Application of Whey Protein-Based Edible Films and Coatings in Food Industries: An Updated Overview
Abstract
:1. Introduction
2. Whey Proteins
Whey Proteins as Coating Materials
3. Formation of WP-Based Films/Coatings
4. Technologies in Processing WP Films/Coatings
4.1. Wet Process/Solvent Casting
4.2. Extrusion and Compression-Moulding
5. Modification/Improvement of WP Edible Films and Coatings
5.1. Protein Type and Concentration
5.2. Structuring Agents
5.2.1. Plasticizers
5.2.2. Polysaccharides
5.2.3. Lipids
5.3. Cross-Linking
5.4. Active Ingredients
5.4.1. Antimicrobials
5.4.2. Probiotics/Prebiotics
6. Technological Properties of Edible Whey Protein Films/Coatings
6.1. Barrier Properties
6.1.1. Water Vapor Permeability
6.1.2. Gas Permeability
6.1.3. Flavor/Aroma Permeability
6.2. Mechanical Properties
6.3. Surface Properties
6.4. Optical Properties
7. Potential Application of WP-Based Edible Films/Coatings in Foods
7.1. Dairy Products
7.2. Egg and Meat
7.3. Seafoods
7.4. Fruits and Vegetables
7.5. Nuts
8. Regulatory Aspects Relating to WP Edible Films/Coatings
9. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karaca, O.B.; Oluk, C.A.; Taşpinar, T.; Güven, M. New concept in packaging: Milk protein edible films. In Health and Safety Aspects of Food Processing Technologies; Springer International Publishing: Cham, Switzerland, 2019; pp. 537–565. [Google Scholar]
- Guimarães, A.; Abrunhosa, L.; Pastrana, L.M.; Cerqueira, M.A. Edible films and coatings as carriers of living microorganisms: A new strategy towards biopreservation and healthier foods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 594–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, Ó.L.; Fernandes, J.C.; Silva, S.I.; Pintado, M.E.; Malcata, F.X. Edible films and coatings from whey proteins: A review on formulation, and on mechanical and bioactive properties. Crit. Rev. Food Sci. Nutr. 2012, 52, 533–552. [Google Scholar] [CrossRef] [PubMed]
- De Castro, R.J.S.; Domingues, M.A.F.; Ohara, A.; Okuro, P.K.; dos Santos, J.G.; Brexó, R.P.; Sato, H.H. Whey protein as a key component in food systems: Physicochemical properties, production technologies and applications. Food Struct. 2017, 14, 17–29. [Google Scholar] [CrossRef]
- Lacroix, M.; Vu, K.D. Edible Coating and Film Materials. In Innovations in Food Packaging, 2nd ed.; A Volume in Food Science and Technology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 277–304. ISBN 9780123946010. [Google Scholar]
- Suput, D.; Lazic, V.; Popovic, S.; Hromis, N. Edible films and coatings: Sources, properties and application. Food Feed Res. 2015, 42, 11–22. [Google Scholar] [CrossRef]
- Han, J.H. Edible Films and Coatings. In Innovations in Food Packaging, 2nd ed.; A Volume in Food Science and Technology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 213–255. [Google Scholar]
- Cinelli, P.; Schmid, M.; Bugnicourt, E.; Wildner, J.; Bazzichi, A.; Anguillesi, I.; Lazzeri, A. Whey protein layer applied on biodegradable packaging film to improve barrier properties while maintaining biodegradability. Polym. Degrad. Stab. 2014, 108, 151–157. [Google Scholar] [CrossRef]
- Milani, J.M.; Tirgarian, B. An overview of edible protein-based packaging: Main sources, advantages, drawbacks, recent progressions and food applications. J. Packag. Technol. Res. 2020, 4, 103–115. [Google Scholar] [CrossRef]
- Khwaldia, K.; Ferez, C.; Banon, S.; Desobry, S.; Hardy, J. Milk proteins for edible films and coatings. Crit. Rev. Food Sci. Nutr. 2004, 44, 239–251. [Google Scholar] [CrossRef]
- Di Pierro, P.; Mariniello, L.; Giosafatto, V.L.; Esposito, M.; Sabbah, M.; Porta, R. Dairy whey protein-based edible films and coatings for food preservation. In Food Packaging and Preservation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 439–456. [Google Scholar]
- Schmid, M.; Müller, K. Whey protein-based packaging films and coatings. In Whey Proteins; Elsevier: Amsterdam, The Netherlands, 2019; pp. 407–437. [Google Scholar]
- Henriques, M.; Gomes, D.; Pereira, C. Whey protein edible coatings: Recent developments and applications. In Emerging and Traditional Technologies for Safe, Healthy and Quality Food; Springer International Publishing: Cham, Switzerland, 2016; pp. 177–196. ISBN 978-3-319-24038-1. [Google Scholar]
- Domínguez, R.; Barba, F.J.; Gómez, B.; Putnik, P.; Bursać Kovačević, D.; Pateiro, M.; Santos, E.M.; Lorenzo, J.M. Active packaging films with natural antioxidants to be used in meat industry: A review. Food Res. Int. 2018, 113, 93–101. [Google Scholar] [CrossRef]
- Fernandes, L.M.; Guimarães, J.T.; Pimentel, T.C.; Esmerino, E.A.; Freitas, M.Q.; Carvalho, C.W.P.; Cruz, A.G.; Silva, M.C. Edible whey protein films and coatings added with prebiotic ingredients. In Agri-Food Industry Strategies for Healthy Diets and Sustainability; Elsevier: Amsterdam, The Netherlands, 2020; pp. 177–193. [Google Scholar]
- Cagri, A.; Ustunol, Z.; Ryser, E.T. Antimicrobial edible films and coatings. J. Food Prot. 2004, 67, 833–848. [Google Scholar] [CrossRef] [PubMed]
- Yadav, J.S.S.; Yan, S.; Pilli, S.; Kumar, L.; Tyagi, R.D.; Surampalli, R.Y. Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnol. Adv. 2015, 33, 756–774. [Google Scholar] [CrossRef]
- Jovanovi, S.; Bara, M.; Ma, O. Whey proteins-Properties and possibility of application. Mljekarstvo 2005, 55, 215–233. [Google Scholar]
- Khaire, R.A.; Gogate, P.R. Whey Proteins. In Proteins: Sustainable Source, Processing and Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 193–223. ISBN 9780128166956. [Google Scholar]
- Krochta, J.; Perez-Gago, M. Formation and properties of whey protein films and coatings. In Protein-Based Films and Coatings; CRC Press: Boca Raton, FL, USA, 2002; pp. 159–180. [Google Scholar]
- Bhattacharjee, C.; Nath, A.; Cassano, A.; Tahergorabi, R.; Chakraborty, S. Conventional macro- and micromolecules separation. In Food Waste Recovery; Elsevier: Amsterdam, The Netherlands, 2015; pp. 105–126. [Google Scholar]
- Soazo, M.; Rubiolo, A.C.; Verdini, R.A. Effect of drying temperature and beeswax content on physical properties of whey protein emulsion films. Food Hydrocoll. 2011, 25, 1251–1255. [Google Scholar] [CrossRef]
- Alcantara, C.R.; Rumsey, T.R.; Krochta, J.M. Drying rate effect on the properties of whey protein films. J. Food Process Eng. 1998, 21, 387–405. [Google Scholar] [CrossRef]
- Kaya, S.; Kaya, A. Microwave drying effects on properties of whey protein isolate edible films. J. Food Eng. 2000, 43, 91–96. [Google Scholar] [CrossRef]
- Sothornvit, R.; Krochta, J.M. Plasticizers in edible films and coatings. In Innovations in Food Packaging; Academic Press: Cambridge, MA, USA, 2005; pp. 403–433. [Google Scholar] [CrossRef]
- Wang, C.; Killpatrick, A.; Humphrey, A.; Guo, M. Whey protein functional properties and applications in food formulation. In Whey Protein Production, Chemistry, Functionality, and Applications; John Wiley & Sons, Ltd.: Chichester, UK, 2019; pp. 157–204. ISBN 9781119256052. [Google Scholar]
- Dangaran, K.L.; Krochta, J.M. Whey protein films and coatings. In Whey Processing, Functionality and Health Benefits; Wiley: New York, NY, USA, 2008; ISBN 978-0-813-80903-8. [Google Scholar]
- Schmid, M.; Reichert, K.; Hammann, F.; Stäbler, A. Storage time-dependent alteration of molecular interaction–property relationships of whey protein isolate-based films and coatings. J. Mater. Sci. 2015, 50, 4396–4404. [Google Scholar] [CrossRef]
- Hernandez-Izquierdo, V.M.; Krochta, J.M. Thermoplastic processing of proteins for film formation—A Review. J. Food Sci. 2008, 73, R30–R39. [Google Scholar] [CrossRef]
- Verbeek, C.J.R.; van den Berg, L.E. Extrusion processing and properties of protein-based thermoplastics. Macromol. Mater. Eng. 2010, 295, 10–21. [Google Scholar] [CrossRef]
- Hernandez-Izquierdo, V.M.; Reid, D.S.; McHugh, T.H.; De J. Berrios, J.; Krochta, J.M. Thermal transitions and extrusion of glycerol-plasticized whey protein mixtures. J. Food Sci. 2008, 73, E169–E175. [Google Scholar] [CrossRef] [PubMed]
- Sothornvit, R.; Olsen, C.W.; McHugh, T.H.; Krochta, J.M. Formation conditions, water-vapor permeability, and solubility of compression-molded whey protein films. J. Food Sci. 2003, 68, 1985–1999. [Google Scholar] [CrossRef]
- Krochta, J.M. Proteins as raw materials for films and coatings: Definitions, current status, and opportunities. In Protein-Based Film and Coatings; CRC Press: Boca Raton, FL, USA, 2002; pp. 1–41. [Google Scholar]
- Kim, S.-J.; Ustunol, Z. Solubility and moisture sorption isotherms of whey-protein-based edible films as influenced by lipid and plasticizer incorporation. J. Agric. Food Chem. 2001, 49, 4388–4391. [Google Scholar] [CrossRef] [PubMed]
- Galietta, G.; Di Gioia, L.; Guilbert, S.; Cuq, B. Mechanical and thermomechanical properties of films based on whey proteins as affected by plasticizer and crosslinking agents. J. Dairy Sci. 1998, 81, 3123–3130. [Google Scholar] [CrossRef]
- Sothornvit, R.; Krochta, J.M. Water vapor permeability and solubility of films from hydrolyzed whey protein. J. Food Sci. 2000, 65, 700–703. [Google Scholar] [CrossRef]
- Pérez, L.M.; Piccirilli, G.N.; Delorenzi, N.J.; Verdini, R.A. Effect of different combinations of glycerol and/or trehalose on physical and structural properties of whey protein concentrate-based edible films. Food Hydrocoll. 2016, 56, 352–359. [Google Scholar] [CrossRef]
- Sabato, S.F.; Ouattara, B.; Yu, H.; D’Aprano, G.; Le Tien, C.; Mateescu, M.A.; Lacroix, M. Mechanical and barrier properties of cross-linked soy and whey protein based films. J. Agric. Food Chem. 2001, 49, 1397–1403. [Google Scholar] [CrossRef]
- Yoo, S.; Krochta, J.M. Whey protein-polysaccharide blended edible film formation and barrier, tensile, thermal and transparency properties. J. Sci. Food Agric. 2011, 91, 2628–2636. [Google Scholar] [CrossRef]
- Brindle, L.P.; Krochta, J.M. Physical properties of whey protein-hydroxypropylmethylcellulose blend edible films. J. Food Sci. 2008, 73, E446–E454. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, L.A.; Aguilera, J.M.; Rodriguez-Turienzo, L.; Cobos, A.; Diaz, O. Characterization and microstructure of films made from mucilage of Salvia hispanica and whey protein concentrate. J. Food Eng. 2012, 111, 511–518. [Google Scholar] [CrossRef]
- Basiak, E.; Lenart, A.; Debeaufort, F. Effects of carbohydrate/protein ratio on the microstructure and the barrier and sorption properties of wheat starch–whey protein blend edible films. J. Sci. Food Agric. 2017, 97, 858–867. [Google Scholar] [CrossRef]
- Anker, M.; Berntsen, J.; Hermansson, A.M.; Stading, M. Improved water vapor barrier of whey protein films by addition of an acetylated monoglyceride. Innov. Food Sci. Emerg. Technol. 2002, 3, 81–92. [Google Scholar] [CrossRef]
- Reinoso, E.; Mittal, G.S.; Lim, L.-T. Influence of Whey Protein Composite Coatings on Plum (Prunus Domestica L.) Fruit Quality. Food Bioprocess Technol. 2008, 1, 314–325. [Google Scholar] [CrossRef]
- Janjarasskul, T.; Rauch, D.J.; McCarthy, K.L.; Krochta, J.M. Barrier and tensile properties of whey protein–candelilla wax film/sheet. LWT—Food Sci. Technol. 2014, 56, 377–382. [Google Scholar] [CrossRef]
- Galus, S.; Kadzińska, J. Whey protein edible films modified with almond and walnut oils. Food Hydrocoll. 2016, 52, 78–86. [Google Scholar] [CrossRef]
- Ustunol, Z.; Mert, B. Water solubility, mechanical, barrier, and thermal properties of cross-linked whey protein isolate-based films. J. Food Sci. 2006, 69, FEP129–FEP133. [Google Scholar] [CrossRef]
- Schmid, M.; Sängerlaub, S.; Wege, L.; Stäbler, A. Properties of transglutaminase crosslinked whey protein isolate coatings and cast films. Packag. Technol. Sci. 2014, 27, 799–817. [Google Scholar] [CrossRef]
- Rossi Marquez, G.; Di Pierro, P.; Esposito, M.; Mariniello, L.; Porta, R. Application of transglutaminase-crosslinked whey protein/pectin films as water barrier coatings in fried and baked foods. Food Bioprocess Technol. 2014, 7, 447–455. [Google Scholar] [CrossRef]
- Han, J. Protein-based edible films and coatings carrying antimicrobial agents. In Protein-Based Films and Coatings; CRC Press: Boca Raton, FL, USA, 2002; pp. 485–499. ISBN 978-1-58716-107-0. [Google Scholar]
- Ramos, Ó.L.; Pereira, J.O.; Silva, S.I.; Fernandes, J.C.; Franco, M.I.; Lopes-da-Silva, J.A.; Pintado, M.E.; Malcata, F.X. Evaluation of antimicrobial edible coatings from a whey protein isolate base to improve the shelf life of cheese. J. Dairy Sci. 2012, 95, 6282–6292. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.; Janes, M.E.; Hettiarachchy, N.S.; Johnson, M.G. Physical and Chemical Properties of Edible Films Containing Nisin and Their Action Against Listeria Monocytogenes. J. Food Sci. 2001, 66, 1006–1011. [Google Scholar] [CrossRef]
- Cagri, A.; Ustunol, Z.; Ryser, E.T. Antimicrobial, mechanical, and moisture barrier properties of low ph whey protein-based edible films containing p-Aminobenzoic or Sorbic Acids. J. Food Sci. 2001, 66, 865–870. [Google Scholar] [CrossRef]
- Min, S.; Harris, L.J.; Krochta, J.M. Antimicrobial effects of lactoferrin, lysozyme, and the lactoperoxidase system and edible whey protein films incorporating the lactoperoxidase system against Salmonella enterica and Escherichia coli O157:H7. J. Food Sci. 2005, 70, m332–m338. [Google Scholar] [CrossRef]
- Seydim, A.C.; Sarikus, G. Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res. Int. 2006, 39, 639–644. [Google Scholar] [CrossRef]
- Krochta, J.M. Milk protein film and coating application lab. In Manufacturing Whey; California Dairy Research Foundation, UC Davis: Davis, CA, USA, 2003. [Google Scholar]
- Eswaranandam, S.; Hettiarachchy, N.S.; Johnson, M.G. Antimicrobial activity of citric, lactic, malic, or tartaric acids and nisin-incorporated soy protein film against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella gaminara. J. Food Sci. 2006, 69, FMS79–FMS84. [Google Scholar] [CrossRef]
- Oliveira, S.P.L.F.; Bertan, L.C.; De Rensis, C.M.V.B.; Bilck, A.P.; Vianna, P.C.B. Whey protein-based films incorporated with oregano essential oil. Polímeros 2017, 27, 158–164. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Pan, I.; Royo, M.; Ignacio Maté, J. Antimicrobial activity of whey protein isolate edible films with essential oils against food spoilers and foodborne pathogens. J. Food Sci. 2012, 77, M383–M390. [Google Scholar] [CrossRef]
- Bahram, S.; Rezaei, M.; Soltani, M.; Kamali, A.; Ojagh, S.M.; Abdollahi, M. Whey Protein Concentrate Edible Film Activated with Cinnamon Essential Oil. J. Food Process. Preserv. 2014, 38, 1251–1258. [Google Scholar] [CrossRef]
- Dawson, P.; Carl, G.; Acton, J.; Han, I. Effect of lauric acid and nisin-impregnated soy-based films on the growth of Listeria monocytogenes on turkey bologna. Poult. Sci. 2002, 81, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Min, S.; Rumsey, T.R.; Krochta, J.M. Diffusion of the antimicrobial lysozyme from a whey protein coating on smoked salmon. J. Food Eng. 2008, 84, 39–47. [Google Scholar] [CrossRef]
- Neetoo, H.; Ye, M.; Chen, H. Potential antimicrobials to control Listeria monocytogenes in vacuum-packaged cold-smoked salmon pâté and fillets. Int. J. Food Microbiol. 2008, 123, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Gadang, V.P.; Hettiarachchy, N.S.; Johnson, M.G.; Owens, C. Evaluation of antibacterial activity of whey protein isolate coating incorporated with nisin, grape seed extract, malic acid, and EDTA on a turkey frankfurter system. J. Food Sci. 2008, 73, M389–M394. [Google Scholar] [CrossRef]
- Boyacı, D.; Korel, F.; Yemenicioğlu, A. Development of activate-at-home-type edible antimicrobial films: An example pH-triggering mechanism formed for smoked salmon slices using lysozyme in whey protein films. Food Hydrocoll. 2016, 60, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Cagri, A.; Ustunol, Z.; Ryser, E.T. Inhibition of three pathogens on bologna and summer sausage using antimicrobial edible films. J. Food Sci. 2002, 67, 2317–2324. [Google Scholar] [CrossRef]
- Cagri, A.; Ustunol, Z.; Osburn, W.; Ryser, E.T. Inhibition of Listeria monocytogenes on Hot Dogs Using Antimicrobial Whey Protein-based Edible Casings. J. Food Sci. 2003, 68, 291–299. [Google Scholar] [CrossRef]
- Zinoviadou, K.G.; Koutsoumanis, K.P.; Biliaderis, C.G. Physical and thermo-mechanical properties of whey protein isolate films containing antimicrobials, and their effect against spoilage flora of fresh beef. Food Hydrocoll. 2010, 24, 49–59. [Google Scholar] [CrossRef]
- Badr, K.R.; Ahmed, Z.S.; ElGamal, M.S. Evaluation of the antimicrobial action of whey protein edible films incorporated with cinnamon, cumin and thyme against spoilage flora of fresh beef. Int. J. Agric. Res. 2014, 9, 242–250. [Google Scholar] [CrossRef] [Green Version]
- Soukoulis, C.; Behboudi-Jobbehdar, S.; Macnaughtan, W.; Parmenter, C.; Fisk, I.D. Stability of Lactobacillus rhamnosus GG incorporated in edible films: Impact of anionic biopolymers and whey protein concentrate. Food Hydrocoll. 2017, 70, 345–355. [Google Scholar] [CrossRef]
- Beristain-Bauza, S.d.C.; Mani-López, E.; Palou, E.; López-Malo, A. Antimicrobial activity of whey protein films supplemented with Lactobacillus sakei cell-free supernatant on fresh beef. Food Microbiol. 2017, 62, 207–211. [Google Scholar] [CrossRef]
- Gagliarini, N.; Diosma, G.; Garrote, G.L.; Abraham, A.G.; Piermaria, J. Whey protein-kefiran films as driver of probiotics to the gut. LWT 2019, 105, 321–328. [Google Scholar] [CrossRef]
- Yang, L.; Paulson, A. Effects of lipids on mechanical and moisture barrier properties of edible gellan film. Food Res. Int. 2000, 33, 571–578. [Google Scholar] [CrossRef]
- Sothornvit, R.; Krochta, J.M. Plasticizer effect on oxygen permeability of β-lactoglobulin films. J. Agric. Food Chem. 2000, 48, 6298–6302. [Google Scholar] [CrossRef] [PubMed]
- Sothornvit, R.; Krochta, J.M. Plasticizer effect on mechanical properties of β-lactoglobulin films. J. Food Eng. 2001, 50, 149–155. [Google Scholar] [CrossRef]
- Shaw, N.B.; Monahan, F.J.; O’Riordan, E.D.; O’Sullivan, M. Physical properties of wpi films plasticized with glycerol, xylitol, or sorbitol. J. Food Sci. 2002, 67, 164–167. [Google Scholar] [CrossRef]
- Schmid, M.; Hinz, L.-V.; Wild, F.; Noller, K. Effects of hydrolysed whey proteins on the techno-functional characteristics of whey protein-based films. Materials 2013, 6, 927–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmid, M. Properties of cast films made from different ratios of whey protein isolate, hydrolysed whey protein isolate and glycerol. Materials 2013, 6, 3254–3269. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Lu, J.-K.; Tsai, R.-J. Effects of low-temperature coating process on mechanical behaviors of ADI. Mater. Sci. Eng. A 2005, 398, 282–290. [Google Scholar] [CrossRef]
- Tang, C.-H.; Jiang, Y. Modulation of mechanical and surface hydrophobic properties of food protein films by transglutaminase treatment. Food Res. Int. 2007, 40, 504–509. [Google Scholar] [CrossRef]
- Han, J.H.; Floros, J.D. Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. J. Plast. Film Sheeting 1997, 13, 287–298. [Google Scholar] [CrossRef]
- Khanzadi, M.; Jafari, S.M.; Mirzaei, H.; Chegini, F.K.; Maghsoudlou, Y.; Dehnad, D. Physical and mechanical properties in biodegradable films of whey protein concentrate–pullulan by application of beeswax. Carbohydr. Polym. 2015, 118, 24–29. [Google Scholar] [CrossRef]
- Wagh, Y.R.; Pushpadass, H.A.; Emerald, F.M.E.; Nath, B.S. Preparation and characterization of milk protein films and their application for packaging of Cheddar cheese. J. Food Sci. Technol. 2014, 51, 3767–3775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Pierro, P.; Sorrentino, A.; Mariniello, L.; Giosafatto, C.V.L.; Porta, R. Chitosan/whey protein film as active coating to extend Ricotta cheese shelf-life. LWT—Food Sci. Technol. 2011, 44, 2324–2327. [Google Scholar] [CrossRef]
- Cisneros-Zevallos, L.A.; Krochta, J.M. Whey protein coatings delay ripening of banana fruits. In Book of Abstracts, Proceedings of the IFT Annual Meeting, Atlanta, GA, USA, 20–24 June 1998; Institute of Food Technologists: Chicago, IL, USA, 1998. [Google Scholar]
- Cisneros-Zevallos, L.; Krochta, J.M. Whey Protein Coatings for Fresh. JFS Food Eng. Phys. Prop. 2003, 68, 176–181. [Google Scholar]
- Perez-Gago, M.B.; Serra, M.; del Río, M.A. Color change of fresh-cut apples coated with whey protein concentrate-based edible coatings. Postharvest Biol. Technol. 2006, 39, 84–92. [Google Scholar] [CrossRef]
- Feng, Z.; Wu, G.; Liu, C.; Li, D.; Jiang, B.; Zhang, X. Edible coating based on whey protein isolate nanofibrils for antioxidation and inhibition of product browning. Food Hydrocoll. 2018, 79, 179–188. [Google Scholar] [CrossRef]
- Rossi Marquez, G.; Di Pierro, P.; Mariniello, L.; Esposito, M.; Giosafatto, C.V.L.; Porta, R. Fresh-cut fruit and vegetable coatings by transglutaminase-crosslinked whey protein/pectin edible films. LWT 2017, 75, 124–130. [Google Scholar] [CrossRef]
- Tzoumaki, M.V.; Biliaderis, C.G.; Vasilakakis, M. Impact of edible coatings and packaging on quality of white asparagus (Asparagus officinalis, L.) during cold storage. Food Chem. 2009, 117, 55–63. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, M.; Yan, W.; Mujumdar, A.S.; Sun, D. Effect of coating on post-drying of freeze-dried strawberry pieces. J. Food Eng. 2009, 92, 107–111. [Google Scholar] [CrossRef]
- Galus, S.; Mikus, M.; Ciurzyńska, A.; Domian, E.; Kowalska, J.; Marzec, A.; Kowalska, H. The effect of whey protein-based edible coatings incorporated with lemon and lemongrass essential oils on the quality attributes of fresh-cut pears during storage. Coatings 2021, 11, 745. [Google Scholar] [CrossRef]
- Hassani, F.; Garousi, F.; Javanmard, M. Edible coating based on whey protein concentrate-rice bran oil to maintain the physical and chemical properties of the kiwifruit (Actinidia deliciosa). Research 2012, 10, 26–34. [Google Scholar]
- Abedi, A.; Lakzadeh, L.; Amouheydari, M. Effect of an edible coating composed of whey protein concentrate and rosemary essential oil on the shelf life of fresh spinach. J. Food Process. Preserv. 2021, 45, e15284. [Google Scholar] [CrossRef]
- De Araújo Soares, R.; Borges, S.V.; Dias, M.V.; Piccoli, R.H.; Fassani, E.J.; Silva, E.M.C. da Impact of whey protein isolate/sodium montmorillonite/sodium metabisulfite coating on the shelf life of fresh eggs during storage. LWT 2021, 139, 110611. [Google Scholar] [CrossRef]
- Zinoviadou, K.G.; Koutsoumanis, K.P.; Biliaderis, C.G. Physico-chemical properties of whey protein isolate films containing oregano oil and their antimicrobial action against spoilage flora of fresh beef. Meat Sci. 2009, 82, 338–345. [Google Scholar] [CrossRef]
- Mukherjee, D.; Haque, Z.Z.; Promotion, H.; Promotion, H. Reduced protein carbonylation of cube steak and catfish fillet. Ann. Food Sci. Technol. 2016, 17, 529–536. [Google Scholar]
- Andrade, M.A.; Barbosa, C.H.; Souza, V.G.L.; Coelhoso, I.M.; Reboleira, J.; Bernardino, S.; Ganhão, R.; Mendes, S.; Fernando, A.L.; Vilarinho, F.; et al. Novel active food packaging films based on whey protein incorporated with seaweed extract: Development, characterization, and application in fresh poultry meat. Coatings 2021, 11, 229. [Google Scholar] [CrossRef]
- Alcantra, C.R.; Krochta, J.M. Mechanical properties of wheyprotein-isolate-coated freeze-dried chicken white meat dice. In Book of Abstracts, Proceedings of the IFT Annual Meeting, Atlanta, GA, USA, 22–26 June 1996; Institute of Food Technologists: Chicago, IL, USA, 1996. [Google Scholar]
- Molayi, R.; Ehsani, A.; Yousefi, M. The antibacterial effect of whey protein-alginate coating incorporated with the lactoperoxidase system on chicken thigh meat. Food Sci. Nutr. 2018, 6, 878–883. [Google Scholar] [CrossRef] [Green Version]
- Brink, I.; Šipailienė, A.; Leskauskaitė, D. Antimicrobial properties of chitosan and whey protein films applied on fresh cut turkey pieces. Int. J. Biol. Macromol. 2019, 130, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Catarino, M.D.; Alves-Silva, J.M.; Fernandes, R.P.; Gonçalves, M.J.; Salgueiro, L.R.; Henriques, M.F.; Cardoso, S.M. Development and performance of whey protein active coatings with Origanum virens essential oils in the quality and shelf life improvement of processed meat products. Food Control 2017, 80, 273–280. [Google Scholar] [CrossRef]
- Stuchell, Y.M.; Krochta, J.M. Edible coatings on frozen king salmon: Effect of whey protein isolate and acetylated monoglycerides on moisture loss and lipid oxidation. J. Food Sci. 1995, 60, 28–31. [Google Scholar] [CrossRef]
- Costa, M.P.; Balthazar, C.F.; Rodrigues, B.L.; Lazaro, C.A.; Silva, A.C.O.; Cruz, A.G.; Conte Junior, C.A. Determination of biogenic amines by high-performance liquid chromatography (HPLC-DAD) in probiotic cow’s and goat’s fermented milks and acceptance. Food Sci. Nutr. 2015, 3, 172–178. [Google Scholar] [CrossRef]
- Seyfzadeh, M.; Motalebi, A.A.; Kakoolaki, S.; Gholipour, H. Chemical, microbiological and sensory evaluation of gutted kilka coated with whey protein based edible film incorporated with sodium alginate during frozen storage. Iran. J. Fish. Sci. 2013, 12, 140–153. [Google Scholar]
- Shokri, S.; Ehsani, A.; Jasour, M.S. Efficacy of lactoperoxidase system-whey protein coating on shelf-life extension of rainbow trout fillets during cold storage (4 °C). Food Bioprocess Technol. 2015, 8, 54–62. [Google Scholar] [CrossRef]
- Tokur, B.K.; Sert, F.; Aksun, E.T.; Özoğul, F. The Effect of Whey Protein Isolate Coating Enriched with Thyme Essential Oils on Trout Quality at Refrigerated Storage (4 ± 2 °C). J. Aquat. Food Prod. Technol. 2016, 25, 585–596. [Google Scholar] [CrossRef]
- Yıldız, P.O.; Yangılar, F. Effects of Different Whey Protein Concentrate Coating on Selected Properties of Rainbow Trout (Oncorhynchus mykiss) During Cold Storage (4 °C). Int. J. Food Prop. 2016, 19, 2007–2015. [Google Scholar] [CrossRef] [Green Version]
- Yıldız, P.O.; Yangılar, F. Effects of whey protein isolate based coating enriched with Zingiber officinale and Matricaria recutita essential oils on the quality of refrigerated rainbow trout. J. Food Saf. 2017, 37, e12341. [Google Scholar] [CrossRef]
- Ribeiro-Santos, R.; de Melo, N.R.; Andrade, M.; Azevedo, G.; Machado, A.V.; Carvalho-Costa, D.; Sanches-Silva, A. Whey protein active films incorporated with a blend of essential oils: Characterization and effectiveness. Packag. Technol. Sci. 2018, 31, 27–40. [Google Scholar] [CrossRef]
- Chollakup, R.; Pongburoos, S.; Boonsong, W.; Khanoonkon, N.; Kongsin, K.; Sothornvit, R.; Sukyai, P.; Sukatta, U.; Harnkarnsujarit, N. Antioxidant and antibacterial activities of cassava starch and whey protein blend films containing rambutan peel extract and cinnamon oil for active packaging. LWT 2020, 130, 109573. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Krochta, J.M. Accelerated Shelf Life Testing of Whey-Protein-Coated Peanuts Analyzed by Static Headspace Gas Chromatography. J. Agric. Food Chem. 2002, 50, 2022–2028. [Google Scholar] [CrossRef] [PubMed]
- Rossi-Márquez, G.; Helguera, M.; Briones, M.; Dávalos-Saucedo, C.A.; Di Pierro, P. Edible coating from enzymatically reticulated whey protein-pectin to improve shelf life on roasted peanuts. Coatings 2021, 11, 329. [Google Scholar] [CrossRef]
- Maté, J.I.; Saltveit, M.E.; Krochta, J.M. Peanut and Walnut Rancidity: Effects of Oxygen Concentration and Relative Humidity. J. Food Sci. 1996, 61, 465–469. [Google Scholar] [CrossRef]
- Hosseini, H.; Yaghoubi Hamgini, E.; Jafari, S.M.; Bolourian, S. Improving the oxidative stability of sunflower seed kernels by edible biopolymeric coatings loaded with rosemary extract. J. Stored Prod. Res. 2020, 89, 101729. [Google Scholar] [CrossRef]
- Javanmard, M. Shelf life of whey protein-coated pistachio kernel (Pistacia Vera l.). J. Food Process Eng. 2008, 31, 247–259. [Google Scholar] [CrossRef]
- Miller, K.S.; Upadhyaya, S.K.; Krochta, J.M. Permeability of d-Limonene in Whey Protein Films. J. Food Sci. 2008, 63, 244–247. [Google Scholar] [CrossRef]
- Albert, S.; Mittal, G.S. Comparative evaluation of edible coatings to reduce fat uptake in a deep-fried cereal product. Food Res. Int. 2002, 35, 445–458. [Google Scholar] [CrossRef]
- Soukoulis, C.; Yonekura, L.; Gan, H.-H.; Behboudi-Jobbehdar, S.; Parmenter, C.; Fisk, I. Probiotic edible films as a new strategy for developing functional bakery products: The case of pan bread. Food Hydrocoll. 2014, 39, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Kandasamy, S.; Park, W.S.; Yoo, J.; Yun, J.; Kang, H.B.; Seol, K.H.; Oh, M.H.; Ham, J.S. Characterisation of fungal contamination sources for use in quality management of cheese production farms in Korea. Asian-Australas. J. Anim. Sci. 2019, 33, 1002–1011. [Google Scholar] [CrossRef] [Green Version]
- Pintado, C.M.B.S.; Ferreira, M.A.S.S.; Sousa, I. Control of pathogenic and spoilage microorganisms from cheese surface by whey protein films containing malic acid, nisin and natamycin. Food Control 2010, 21, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Henriques, M.; Santos, G.; Rodrigues, A.; Gomes, D. Replacement of conventional cheese coatings by natural whey protein edible coatings with antimicrobial activity. J. Hyg. Eng. Des. 2013, 3, 34–47. [Google Scholar]
- Kavas, G.; Kavas, N. The effects of mint (Mentha spicata) essential oil fortified edible films on the physical, chemical and microbiological characteristics of lor cheese. J. Food Agric. Environ. 2014, 12, 40–45. [Google Scholar]
- Caner, C. Whey protein isolate coating and concentration effects on egg shelf life. J. Sci. Food Agric. 2005, 85, 2143–2148. [Google Scholar] [CrossRef]
- Valencia, G.A.; Luciano, C.G.; Fritz, A.R.M. Polymers for agri-food applications. In Polymers for Agri-Food Applications; Springer: Cham, Switzerland, 2019; pp. 391–416. [Google Scholar] [CrossRef] [Green Version]
- Shon, J.; Chin, K.B. Effect of whey protein coating on quality attributes of low-fat, aerobically packaged sausage during refrigerated storage. J. Food Sci. 2008, 73, C469–C475. [Google Scholar] [CrossRef] [PubMed]
- Akcan, T.; Estévez, M.; Serdaroğlu, M. Antioxidant protection of cooked meatballs during frozen storage by whey protein edible films with phytochemicals from Laurus nobilis L. and Salvia officinalis. LWT 2017, 77, 323–331. [Google Scholar] [CrossRef]
- Rodriguez-Turienzo, L.; Cobos, A.; Moreno, V.; Caride, A.; Vieites, J.M.; Diaz, O. Whey protein-based coatings on frozen Atlantic salmon (Salmo salar): Influence of the plasticiser and the moment of coating on quality preservation. Food Chem. 2011, 128, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Hasanzati Rostami, A.; Motallebi, A.A.; Khanipour, A.A.; Soltani, M.; Khanedan, N. Effect of whey protein coating on Physic-Chemical properties of gutted Kilka during frozen storage. Iran. J. Fish. Sci. 2010, 9, 412–421. [Google Scholar]
- Rodriguez-Turienzo, L.; Cobos, A.; Diaz, O. Effects of microbial transglutaminase added edible coatings based on heated or ultrasound-treated whey proteins in physical and chemical parameters of frozen Atlantic salmon (Salmo salar). J. Food Eng. 2013, 119, 433–438. [Google Scholar] [CrossRef]
- Tien, C.; Vachon, C.; Mateescu, M.-A.; Lacroix, M. Milk protein coatings prevent oxidative browning of apples and potatoes. J. Food Sci. 2001, 66, 512–516. [Google Scholar] [CrossRef]
- Perez-Gago, M.B.; Serra, M.; Alonso, M.; Mateos, M.; del Río, M.A. Effect of whey protein- and hydroxypropyl methylcellulose-based edible composite coatings on color change of fresh-cut apples. Postharvest Biol. Technol. 2005, 36, 77–85. [Google Scholar] [CrossRef]
- Gounga, M.E.; Xu, S.-Y.; Wang, Z.; Yang, W.G. Effect of whey protein isolate–pullulan edible coatings on the quality and shelf life of freshly roasted and freeze-dried chinese chestnut. J. Food Sci. 2008, 73, E155–E161. [Google Scholar] [CrossRef] [PubMed]
- Soazo, M.; Pérez, L.M.; Rubiolo, A.C.; Verdini, R.A. Prefreezing application of whey protein-based edible coating to maintain quality attributes of strawberries. Int. J. Food Sci. Technol. 2015, 50, 605–611. [Google Scholar] [CrossRef]
- Han, J.H.; Hwang, H.-M.; Min, S.; Krochta, J.M. Coating of peanuts with edible whey protein film containing α-tocopherol and ascorbyl palmitate. J. Food Sci. 2008, 73, E349–E355. [Google Scholar] [CrossRef] [PubMed]
- Coltelli, M.-B.; Wild, F.; Bugnicourt, E.; Cinelli, P.; Lindner, M.; Schmid, M.; Weckel, V.; Müller, K.; Rodriguez, P.; Staebler, A.; et al. State of the art in the development and properties of protein-based films and coatings and their applicability to cellulose based products: An Extensive Review. Coatings 2015, 6, 1. [Google Scholar] [CrossRef]
Whey Protein-Based Film/Coating Composition | Function | Food Products | References |
---|---|---|---|
Dairy products | |||
WPC-pullulan + beeswax | Improve water vapor permeability | Milk | [82] |
WPC | Improve oxygen permeability | Cheddar cheese | [83] |
WPI + natamycin/chitooligosaccharides/lactic acid | Reduce moisture loss Inhibit pathogens | Cheese | [51] |
WP-chitosan | Reduced microbial growth, delay acidity development, extend shelf life | Ricotta cheese | [84] |
Fruits and vegetables | |||
WPI | Reduce ripening rate | Banana | [85] |
WPI | Reduce respiration | Apples | [86] |
WPI-bee wax | Reduce enzymatic browning | Fresh-cut apple | [87] |
WPI + glycerol/trehalose | Reduce browning, reduce weight loss, maintenance of phenolic compounds | Apples | [88] |
WP-pectin + transglutaminase | Reduce weight loss, inhibit spoilage microorganisms, increase antioxidant activities, maintain the firmness and texture of the products | Apples, carrots and potatoes | [89] |
WPI | Reduce weight loss | Asparagus | [90] |
WPI | Reduce rehydration | Strawberry | [91] |
WPI | Reduce color changes and reduce loss of hardiness | Fresh-cut pears | [92] |
WP + rice bran oil | Reduce weight loss, Increased acidity | Kiwi | [93] |
WPC + rosemary | Reduce weight loss, oxygen barrier | Fresh spinach | [94] |
Egg and meat | |||
WPI + sodium montmorillonite nanoparticles + sodium metabisulfite | Reduce weight loss and increase foam stability | Eggs | [95] |
WPI + sorbitol + oregano essential oil | Reduce viable bacterial counts and pseduomonads | Beef cut | [96] |
WPI + sodium lactate + 3-polylysine | Reduce viable bacterial counts and pseduomonads | Fresh beef cut | [68] |
WP + cinnamon/ cumin/thyme essential oils (1–2.5%) | Reduce viable bacterial counts | Fresh beef | [69] |
WPI + tea extract | Reduce protein oxidation | Beef steak and catfish fillet | [97] |
WPC+ sea weed extract | Inhibit lipid oxidation | Fresh poultry meat | [98] |
WPI | Reduce mechanical loss | Freeze dried chicken | [99] |
WP-alginate + lactoperoxidase | Increase antibacterial activity against Enterobacteriaceae spp. | Chicken thigh meat | [100] |
WP- chitosan + cranberry or quince juice | Inhibit S. typhimurium, Escherichia coli, and Campylobacter jejuni | Fresh cut turkey | [101] |
WP + Origanum virens essential oils | Increase shelf life up to 15 days, reduce discoloration and lipid oxidation | Sausages | [102] |
Seafood | |||
WPI-Acetylated Monoglyceride | Reduce rancidity and Reduce weight loss | Frozen salmon | [103] |
WP+ transglutaminase or ultrasound treatment | Inhibit lipid oxidation | Frozen Atlantic salmon | [104] |
Whey protein-sodium alginate (0.5%). | Reduce counts of bacterial and Staphylococcus spp. | Kilka | [105] |
WP + lactoperoxidase | Reduction of Shewanella putrefaciens and Pseudomonas fluorescens | Rainbow trout | [106] |
WPI + thyme essential oil (3–7%) | Enhance quality | Trout | [107] |
WPC + glycerol | Increased shelf life | Rainbow trout | [108] |
WPI + ginger and chamomile essential oils | Reduce bacterial growth | Rainbow trout fillets | [109] |
WPC + cinnamon + rosemary essential oils (1–5%) | Inhibit lipid oxidation | Salami | [110] |
WPI-cassava starch + rambutan peel extracts + cinnamon oil | Reduce microbial growth | Salami | [111] |
Nuts | |||
WPI | Reduce rancidity | Dry roasted peanut | [112] |
WPI-pectin + transglutaminase | Moisture barrier | Roasted peanut | [113] |
WPI | Reduce rancidity | Dry roasted peanuts and walnuts | [114] |
WPC + glycerol/carboxymethyl cellulose/rosemary extract | Desirable color with oxidative stability | Sunflower seed kernels | [115] |
WPC + glycerol | Reduce oxidiation, extend shelf life | Dried pistachio kernels | [116] |
Miscellaneous | |||
WPI | Aroma barrier | Flavor (d-limonene) | [117] |
WPI | Reduce fat uptake during frying | Deep fried cereal mix | [118] |
WP + sodium alginate + Lactobacillus rhamnosus GG | Retention of sensory properties, Increase cell viability of L. rhamnosus GG | Bread | [119] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandasamy, S.; Yoo, J.; Yun, J.; Kang, H.-B.; Seol, K.-H.; Kim, H.-W.; Ham, J.-S. Application of Whey Protein-Based Edible Films and Coatings in Food Industries: An Updated Overview. Coatings 2021, 11, 1056. https://doi.org/10.3390/coatings11091056
Kandasamy S, Yoo J, Yun J, Kang H-B, Seol K-H, Kim H-W, Ham J-S. Application of Whey Protein-Based Edible Films and Coatings in Food Industries: An Updated Overview. Coatings. 2021; 11(9):1056. https://doi.org/10.3390/coatings11091056
Chicago/Turabian StyleKandasamy, Sujatha, Jayeon Yoo, Jeonghee Yun, Han-Byul Kang, Kuk-Hwan Seol, Hyoun-Wook Kim, and Jun-Sang Ham. 2021. "Application of Whey Protein-Based Edible Films and Coatings in Food Industries: An Updated Overview" Coatings 11, no. 9: 1056. https://doi.org/10.3390/coatings11091056