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Abstract: Composite thin films arouse great interests owing to the multifunctionalities and heteroint-
erface induced physical property tailoring. The exchange bias effect aroused from the ferromagnetic
(FM)–antiferromagnetic (AFM) heterointerface is applicable in various applications such as magnetic
storage. In this work, (LaFeO3)x:(La0.7Ca0.3MnO3)1−x composite thin films have been deposited
via pulsed laser deposition (PLD) and the exchange bias effect was investigated. In such system,
LaFeO3 (LFO) is an antiferromagnet while La0.7Ca0.3MnO3 (LCMO) is a ferromagnet, which results
in the exchange bias interfacial coupling at the FM/AFM interface. The composition variation of the
two phases could lead to the exchange bias field (HEB) tuning in the composite system. This work
demonstrates a new composite thin film system with FM-AFM interfacial exchange coupling, which
could be applied in various spintronic applications.

Keywords: exchange bias; composite thin film; magnetic property; heterointerface

1. Introduction

Exchange bias (EB) describes the pinning of the magnetic dipoles due to the interfacial
exchange coupling between ferromagnetic (ferrimagnetic, FM) and antiferromagnetic
(AFM) components after cooling through Néel temperature (TN) of the antiferromagnets,
which results in the shift of the hysteresis loop. The EB field (HEB) is used to evaluate
the EB effect, which could be defined as HEB = |H+ + H−|/2, where H+ and H− are the
positive and negative coercivity in the hysteresis loop, respectively. The EB phenomenon
was first observed in the AFM CoO nanoparticle wrapped by an FM Co shell, reported by
Meiklejohn and Bean in 1956, and the Meiklejohn–Bean model has been widely accepted
to explain the mechanism of EB effect [1]. The EB effect could be employed in a lot of
applications, such as magnetoresistive read heads, magnetic sensors, spin valve devices, as
well as high-density data storage [2–5]. Thus far, the EB effect has been realized in various
material systems and geometries, such as granular composites, core–shell nanoparticles,
nanocluster arrays with capping layer and thin films [6–9].

Among all the different nanostructures with EB effect, the thin film form might be
the most promising for practical applications, and a tremendous research effort has been
devoted to exploring the EB effect in thin films. Typically, the FM/AFM exchange coupling
in thin film could be achieved in the following forms: multilayer thin film, vertically
aligned nanocomposite thin film, solid solution (or composite) thin film or even a single-
phase thin film [10–13]. Multilayer is the most conventional approach to obtain the EB
effect, which alternatively grows FM and AFM layers to create a transverse FM/AFM
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interface. The multilayers could be stacked by different material combinations, such as
metal/alloy, metal/oxide and oxide/oxide, for example. Co/CuMn bilayer, Fe/FeO bilayer
and La0.7Sr0.3MnO3 (LSMO)/BiFeO3 (BFO) bilayer have been designed to investigate their
EB effect [14–16]. The HEB could be tailored by tuning the number of layer and the thickness
of each layer, for example, the relationship between HEB and the thickness of the FM layer
(tFM) is derived as HEB ∝ 1/tFM [17]. The composite thin film evolving FM and AFM
components is another platform to achieve EB, which forms a unique nanostructure of one
phase exhibited as nanopillars embedding into another matrix phase, termed as vertically
aligned nanocomposite (VAN) thin film. Different from the transverse FM/AFM interface
in multilayers, VAN thin film presents FM/AFM coupling along the vertical direction,
which is beneficial to realize perpendicular EB effect. Various oxide systems have been
explored, such as LSMO:NiO, LSMO:LaFeO3 (LFO), NiO:NiFe2O4 (NFO), BFO:Fe3O4,
etc. [18–22]. Similar lattice parameters/crystal structures and phase immiscibility are
required to form such VAN structure, otherwise it is highly possible to be phase mixed as a
solid solution or composite thin film. Solid solution thin films with FM and AFM phases
can also induce the EB effect by the FM/AFM exchange coupling in nanoscale interface [12].
Lastly, the EB effect has been observed even in single-phase thin films, which is induced by
either defects [23], strain [24] or some unusual interfaces [13,25]. Overall, although the EB
effect has been obtained in variety of thin films with different nanostructures, there are still
plenty of material systems and geometries needing further investigation.

In this work, a new FM-AFM system has been developed for the EB effect, e.g., LFO
and La0.7Ca0.3MnO3 (LCMO) are selected as the AFM phase and FM phase, respectively.
We deposited LFOx:LCMO1−x (x = 0.33, 0.5, 0.67) composite thin films by pulsed laser
deposition (PLD) and investigated their EB effect; the thickness of the films was controlled
at ~200 nm. Both LFO (a = 3.940 Å, pseudo-cubic) and LCMO (a = 3.867 Å, pseudo-
cubic) present perovskite structures with lattice parameters close to the selected STO (001)
substrate (a = 3.905 Å, cubic). LFO is a typical AFM material (TN = 710 K) and has been
applied in various systems with an EB effect [19,26,27], while LCMO is a widely studied
FM material (Curie temperature TC = 225 K). [28] Therefore, the EB effect is expected in
the LFO:LCMO composite thin film, and the HEB value can be tailored by varying the
composition of the two phases.

2. Materials and Methods

Target Preparation and Thin Film Deposition: LFOx:LCMO1−x (x = 0.33, 0.5, 0.67)
targets were made by a conventional solid-state mixing of the LFO and LCMO powders
with the designed ratio, high-pressure pressing into a 1-inch pellet and followed by a
sintering process at 1200 ◦C for 10 h. Then, the thin films were deposited using a pulsed
laser deposition (PLD) system with a KrF excimer laser (Lambda Physik, λ = 248 nm). The
detailed deposition parameters are as follows: base pressure was below 1 × 10−6 Torr,
45 Pa of high-purity O2 was inflowed into the chamber during deposition, the deposition
temperature was 750 ◦C, the deposition frequency was 5 Hz, target-substrate distance was
4.5 cm and laser energy was 1 mJ/cm2; after deposition, 30 kPa O2 was inflowed into the
chamber and the samples were cooled down at 10 ◦C/min.

Microstructure Characterizations: The crystal structure of the films was characterized
by X-ray diffraction (XRD) (Panalytical X’Pert X-ray diffractometer). The surface mor-
phology of the films was characterized by atomic force microscopy (AFM, Bruker Icon
AFM).

Physical Property Characterizations: Temperature dependence of ZFC and FC mag-
netization (M-T, 5-380 K) and magnetic hysteresis curves (M-H, field along the direction
perpendicular to the film surface) were carried out by using a vibrating sample magne-
tometer (VSM) in the physical property measurement system (PPMS: Quantum Design).
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3. Results and Discussion

The main aspect of this work is to grow a new FM-AFM system with a tunable
EB effect by composition variation of the two phases. First, standard θ–2θ XRD scans
were characterized on the LFO:LCMO thin films with different compositions, as shown
in Figure 1a–c for LFO0.33LCMO0.67, LFO0.5LCMO0.5 and LFO0.67LCMO0.33, respectively.
Only LFO (00l) and LCMO (00l) peaks can be observed, which indicates the textured
growth of both phases and that no impurity is formed in the composite films (note that
the peak at ~42◦ is from the instrument, not from the samples). To obtain the actual 2θ
values of the LFO (002) and LCMO (002) peaks, the local area (45–48◦) has been enlarged
and shown in the right panels of Figure 1. The 2θ values of the LFO (002) and LCMO (002)
peaks can be identified as 46.285◦ and 46.607◦, which corresponds to the d(001) values of
3.921 Å and 3.895 Å for LFO and LCMO, respectively. Compared to the bulk values, the
LFO phase and LCMO phases in the composite thin film undergo out-of-plane compressive
strain of −0.48% and tensile strain of 0.72%, respectively.
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Figure 1. Standard θ–2θ XRD scans on LFO:LCMO thin films with different compositions.
(a) LFO0.33LCMO0.67; (b) LFO0.5LCMO0.5 and (c) LFO0.67LCMO0.33. The right panels are the lo-
cal scan from 45◦ to 48◦.

An atomic force microscope (AFM) has been used to investigate the surface morphol-
ogy of the composite thin films, and the AFM images with 2 µm × 2 µm squares are shown
in Figure 2a–c for LFO0.33LCMO0.67, LFO0.5LCMO0.5 and LFO0.67LCMO0.33 composite thin
films, respectively. As is shown, LFO0.33LCMO0.67 presents a relatively rough surface with
large domains, and the surface roughness (Ra) was determine to be 4.97 nm. On another
side, LFO0.5LCMO0.5 and LFO0.67LCMO0.33 films exhibit a very smooth surface with Ra of
0.554 nm and 0.793 nm, and the domains are relatively small. It is highly possible that the
neighboring domains are the FM and AFM phases; thus, the FM/AFM interfacial coupling
occurs at the domain boundaries.
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Figure 2. Atomic force microscopic images to show the surface morphology of (a) LFO0.33LCMO0.67,
(b) LFO0.5LCMO0.5 and (c) LFO0.67LCMO0.33 composite thin films.

Then, the magnetization hysteresis (M-H) loops of all the samples were measured
at different temperatures (10 K, 50 K, 150 K, 250 K and 300 K). The M-H loops of the
LFO0.67LCMO0.33 film are shown in Figure 3a–d for 10 K, 50 K, 150 K and 250 K measure-
ments; all of the loops exhibit typical M-H curves for hard magnets. An obvious EB effect
can be identified, as a difference has been observed between the positive and negative
coercivity. Another interesting feature is that the M-H curves are not smoothly presented;
multiple steps can be observed, especially close to the saturation point that might result
from the multiple magnetic components in the system, such as the FM LCMO phase, AFM
LFO phase and the FM/AFM interface. The LFO0.33LCMO0.67 and LFO0.5LCMO0.5 samples
exhibit similar shapes of the M-H loops with varying saturation magnetization (Ms) and
coercivity (Hc) values (data not shown here).
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Figure 3. The magnetization hysteresis (M-H) loops of the LFO0.67LCMO0.33 film measured at
(a) 10 K, (b) 50 K, (c) 150 K and (d) 250 K.

Based on the M-H curves, the EB field (HEB = |H+ + H−|/2), coercivity (HC = |H+ + H−|/2)
and Ms values at different temperatures can be estimated and all the data for different
samples are shown and compared in Figure 4a–c, respectively. When the temperature in-
creases, the HEB and HC values decreases, which is a normal phenomenon in an AFM/FM
system. Among the three samples with different composition, the LFO0.67LCMO0.33 film
obtains the highest HEB and HC values at all the measured temperatures. The HEB values
are 891 Oe, 459 Oe, 162 Oe and 28 Oe at 10 K, 50 K, 150 K and 250 K, respectively, and it
diminishes at 300 K. The Ms values at different temperatures of all the samples are also
compared in Figure 4c. The Ms values increase with a higher LCMO phase in the composite
film as the FM LCMO has a much stronger magnetic response than the AFM LFO phase.
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Figure 4. Magnetic properties comparison of the composite thin films with different compositions,
which are (a) HEB value, (b) HC value and (c) Ms value.

To further explore the magnetic properties of the composite thin film system, tempera-
ture dependence of zero-field cooling (ZFC) and field cooling (FC, 1000 Oe) magnetization
(M-T) measurements of all the samples with different compositions have been carried out
and compared in Figure 5. All the samples show a similar trend. For the FC condition, the
magnetization decreases with increasing temperature (10−350 K) monotonically. How-
ever, for ZFC condition, magnetization firstly increases to a maximum value (blocking
temperature: TB) and then decreases with increasing temperature. Another feature is the
bifurcation between the ZFC and FC curves, which could be used to define the irreversibil-
ity temperature (Tirr). The TB value is slightly lower than Tirr, which has been observed
in many other magnetic systems [29,30]. Overall, the LFO:LCMO composite thin films
presents an interesting magnetic response; specifically, the large HEB values demonstrate a
strong exchange interfacial coupling between the AFM LFO phase and FM LCMO phase.
This new FM-AFM design provides more insights into how to develop composite thin films
with the EB effect, and how to tune and optimize the HEB values via deposition condition
optimization and composition variation to generate different nanostructures.
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4. Conclusions

A new composite thin film system of LFO:LCMO with different compositions has
been grown and characterized in order to achieve a tailorable exchange bias effect by
composition variation. The composite thin films show excellent crystal quality with c-
axis growth for both the LFO and LCMO phases. Furthermore, an obvious shift of the
hysteresis loops has been observed for all the films, while the LFO0.67LCMO0.33 sample
obtains the strongest FM-AFM interfacial exchange coupling. The HEB values of such
film are estimated as 891 Oe, 459 Oe, 162 Oe and 28 Oe at 10 K, 50 K, 150 K and 250 K,
respectively, which is relatively large compared to other oxide–oxide composite thin films.
Furthermore, both blocking temperature and irreversibility temperature can be determined
from the FC and ZFC M-T measurements.
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