feature matrix H′.

h′j =
hj − hj
√sj

(1)

where hj and √sj are the mean and variance of the j-th column and s, respectively.

(2) Calculate the covariance matrix

Calculate the covariance matrix E of the decentered sample feature matrix H′.

E =
1
m

H′T H′ (2)

where H′T is the transpose of the sample eigenmatrix.

(3) Calculate the eigenvalues and eigenvectors, as well as the corresponding eigenvectors aj

|E− λI| = 0 (3)

where λ is the eigenvalue, the number of eigenvalues is n, and I is the unit matrix.

(4) Finding the γ principal components of the sample feature matrix

First, the contribution of each principal component has to be calculated. When the
number of principal components is γ, it is set at a fixed value. The first γ principal
components are selected when the cumulative contribution rate reaches a fixed value.
Finally, the contribution rate and cumulative contribution rate of the first γ principal
components are obtained.

ηj =
λj

∑n
j=1 λj

(4)

η =
∑γ

j=1 λj

∑n
j=1 λj

(5)

where λj is the j-th eigenvalue, ηi is the i-th principal component contribution rate, and η is
the cumulative contribution rate.

When determining the number of principal components whose cumulative contribu-
tion reaches a set value of γ, the γ principal components of the sample feature matrix can
be calculated from the following equation.

yγ = aT
j ·h′j (6)
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where aT
j is the transpose of the feature vector and h′j is the decentered sample feature data

of the column j.

2.3.2. Elman Neural Network

There are two main types of standard neural networks, the feedback and the feed-
forward. The feed-forward network structure is relatively simple, has a rapid response,
and has been extensively used. Nevertheless, a typical drawback is the inability to explain
the specific operation process. The model output is only affected by the current input,
independent of the previous output. By contrast, the feedback network is affected by the
output or delayed input and there is feedback variation during the network operation. This
property maintains a suitable iterative process to reach a steady state.

Elman neural network (ENN) is a typical local regression network which consists
of four layers, the input layer, the implicit layer, the takeover layer, and the output
layer [33–35]. Among them, the input layer serves as signal transmission, the implicit
layer is the unit containing the transfer function, and the output layer not only transmits
the signal but also has the function of linear weighting. It is worth mentioning that the El-
man network adds a takeover layer compared to the traditional static network. Correlating
the state of the previous moment and combining the input of this moment with the input
of the hidden layer. This process is actually a feedback state.

Figure 5 shows the specific operation flow chart of the Elman neural network. W1, W2,
and W3 are the connection weights between each layer, respectively. u(k− 1), q(k), h(k),
and qc(k) are the input vector of ENN, the output vector of the implicit layer, the out-
put vector, and the output vector of the takeover layer, respectively, with the following
mathematical model [36]. 

q(k) = v(W2u(k− 1) + W1qc(k))
qc(k) = q(k− 1)
h(k) = p(W3q(k))

(7)

where v(x) and p(x) are the transfer functions of the implicit layer and the output
layer, respectively.
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2.3.3. Principle of The Whale Optimization Algorithm

The whale optimization algorithm (WOA) is a new population intelligence optimiza-
tion algorithm, mainly derived from imitating the bubble net feeding style of whales.
They will spiral close to the prey and spit out bubbles, chasing the fish to a small area for
hunting [37–40].

The WOA process needs to adjust fewer parameters, so the iteration speed is fast and
the optimization ability is particularly strong. The following is a mathematical model of
the algorithm.



Coatings 2022, 12, 1875 8 of 16

(1) Surrounding and hunting

Assuming that the current prey is considered the best candidate prey, the current
target prey is taken as a feasible solution, and the whale’s initial position vector is updated.

x(k + 1) =|x(k)− EF| (8)

where x(k + 1) and x(k) are the next and current positions of the whale at the time of model
iteration, respectively, E is a vector of coefficient matrices, and F is the distance between the
optimal target and the whale position

E = 2ar1 − a
a = 2− 2k

T
F = |Cx∗(k)− x(k)|

(9)

where k is the number of iterations and a has a decrease from 2 to 0 during the search
process, C = 2r2. r1 and r2 are the randomly generated vector ranging between [0, 1]. X* is
the current optimal solution position, a is the convergence factor.

(2) The position of the bubble net in the updated encircling pattern

During prey hunting, whales constantly exhale bubbles to form a spiral “bubble net”,
and press on the prey closer until they can swallow it. In addition, the whale updates
position towards the prey with equal probability p through both the encircling mechanism
and the spiral, respectively, and the mathematical model is shown below [41].

F′ = |x∗(k)− x(k)| (10)

x(k + 1) =
{

F′eqm cos(2πl) + x∗(k), p < 0.5
x∗(k)− EF, p ≥ 0.5

(11)

where q is a constant, p is a random number on [0, 1], and m is a random value on [−1, 1].
F’ is the distance between the prey and the whale’s position.

(3) Search for prey

The whale optimization algorithm starts from a series of initial feasible solutions and
changes the position through continuous iterations. The absolute value of the coefficient
matrix vector |E| decreases as the number of iterations increases. When |E| > 1, the
whale will expand the search range and randomly choose a feasible solution to update the
position vector; when |E| < 1, the whale will select the current optimal solution to update
the position vector.

2.3.4. Whale Optimization Algorithm to Optimize Elman Neural Network

Too many parameters were set in the Elman neural network and the calculation time
was long, resulting in slow convergence. Therefore, it was essential to optimize the Elman
neural network. In the combined model of the whale optimization algorithm and the
Elman neural network, the function of WOA was to optimize the weight and threshold of
ENN, and the optimal solution obtained was used for model prediction. The original ENN
prediction was optimized to obtain a more accurate output [42].

As shown in Figure 6, the terahertz time-domain data were input into the WOA-
Elman model after dimensionality reduction by principal component analysis. The optimal
solution was obtained with the whale optimization algorithm, and the thermal barrier
coating thickness was predicted using the Elman neural network.
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In this work, there are altogether 200 sets of data, among which 140 sets of random
samples were used as the training set, and 60 sets were used as the prediction set. To
test the prediction accuracy of the PCA-WOA-Elman model and verify its prediction
performance, the coefficient of determination (R2), root mean square error (RMSE), mean
absolute error (MAE), and mean absolute percentage error (MAPE) were introduced as the
model evaluation indexes, the calculation formula is shown below.

RMSE =

√
1
n

n

∑
i=1

(y− y′)2 (12)

MAPE =
1
n

n

∑
i=1

|y− y′|
y

× 100% (13)

MAE =
1
n

n

∑
i=1

∣∣y− y′
∣∣ (14)

R2 = 1−

√√√√√√√
n
∑

i=1
(y− y′)2

n
∑

i=1
y′2

(15)

where y is the real thickness of the ceramic layer, y′ is the predicted value, and n is the
number of samples.

3. Simulation Analysis
3.1. Results of Principal Component Analysis

The dimensionality of the 200 terahertz time-domain signals was 2596. High-dimensional
data substituted into the model would lead to unsatisfactory prediction results and slow
calculation speed. The principal component analysis method was used to reduce the dimen-
sion. Feature dimensionality reduction was used to extract data with low dimensionality
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and little redundancy, maximize the reflection of the main features, and process the data
without losing the original sample information [40,43,44].

PCA was used to extract principal component features from the noise-processed data,
as shown in Figure 7, which presents the cumulative contribution rate and eigenvalue of
each principal component. It was evident that the eigenvalue of multi-dimensional data
gradually decreases, and the corresponding contribution rate of the feature vector increases
steadily. The cumulative contribution had reached 95% at the 11th principal component.
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Figure 7. Cumulative contribution rate and eigenvalue of each principal component.

The obvious selection of the 11 principal components with the highest contribution
could better reflect the main original data features, which were used as the input of the
PCA-WOA-Elman model to measure the TBC thickness. Finally, the 2596 dimensions of
the original data were reduced to 11 dimensions.

Table 2 shows the individual contribution rates, cumulative contribution rates, and
eigenvalues of the top 11 principal components.

Table 2. Extraction of feature variables.

Principal Component Eigenvalue Contribution Rate/% Cumulative Contribution
Rate/%

1 931.27 30.51 30.51
2 894.60 29.31 59.83
3 404.06 13.24 73.07
4 214.04 7.01 80.08
5 101.68 3.33 83.41
6 94.43 3.09 86.51
7 79.76 2.61 89.12
8 65.06 2.13 91.25
9 61.68 2.02 93.28
10 49.16 1.61 94.89
11 39.41 1.29 96.18

3.2. Model Training and Results Analysis

In this work, the terahertz time-domain signal obtained was wavelet denoised by
stacking on uniform white noise. The dimensionality of the original spectral data is too
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high for substitution into the model for calculation, which will reduce the training accuracy
and the calculation result in a large error. Therefore, principal component analysis was
used to downscale the data to 11 dimensions. The downscaled data were used to replace
the original data into the Elman neural network optimized by the whale algorithm for
training. With the terahertz time-domain signal as the input variable and the TBC thickness
as the output variable, and with 70% of the data, a total of 140 groups were randomly
selected as training samples, and with 30% of the remaining data, a total of 60 groups were
used as test samples.

To verify the reliability and validity of machine learning, the mean square error (MSE)
was used as the fitness function when the neural network was trained with the training
sample set. As shown in Figure 8, the MSE decreased with the increase in the number of
WOA iterations, which tended to stabilize when the number of model training iterations
reaches 13, indicating an excellent training effect.
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The relevant parameters of the whale optimization algorithm and Elman neural
network model are shown in Tables 3 and 4.

Table 3. Parameter settings of the WOA model.

Algorithm Parameter Parameter Value

WOA

Population size 40
Maximum number of

iterations 60

Independent variable range [−3, 3]
Constant 1

Table 4. Parameter settings of Elman network.

Neural Network Parameter Parameter Value

Elman

Hidden layer function tansig
Output layer function purelin

Training times 1000
Learning rate 0.01

Training target error 0.0001
Momentum factor 0.01
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Meanwhile, in order to verify the superiority of the combined PCA-WOA-Elman pre-
diction model, its results were compared and analyzed with those of the back propagation
(BP) neural network, single extreme learning machine (ELM) model [45], and Elman model.
All four methods were simulated with MATLAB 2021a software, and a comparison of
the prediction results is shown in Figure 9; single-point error was compared as shown
in Figure 10.
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It was observed that the prediction effect of the PCA-WOA-Elman model was signifi-
cantly better than the traditional Elman model, the BP model, and the ELM model, and the
prediction accuracy was much higher than others.

It was evident that the PCA-WOA-Elman model had the slightest error and the lowest
error variation, and the ELM model had the most significant error variation. As shown
in Table 5, the MAEs of the four models were 10.78, 6.04, 3.34, and 0.16, respectively, the
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RMSEs were 12.92, 7.77, 4.43, and 0.28, and the MAPEs were 6.11%, 3.20%, 1.55%, and 0.09%,
respectively, and the advantages and disadvantages of the various forecasting models can
be analyzed. Among them, the PCA-WOA-Elman prediction model had a coefficient of
determination of 0.999, which indicated excellent prediction results.

Table 5. Prediction results of different models.

Prediction Model MAE RMSE MAPE/% R2

ELM 10.78 12.92 6.11 0.850
BP 6.04 7.77 3.20 0.882

Elman 3.34 4.43 1.55 0.892
PCA-WOA-Elman 0.16 0.28 0.09 0.999

According to the results of the prediction error, the PCA-WOA-Elman prediction
model worked better than the traditional feedforward neural network. Mainly for the fol-
lowing reasons, Elman neural network was a typical local regression network which could
fuse the current state with the results of the previous iteration as the current input [46,47];
it was the feedback principle. Based on the BP network, a takeover layer was added as
the connection between the upper and lower layers to achieve the purpose of memory, the
model can quickly reach a stable state. After PCA processing, the extracted data features
were more obvious and retained the vast majority of data features. The whale algorithm
introduced adaptive weight to improve the local search ability of the algorithm, and it
worked well in combination with the Elman network [48]. Accordingly, the prediction
using the PCA-WOA-Elman model was excellent and can be implemented in the TBC
thickness measurement.

4. Conclusions

In this study, the terahertz NDT technique with hybrid machine learning was proposed
to measure the ceramic layer thickness of TBCs. A combined prediction method based
on the PCA-WOA-Elman neural network was proposed to accurately predict the TBC
thickness. The FDTD method was used to simulate 200 terahertz time-domain data, with
200 sets of pre-processed data brought into the model, of which 140 sets were training
samples and 60 sets were testing samples. By adding uniform white noise and the Dmey
wavelet denoising, the obtained data were more suitable for the actual test. To improve
training speed, the 2596-dimensional time-domain signal was downscaled to 11 dimensions
by using principal component analysis since the contribution of the cumulative 11 principal
components had reached 95%. The processed data were entered into the model with higher
calculation accuracy. From the experimental results, it was shown that the prediction error
of PCA-WOA-Elman was minimal and the accuracy was significantly higher than ELM, BP,
and the traditional Elman model. The determination coefficient R2 reached 0.999, and the
prediction results of the model were excellent.

To sum up, the PCA-WOA-Elman model shows excellent performance in the thickness
measurement of TBCs, the model is able to measure different thicknesses with high accuracy,
and thus has a broad prospect in the field of nondestructive inspection and evaluation of
single or multi-layer coating thickness. The research is beneficial in terms of enriching the
method system for surface evaluation of TBCs.
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