Mitigating CMAS Attack in Model YAlO3 Environmental Barrier Coatings: Effect of YAlO3 Crystal Orientation on Apatite Nucleation
Abstract
:1. Introduction
2. Materials and Methods
2.1. CMAS Synthesis
2.2. CMAS-YAP Reaction Studies
2.3. Characterization by Electron Microscopy and X-ray Diffraction
3. Results
3.1. CMAS Wetting and Devitrification
3.2. CMAS Attack of YAP Substrate at 1350 °C: Center of Reaction Region
3.3. CMAS–YAP Interaction on Periphery of CMAS Attack Region
4. Discussion
4.1. Influence of CMAS/YAP Interfacial Energy on Reaction Behavior
4.2. Role of YAG in Apatite Growth
4.3. Effect of Apatite Nucleation and Growth on YAP Recession
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ohnabe, H.; Masaki, S.; Onozuka, M.; Miyahara, K.; Sasa, T. Potential Application of Ceramic Matrix Composites to Aero-Engine Components. Compos. Part A Appl. Sci. Manuf. 1999, 30, 489–496. [Google Scholar] [CrossRef]
- Smialek, J.L.; Robinson, R.C.; Opila, E.J.; Fox, D.S.; Jacobson, N.S. SiC and Si3N4 Recession Due to SiO2 Scale Volatility under Combustor Conditions. Adv. Compos. Mater. 1999, 8, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Opila, E.J.; Myers, D.L. Alumina Volatility in Water Vapor at Elevated Temperatures. J. Am. Ceram. Soc. 2004, 87, 1701–1705. [Google Scholar] [CrossRef]
- Tejero-Martin, D.; Bennett, C.; Hussain, T. A Review on Environmental Barrier Coatings: History, Current State of the Art and Future Developments. J. Eur. Ceram. Soc. 2021, 41, 1747–1768. [Google Scholar] [CrossRef]
- Fritsch, M.; Klemm, H. The Water-Vapour Hot Gas Corrosion Behavior of Al2O3-Y2O3 Materials, Y2Si05 and Y3Al5O12-Coated Alumina in a Combustion Environment. Adv. Ceram. Coat. Interfaces Ceram. Eng. Sci. Proc. 2006, 27, 148–159. [Google Scholar] [CrossRef]
- Huang, Z.; Feng, J.; Pan, W. First-Principles Calculations of Mechanical and Thermodynamic Properties of YAlO3. Comput. Mater. Sci. 2011, 50, 3056–3062. [Google Scholar] [CrossRef]
- Gatzen, C.; Mack, D.E.; Guillon, O.; Vaßen, R. YAlO3—A Novel Environmental Barrier Coating for Al2O3/Al2O3–Ceramic Matrix Composites. Coatings 2019, 9, 609. [Google Scholar] [CrossRef] [Green Version]
- Gatzen, C.; Mack, D.E.; Guillon, O.; Vaßen, R. Improved Adhesion of Different Environmental Barrier Coatings on Al2O3/Al2O3-Ceramic Matrix Composites. Adv. Eng. Mater. 2020, 22, 2000087. [Google Scholar] [CrossRef] [Green Version]
- Grant, K.M.; Krämer, S.; Seward, G.G.; Levi, C.G. Calcium–Magnesium Alumino-silicate Interaction with Yttrium Monosilicate Environmental Barrier Coatings. J. Am. Ceram. Soc. 2010, 93, 3504–3511. [Google Scholar] [CrossRef]
- Zhao, H.; Richards, B.T.; Levi, C.G.; Wadley, H.N.G. Molten Silicate Reactions with Plasma Sprayed Ytterbium Silicate Coatings. Surf. Coat. Technol. 2016, 288, 151–162. [Google Scholar] [CrossRef]
- Poerschke, D.L.; Shaw, J.H.; Verma, N.; Zok, F.W.; Levi, C.G. Interaction of Yttrium Disilicate Environmental Barrier Coatings with Calcium-Magnesium-Iron Alumino-Silicate Melts. Acta Mater. 2018, 145, 451–461. [Google Scholar] [CrossRef]
- Wiesner, V.L.; Scales, D.; Johnson, N.S.; Harder, B.J.; Garg, A.; Bansal, N.P. Calcium–Magnesium Aluminosilicate (CMAS) Interactions with Ytterbium Silicate Environmental Barrier Coating Material at Elevated Temperatures. Ceram. Int. 2020, 46, 16733–16742. [Google Scholar] [CrossRef]
- Wiesner, V.L.; Bansal, N.P. Crystallization Kinetics of Calcium–Magnesium Aluminosilicate (CMAS) Glass. Surf. Coat. Technol. 2014, 259, 608–615. [Google Scholar] [CrossRef]
- Padture, N.P. Environmental Degradation of High-Temperature Protective Coatings for Ceramic-Matrix Composites in Gas-Turbine Engines. NPJ Mater. Degrad. 2019, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Krämer, S.; Yang, J.; Levi, C.G. Infiltration-Inhibiting Reaction of Gadolinium Zirconate Thermal Barrier Coatings with CMAS Melts. J. Am. Ceram. Soc. 2008, 91, 576–583. [Google Scholar] [CrossRef]
- Godbole, E.; von der Handt, A.; Poerschke, D. Apatite and Garnet Stability in the Al–Ca–Mg–Si–(Gd/Y/Yb)–O Systems and Implications for T/EBC: CMAS Reactions. J. Am. Ceram. Soc. 2022, 105, 1596–1609. [Google Scholar] [CrossRef]
- Perrudin, F.; Vidal-Setif, M.H.; Rio, C.; Petitjean, C.; Panteix, P.J.; Vilasi, M. Influence of Rare Earth Oxides on Kinetics and Reaction Mechanisms in CMAS Silicate Melts. J. Eur. Ceram. Soc. 2019, 39, 4223–4232. [Google Scholar] [CrossRef]
- Tian, Z.; Ren, X.; Lei, Y.; Zheng, L.; Geng, W.; Zhang, J.; Wang, J. Corrosion of RE2Si2O7 (RE = Y, Yb, and Lu) Environmental Barrier Coating Materials by Molten Calcium-Magnesium-Alumino-Silicate Glass at High Temperatures. J. Eur. Ceram. Soc. 2019, 39, 4245–4254. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, Y.; Liu, P.; Huang, L.; Niu, Y.; Li, Q.; Zhang, L.; Zheng, X. Effects of Microstructure on Corrosion Behaviors for RE2SiO5 (RE = Gd, Y, Er) Environmental Barrier Coatings against Calcium-Magnesium-Alumino-Silicate Melts. Corros. Sci. 2022, 199, 110174. [Google Scholar] [CrossRef]
- Stokes, J.L.; Harder, B.J.; Wiesner, V.L.; Wolfe, D.E. Effects of Crystal Structure and Cation Size on Molten Silicate Reactivity with Environmental Barrier Coating Materials. J. Am. Ceram. Soc. 2020, 103, 622–634. [Google Scholar] [CrossRef]
- Li, B.; Chen, Z.; Zheng, H.; Li, G.; Li, H.; Peng, P. Wetting Mechanism of CMAS Melt on YSZ Surface at High Temperature: First-Principles Calculation. Appl. Surf. Sci. 2019, 483, 811–818. [Google Scholar] [CrossRef]
- Poerschke, D.L.; Barth, T.L.; Fabrichnaya, O.; Levi, C.G. Phase Equilibria and Crystal Chemistry in the Calcia–Silica–Yttria System. J. Eur. Ceram. Soc. 2016, 36, 1743–1754. [Google Scholar] [CrossRef]
- Kumar, R.; Rommel, S.; Jiang, C.; Jordan, E.H. Effect of CMAS Viscosity on the Infiltration Depth in Thermal Barrier Coatings of Different Microstructures. Surf. Coat. Technol. 2022, 432, 128039. [Google Scholar] [CrossRef]
- Krause, A.R.; Li, X.; Padture, N.P. Interaction between Ceramic Powder and Molten Calcia-Magnesia-Alumino-Silicate (CMAS) Glass, and Its Implication on CMAS-Resistant Thermal Barrier Coatings. Scr. Mater. 2016, 112, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Turcer, L.R.; Krause, A.R.; Garces, H.F.; Zhang, L.; Padture, N.P. Environmental-Barrier Coating Ceramics for Resistance against Attack by Molten Calcia-Magnesia-Aluminosilicate (CMAS) Glass: Part I, YAlO3 and γ-Y2Si2O7. J. Eur. Ceram. Soc. 2018, 38, 3905–3913. [Google Scholar] [CrossRef]
- Kumar, R.; Jordan, E.; Gell, M.; Roth, J.; Jiang, C.; Wang, J.; Rommel, S. CMAS Behavior of Yttrium Aluminum Garnet (YAG) and Yttria-Stabilized Zirconia (YSZ) Thermal Barrier Coatings. Surf. Coat. Technol. 2017, 327, 126–138. [Google Scholar] [CrossRef]
- Aparicio, M.; Moreno, R.; Durán, A. Colloidal Stability and Sintering of Yttria–Silica and Yttria–Silica–Alumina Aqueous Suspensions. J. Eur. Ceram. Soc. 1999, 19, 1717–1724. [Google Scholar] [CrossRef]
- Xin, R.; Leng, Y.; Wang, N. Ultrastructure Study of Hydroxyapatite Precipitation on Ceramic Surfaces in Dog Model. Mater. Sci. Eng. C 2008, 28, 1255–1259. [Google Scholar] [CrossRef]
- Raju, G.S.R.; Ko, Y.H.; Pavitra, E.; Yu, J.S.; Park, J.Y.; Jung, H.C.; Moon, B.K. Formation of Ca2Gd8(SiO4)6O2 Nanorod Bundles Based on Crystal Splitting by Mixed Solvothermal and Hydrothermal Reaction Methods. Cryst. Growth Des. 2012, 12, 960–969. [Google Scholar] [CrossRef]
- Eils, N.K.; Mechnich, P.; Braue, W. Effect of CMAS Deposits on MOCVD Coatings in the System Y2O3–ZrO2: Phase Relationships. J. Am. Ceram. Soc. 2013, 96, 3333–3340. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, Y.; Niu, Y.; Huang, L.; Li, Q.; Zheng, X. Corrosion Behaviors and Mechanisms of Ytterbium Silicate Environmental Barrier Coatings by Molten Calcium-Magnesium-Alumino-Silicate Melts. Corros. Sci. 2021, 191, 109718. [Google Scholar] [CrossRef]
Oxide | Mole Fraction |
---|---|
SiO2 | 0.468 |
CaO | 0.445 |
MgO | 0.044 |
Al2O3 | 0.043 |
YAP Substrate Orientation | Contact Angle (°) | YAG Layer Thickness (µm) | Apatite Layer Thickness (µm) | Apatite Area (µm2) | |||
---|---|---|---|---|---|---|---|
30 min | 60 min | 30 min | 60 min | 30 min | 60 min | ||
(100) | 145 | 2.2 ± 0.1 | 2.4 ± 0.5 | 1.0 ± 0.3 | 19 ± 0.6 | 67 ± 10 | 783 ± 92 |
(001) | 150 | 1.9 ± 0.3 | 1.9 ± 0.6 | 2.5 ± 0.4 | 16 ± 2.6 | 136 ± 12 | 653 ± 114 |
(110) | 160 | 1.5 ± 0.3 | 2.4 ± 0.3 | 2.5 ± 0.5 | 17 ± 3.1 | 137 ± 20 | 747 ± 142 |
(101) | 164 | 1.7 ± 0.3 | 2.4 ± 0.2 | 7.5 ± 1.6 | 27 ± 1.6 | 307 ± 17 | 1070 ± 51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velázquez Plaza, A.; Krause, A.R. Mitigating CMAS Attack in Model YAlO3 Environmental Barrier Coatings: Effect of YAlO3 Crystal Orientation on Apatite Nucleation. Coatings 2022, 12, 1604. https://doi.org/10.3390/coatings12101604
Velázquez Plaza A, Krause AR. Mitigating CMAS Attack in Model YAlO3 Environmental Barrier Coatings: Effect of YAlO3 Crystal Orientation on Apatite Nucleation. Coatings. 2022; 12(10):1604. https://doi.org/10.3390/coatings12101604
Chicago/Turabian StyleVelázquez Plaza, Amanda, and Amanda R. Krause. 2022. "Mitigating CMAS Attack in Model YAlO3 Environmental Barrier Coatings: Effect of YAlO3 Crystal Orientation on Apatite Nucleation" Coatings 12, no. 10: 1604. https://doi.org/10.3390/coatings12101604
APA StyleVelázquez Plaza, A., & Krause, A. R. (2022). Mitigating CMAS Attack in Model YAlO3 Environmental Barrier Coatings: Effect of YAlO3 Crystal Orientation on Apatite Nucleation. Coatings, 12(10), 1604. https://doi.org/10.3390/coatings12101604