Exchange Bias Effect in LaFeO3: La0.7Ca0.3MnO3 Composite Thin Films
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meiklejohn, W.H.; Bean, C.P. New magnetic anisotropy. Phys. Rev. 1956, 105, 904–913. [Google Scholar] [CrossRef]
- Wei, Z.; Sharma, A.; Nunez, A.S.; Haney, P.M.; Duine, R.A.; Bass, J.; MacDonald, A.H.; Tsoi, M. Changing exchange bias in spin valves with an electric current. Phys. Rev. Lett. 2007, 98, 116603. [Google Scholar] [CrossRef] [PubMed]
- Klug, M.J.; Thormählen, L.; Röbisch, V.; Toxværd, S.D.; Höft, M.; Knöchel, R.; Quandt, E.; Meyners, D.; McCord, J. Antiparallel exchange biased multilayers for low magnetic noise magnetic field sensors. Appl. Phys. Lett. 2019, 114, 192410. [Google Scholar] [CrossRef]
- Tian, Z.; Xu, L.; Gao, Y.; Yuan, S.; Xia, Z. Magnetic memory effect at room temperature in exchange coupled NiFe2O4-NiO nanogranular system. Appl. Phys. Lett. 2017, 11, 182406. [Google Scholar] [CrossRef]
- Liao, X.; Gao, L.; Wang, Y.; Xu, X.; Khan, M.T.; Chang, T.; Chen, K.; Zeng, Y.; Yang, S.; Svedlindh, P. Large exchange bias in magnetic shape memory alloys by tuning magnetic ground state and magnetic-field history. Sci. China Mater. 2020, 63, 1291–1299. [Google Scholar] [CrossRef]
- Franceschin, G.; Gaudisson, T.; Menguy, N.; Dodrill, B.C.; Yaacoub, N.; Grenèche, J.; Valenzuela, R.; Ammar, S. Exchange-biased Fe3-xO4−CoO granular composites of different morphologies prepared by seed-mediated growth in polyol: From core-shell to multicore embedded structures. Part. Part. Syst. Charact. 2018, 35, 1800104. [Google Scholar] [CrossRef]
- Binns, C.; Qureshi, M.T.; Peddis, D.; Baker, S.H.; Howes, P.B.; Boatwright, A.; Cavill, S.A.; Dhesi, S.S.; Lari, L.; Kröger, R.; et al. Exchange bias in Fe@Cr core-shell nanoparticles. Nano Lett. 2013, 13, 3334–3339. [Google Scholar] [CrossRef][Green Version]
- Sessi, V.; Hertenberger, S.; Zhang, J.; Schmitz, D.; Gsell, S.; Schreck, M.; Morel, R.; Brenac, A.; Honolka, J.; Kern, K. Exchange bias in reduced dimensions: Cobalt nanocluster arrays under the influence of nanometer thin MnPt capping layers. J. Appl. Phys. 2013, 113, 123903. [Google Scholar] [CrossRef]
- Blachowicz, T.; Ehrmann, A. Exchange bias in thin films-an update. Coatings 2021, 11, 122. [Google Scholar] [CrossRef]
- Maat, S.; Takano, K.; Parkin, S.S.P.; Fullerton, E.E. Perpendicular exchange bias of Co/Pt multilayers. Phys. Rev. Lett. 2001, 87, 087202. [Google Scholar] [CrossRef]
- Huang, J.; Gellatly, A.; Kauffmann, A.; Sun, X.; Wang, H. Exchange bias effect along vertical interfaces in La0.7Sr0.3MnO3:NiO vertically aligned nanocomposite thin films integrated on silicon substrates. Cryst. Growth Des. 2018, 18, 4388–4394. [Google Scholar] [CrossRef]
- Lorenz, M.; Ziese, M.; Wagner, G.; Lenzner, J.; Kranert, C.; Brachwitz, K.; Hochmuth, H.; Esquinazi, P.; Grundmanna, M. Exchange bias and magnetodielectric coupling effects in ZnFe2O4-BaTiO3 composite thin films. CrystEngComm 2012, 14, 6477–6486. [Google Scholar] [CrossRef]
- Sung, K.D.; Park, Y.A.; Seo, M.S.; Jo, Y.; Hur, N.; Jung, J.H. Observation of intriguing exchange bias in BiFeO3 thin films. J. Appl. Phys. 2012, 112, 033915. [Google Scholar] [CrossRef]
- Ali, M.; Adie, P.; Marrows, C.H.; Greig, D.; Hickey, B.J.; Stamps, R.L. Exchange bias using a spin glass. Nat. Mater. 2007, 6, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Smith, K.J.; Lüpke, G.; Hanbicki, A.T.; Goswami, R.; Li, C.H.; Zhao, H.B.; Jonker, B.T. Exchange bias of the interface spin system at the Fe/MgO interface. Nat. Nanotechnol. 2013, 8, 438–444. [Google Scholar] [CrossRef]
- Wu, S.M.; Cybart, S.A.; Yu, P.; Rossell, M.D.; Zhang, J.X.; Ramesh, R.; Dynes, R.C. Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 2010, 9, 756–761. [Google Scholar] [CrossRef] [PubMed]
- Leighton, C.; Fitzsimmons, M.R.; Hoffmann, A.; Dura, J.; Majkrzak, C.F.; Lund, M.S.; Schuller, I.K. Thickness-dependent coercive mechanisms in exchange-biased bilayers. Phys. Rev. B 2002, 65, 064403. [Google Scholar] [CrossRef]
- Ning, X.; Wang, Z.; Zhang, Z. Large, temperature-tunable low-field magnetoresistance in La0.7Sr0.3MnO3:NiO nanocomposite films modulated by microstructures. Adv. Funct. Mater. 2014, 24, 5393–5401. [Google Scholar] [CrossRef]
- Fan, M.; Zhang, W.; Jian, J.; Huang, J.; Wang, H. Strong perpendicular exchange bias in epitaxial La0.7Sr0.3MnO3:LaFeO3 nanocomposite thin films. APL Mater. 2016, 4, 076105. [Google Scholar] [CrossRef]
- Huang, J.; Wang, H.; Wang, X.; Gao, X.; Liu, J.; Wang, H. Exchange bias in a La0.67Sr0.33MnO3/NiO heterointerface integrated on a flexible mica substrate. ACS Appl. Mater. Interfaces 2020, 12, 39920–39925. [Google Scholar] [CrossRef]
- Wu, R.; Yun, C.; Wang, X.; Lu, P.; Li, W.; Lin, Y.; Choi, E.; Wang, H.; MacManus-Driscoll, J.L. All-oxide nanocomposites to yield large, tunable perpendicular exchange bias above room temperature. ACS Appl. Mater. Interfaces 2018, 10, 42593–42602. [Google Scholar] [CrossRef]
- Choi, E.; Weal, E.; Bi, Z.; Wang, H.; Kursumovic, A.; Fix, T.; Blamire, M.G.; MacManus-Driscoll, J.L. Strong room temperature exchange bias in self-assembled BiFeO3-Fe3O4 nanocomposite heteroepitaxial films. Appl. Phys. Lett. 2013, 102, 012905. [Google Scholar] [CrossRef]
- Wang, C.; Chen, C.; Chang, C.; Tsai, H.; Pandey, P.; Xu, C.; Böttger, R.; Chen, D.; Zeng, Y.; Gao, X.; et al. Defect-induced exchange bias in a single SrRuO3 layer. ACS Appl. Mater. Interfaces 2018, 10, 27472–27476. [Google Scholar] [CrossRef]
- Zhou, G.; Ji, H.; Bai, Y.; Quan, Z.; Xu, X. Intrinsic exchange bias effect in strain-engineered single antiferromagnetic LaMnO3 films. Sci. China Mater. 2019, 62, 1046–1052. [Google Scholar] [CrossRef]
- West, K.G.; Nam, D.N.H.; Lu, J.W.; Bassim, N.D.; Picard, Y.N.; Stroud, R.M.; Wolf, S.A. Exchange bias in a single phase ferrimagnet. J. Appl. Phys. 2010, 107, 113915. [Google Scholar] [CrossRef]
- Scholl, A. Domain-size-dependent exchange bias in Co/LaFeO3. Appl. Phys. Lett. 2004, 85, 4085. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Álvarez-Alonso, P.; Hernando, B. The intrinsic exchange bias effect in the LaMnO3 and LaFeO3 compounds. J. Alloys Compd. 2021, 850, 156713. [Google Scholar] [CrossRef]
- Nurgaliev, T.; Topal, U.; Blagoev, B.; Mateev, E. Magnetic properties of LCMO/LSMO thin films on LAO and ALO substrates. J. Supercond. Nov. Magn. 2012, 25, 2495–2498. [Google Scholar] [CrossRef]
- Alonso, J.; Fdez-Gubieda, M.L.; Barandiarán, J.M.; Svalov, A.; Fernández Barquín, L.; Venero, D.A.; Orue, I. Crossover from superspin glass to superferromagnet in FexAg100-x nanostructured thin films (20 ≤ x ≤ 50). Phys. Rev. B 2010, 82, 054406. [Google Scholar] [CrossRef]
- Huang, X.H.; Ding, J.F.; Jiang, Z.L.; Yin, Y.W.; Yu, Q.X.; Li, X.G. Dynamic properties of cluster glass in La0.25Ca0.75MnO3 nanoparticles. J. Appl. Phys. 2009, 106, 083904. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Fu, W.; Jiang, C.; Li, J.; Huang, J. Exchange Bias Effect in LaFeO3: La0.7Ca0.3MnO3 Composite Thin Films. Coatings 2021, 11, 1125. https://doi.org/10.3390/coatings11091125
Wang F, Fu W, Jiang C, Li J, Huang J. Exchange Bias Effect in LaFeO3: La0.7Ca0.3MnO3 Composite Thin Films. Coatings. 2021; 11(9):1125. https://doi.org/10.3390/coatings11091125
Chicago/Turabian StyleWang, Feng, Wei Fu, Chengming Jiang, Junxiao Li, and Jijie Huang. 2021. "Exchange Bias Effect in LaFeO3: La0.7Ca0.3MnO3 Composite Thin Films" Coatings 11, no. 9: 1125. https://doi.org/10.3390/coatings11091125
APA StyleWang, F., Fu, W., Jiang, C., Li, J., & Huang, J. (2021). Exchange Bias Effect in LaFeO3: La0.7Ca0.3MnO3 Composite Thin Films. Coatings, 11(9), 1125. https://doi.org/10.3390/coatings11091125