The Effects of Substrate Bias on the Properties of HfC Coatings Deposited by RF Magnetron Sputtering
Abstract
:1. Introduction
2. Experimental Details
3. Results and Analysis
3.1. XRD, XPS, TEM, and AFM Analysis
3.2. Mechanical Properties
3.3. Corrosion Tests
3.4. Blood Compatibility
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cicha, I.; Singh, R.; Garlichs, C.D.; Alexiou, C. Nano-biomaterials for cardiovascular applications: Clinical perspective. J. Control. Release 2016, 229, 23–36. [Google Scholar] [CrossRef]
- Dobrowolska, A.; Kowalewski, P.; Ptak, A. Influence of the lubricating fluid on the changes on rubbing metallic biomaterials surface. Coll. Surf. A 2015, 480, 419–425. [Google Scholar] [CrossRef]
- Todai, M.; Nagase, T.; Hori, T.; Matsugaki, A.; Sekita, A.; Nakano, T. Novel TiNbZrMo high-entropy alloys for metallic biomaterials. Scr. Mater. 2017, 129, 65–68. [Google Scholar] [CrossRef] [Green Version]
- Ziętala, M.; Durejko, T.; Polański, M.; Kunce, I.; Płociński, T.; Zieliński, W.; Łazińska, M.; Stępniowski, W.; Czujko, T.; Kurzydłowski, K.J.; et al. The microstructure, mechanical properties and corrosion resistance of 316L stainless steel fabricated using laser engineered net shaping. Mater. Sci. Eng. A 2016, 677, 1–10. [Google Scholar] [CrossRef]
- Brooks, E.K.; Brooks, R.P.; Ehrensberger, M.T. Effects of simulated inflammation on the corrosion of 316L stainless steel. Mater. Sci. Eng. C 2017, 71, 200–205. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Hao, Y.; Pu, J.; Jiang, X.; Huang, L.F.; Wang, L. Friction and wear behavior of CrN coating on 316L stainless steel in liquid sodium at elevated temperature. Tribol. Int. 2020, 143, 106079. [Google Scholar] [CrossRef]
- Amanov, A.; Lee, S.W.; Pyun, Y.S. Low friction and high strength of 316L stainless steel tubing for biomedical applications. Mater. Sci. Eng. C 2017, 71, 176–185. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, R.; Chen, Y.; Wang, M. Corrosion behavior of oxide films on AISI 316L SS formed in high temperature water with simultaneous injection of zinc and aluminum. J. Alloys Compd. 2018, 731, 1230–1237. [Google Scholar] [CrossRef]
- Kaliaraj, G.S.; Vishwakarma, V.; Alagarsamy, K.; Kirubaharan, A.K. Biological and corrosion behavior of m-ZrO2 and t-ZrO2 coated 316L SS for potential biomedical applications. Ceram. Int. 2018, 44, 14940–14946. [Google Scholar] [CrossRef]
- Luo, H.; Su, H.; Dong, C.; Li, X. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution. Appl. Surf. Sci. 2017, 400, 38–48. [Google Scholar] [CrossRef]
- Huang, W.; Zalnezhad, E.; Musharavati, F.; Jahanshahi, P. Investigation of the tribological and biomechanical properties of CrAlTiN and CrN/NbN coatings on SST 304. Ceram. Int. 2017, 43, 7992–8003. [Google Scholar] [CrossRef]
- Qin, L.; Yi, H.; Kong, F.; Ma, H.; Guo, L.; Tian, L.; Tang, B. Effect of plasma molybdenized buffer layer on adhesive properties of TiN film coated on Ti6Al4V alloy. Appl. Surf. Sci. 2017, 403, 464–471. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, Y.; Wang, Q. A comparative investigation on structure evolution of ZrN and CrN coatings against ion irradiation. Heliyon 2019, 5, e01370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AlMangour, B.; Grzesiak, D.; Yang, J.M. In-situ formation of novel TiC-particle-reinforced 316L stainless steel bulk-form composites by selective laser melting. J. Alloys Compd. 2017, 706, 409–418. [Google Scholar] [CrossRef]
- Bait, L.; Azzouz, L.; Madaoui, N.; Saoula, N. Influence of substrate bias voltage on the properties of TiO2 deposited by radio-frequency magnetron sputtering on 304L for biomaterials applications. Appl. Surf. Sci. 2017, 395, 72–77. [Google Scholar] [CrossRef]
- Wang, R.; He, X.; Gao, Y.; Zhang, X.; Yao, X.; Tang, B. Antimicrobial property, cytocompatibility and corrosion resistance of Zn-doped ZrO2/TiO2 coatings on Ti6Al4V implants. Mater. Sci. Eng. C 2017, 75, 7–15. [Google Scholar] [CrossRef]
- Song, E.J.; Jo, H.; Kwon, S.H.; Ahn, J.H.; Kwon, J.D. Titanium oxynitride films for surface passivation of crystalline silicon deposited by plasma-enhanced atomic layer deposition to improve electrical conductivity. Thin Solid Film. 2020, 694, 137752. [Google Scholar] [CrossRef]
- Fernandez, D.A.R.; Brito, B.S.S.; Santos, I.A.D.; Soares, V.F.D.; Terto, A.R.; de Oliveira, G.B.; Hubler, R.; Batista, W.W.; Tentardini, E.K. Effect of hafnium contaminant present in zirconium targets on sputter deposited ZrN thin films. Nucl. Instrum. Methods B 2020, 462, 90–94. [Google Scholar] [CrossRef]
- Matsuno, H.; Yokoyama, A.; Watari, F.; Uo, M.; Kawasaki, T. Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials 2001, 22, 1253–1262. [Google Scholar] [CrossRef]
- Sin, J.R.; Suñer, S.; Neville, A.; Emami, N. Fretting corrosion of hafnium in simulated body fluids. Tribol. Int. 2014, 75, 10–15. [Google Scholar]
- Pu, H.; Niu, Y.; Hu, C.; Wang, G.; Li, H.; Zeng, Y.; Zheng, X. Ablation of vacuum plasma sprayed TaC-based composite coatings. Ceram. Int. 2015, 41, 11387–11395. [Google Scholar] [CrossRef]
- Kumar, D.D.; Kumar, N.; Kalaiselvam, S.; Radhika, R.; Rabel, A.M.; Jayavel, R. Tribo-mechanical properties of reactive magnetron sputtered transition metal carbide coatings. Tribol. Int. 2017, 114, 234–244. [Google Scholar] [CrossRef]
- Sun, S.; Fu, H.; Ping, X.; Guo, X.; Lin, J.; Lei, Y.; Wu, W.; Zhou, J. Formation mechanism and mechanical properties of titanium-doped NbC reinforced Ni-based composite coatings. Appl. Surf. Sci. 2019, 476, 914–927. [Google Scholar] [CrossRef]
- Lasfargues, H.; Glechner, T.; Koller, C.M.; Paneta, V.; Primetzhofer, D.; Kolozsvári, S.; Holec, D.; Riedl, H.; Mayrhofer, P.H. Non-reactively sputtered ultra-high temperature Hf-C and Ta-C coatings. Surf. Coat. Technol. 2017, 309, 436–444. [Google Scholar] [CrossRef]
- Wang, Y.L.; Xiong, X.; Li, G.D.; Zhao, X.J.; Chen, Z.K.; Sun, W.; Wang, Z.S. Effect of gas composition on the microstructure and growth behavior of HfC coatings prepared by LPCVD. Solid State Sci. 2013, 20, 86–91. [Google Scholar] [CrossRef]
- Xiong, X.; Wang, Y.L.; Li, G.D.; Chen, Z.K.; Sun, W.; Wang, Z.S. HfC/ZrC ablation protective coating for carbon/carbon composites. Corros. Sci. 2013, 77, 25–30. [Google Scholar] [CrossRef]
- Braic, V.; Balaceanu, M.; Braic, M.; Vladescu, A.; Panseri, S.; Russo, A. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications. J. Mech. Behav. Biomed. 2012, 10, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Sharma, I.; Pattanayek, S.K. Effect of surface energy of solid surfaces on the micro- and macroscopic properties of adsorbed BSA and lysozyme. Biophys. Chem. 2017, 226, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Chen, Y.; Yang, S.; Wu, S.; Zeng, R.; Wu, H.; Zhang, J.; Zha, Z.; Tu, M. Improving blood-compatibility via surface heparin-immobilization based on a liquid crystalline matrix. Mater. Sci. Eng. C 2016, 58, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Zubair, M.; Rizwan, K.; Rashid, U.; Saeed, R.; Saeed, A.A.; Rasool, N.; Riaz, M. GC/MS profiling, in vitro antioxidant, antimicrobial and haemolytic activities of Smilax macrophylla leves. Arab. J. Chem. 2017, 10, 1460–1468. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Gao, Y.; Cai, F.; Zhang, L.; Zhang, S. Effects of multi-layer structure on microstructure, wear and erosion performance of the Cr/CrN films on Ti alloy substrate. Appl. Surf. Sci. 2019, 483, 661–669. [Google Scholar] [CrossRef]
- Wang, Y.L.; Xiong, X.; Li, G.D.; Liu, H.F.; Chen, Z.K.; Sun, W.; Zhao, X.J. Preparation and ablation properties of Hf(Ta)C c0-deposition coating for carbon/carbon composites. Corros. Sci. 2013, 66, 177–182. [Google Scholar] [CrossRef]
- Ren, J.; Feng, E.; Zhang, Y.; Zhang, J.; Li, L. Microstructure and anti-ablation performance of HfC-TaC and HfC-ZrC coatings synthesized by CVD on C/C composites. Ceram. Inter. 2020, 46, 10147–10158. [Google Scholar] [CrossRef]
- Ding, J.C.; Wang, Q.M.; Liu, Z.R.; Jeong, S.; Zhang, T.F.; Kim, K.H. Influence of bias voltage on microstructure, mechanical and corrosion properties of AlSiN films deposited by HiPIMS technique. J. Alloys Compd. 2019, 772, 112–121. [Google Scholar] [CrossRef]
- Staszuk, M.; Pakuła, D.; Chladek, G.; Pawlyta, M.; Pancielejko, M.; Czaja, P. Investigation of the structure and properties of PVD coatings and ALD+PVD hybrid coatings deposited on sialon tool ceramics. Vacuum 2018, 154, 272–284. [Google Scholar] [CrossRef]
- Viteri, V.S.; Barandika, G.; Peremarc, C.P.J. Development of Ti-C-N coatings with improved tribological behavior and antibacterial properties. J. Mech. Behav. Biomed. 2016, 55, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Kwok, S.C.H.; Ha, P.C.T.; McKenzie, D.R.; Bilek, M.M.M.; Chu, P.K. Biocompatibility of calcium and phosphorous doped diamond-like films synthesized by plasma immersion ion implantation and deposition. Diam. Relat. Mater. 2006, 15, 893–897. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, Z. Enhancing surface integrity and corrosion resistance of laser cladded Cr-Ni alloys by hard turning and low plasticity burnishing. Appl. Surf. Sci. 2017, 409, 169–178. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Xi, Y.C.; Zhao, Y.H.; Liu, S.; Bai, S.L.; Liu, Z.D. Effects of laser re-melting and annealing on microstructure, mechanical property and corrosion resistance of Fe-based amorphous/crystalline composite coating. Mater. Charact. 2017, 127, 239–247. [Google Scholar] [CrossRef]
- Azar, G.T.P.; Er, D.; Ürgen, M. The role of superimposing pulse bias voltage on DC bias on the macroparticle attachment and structure of TiAlN coatings produced with CA-PVD. Surf. Coat. Technol. 2018, 350, 1050–1057. [Google Scholar] [CrossRef]
- Katta, P.P.; Nalliyan, R. Corrosion resistance with self-healing behavior and biocompatibility of Ce incorporated niobium oxide coated 316L SS for orthopedic applications. Surf. Coat. Technol. 2019, 375, 715–726. [Google Scholar] [CrossRef]
- Han, G.; Lu, Z.; Ru, X.; Chen, J.; Zhang, J.; Shoji, T. Properties of oxide films formed on 316L SS and model alloys with modified Ni, Cr and Si contents in high temperature water. Corros. Sci. 2016, 106, 157–171. [Google Scholar] [CrossRef]
- Mohan, L.; Anandan, C.; Rajendran, N. Electrochemical behavior and effect of heat treatment on morphology, crystalline structure of self-organized TiO2 nanotube arrays on Ti-6Al-7Nb for biomedical applications. Mater. Sci. Eng. C 2015, 50, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Lobato, M.A.; Mtz-Enriquez, A.I.; Garcia, C.R.; Velazquez-Manzanares, M.; Avalos-Belmontes, F.; Ramos-Gonzalez, R.; Garcia-Cerda, L.A. Corrosion resistance and in vitro bioactivity of dense and porous titania coatings deposited on 316L SS by spraying method. Appl. Surf. Sci. 2019, 484, 975–980. [Google Scholar] [CrossRef]
- Kumar, D.D.; Kaliaraj, G.S. Multifunctional zirconium nitride/copper multilayer coatings on medical grade 316L SS and titanium substrates for biomedical applications. J. Mech. Behav. Biomed. 2018, 77, 106–115. [Google Scholar] [CrossRef]
- Zhao, M.L.; Li, D.J.; Guo, M.X.; Zhang, Y.T.; Gu, H.Q.; Deng, X.Y.; Wan, R.X.; Sun, X. The different N concentrations induced cytocompatibility and hemocompatibility of MWCNTs with CNx coatings. Surf. Coat. Technol. 2013, 229, 90–96. [Google Scholar] [CrossRef]
- Huang, Z.; Luo, P.; Chen, W.; Pan, S.; Chen, D. Hemocompatibility of ZnO thin films prepared by filtered cathodic vacuum arc deposition. Vacuum 2013, 89, 220–224. [Google Scholar] [CrossRef]
- Amin, M.S.; Randeniya, L.K.; Bendavid, A.; Martin, P.J.; Preston, E.W. Biomimetic apatite growth from simulated body fluid on various oxide containing DLC thin films. Diam. Relat. Mater. 2012, 21, 42–49. [Google Scholar] [CrossRef]
- Kwok, S.C.H.; Zhang, W.; Wan, G.J.; McKenzie, D.R.; Bilek, M.M.M.; Chu, P.K. Hemocompatibility and anti-bacterial properties of silver doped diamond-like carbon prepared by pulsed filtered cathodic vacuum arc deposition. Diam. Relat. Mater. 2007, 16, 1353–1360. [Google Scholar] [CrossRef]
Sample | Hardness (GPa) | Modulus (GPa) | H/E | H3/E2 (GPa) | Lc (N) | μ |
---|---|---|---|---|---|---|
316L SS | 6.1 ± 0.1 | 192.1 ± 1.1 | 0.03 | 0.006 | - | 0.44 |
HfC coating (0 V) | 10.46 ± 0.2 | 201.46 ± 2.3 | 0.05 | 0.028 | 24.7 ± 0.9 | 0.23 |
HfC coating (−100 V) | 13.52 ± 0.4 | 237.95 ± 3.9 | 0.05 | 0.044 | 29.8 ± 0.7 | 0.20 |
HfC coating (−150 V) | 17.03 ± 0.6 | 259.33 ± 1.8 | 0.06 | 0.073 | 35.7 ± 1.3 | 0.19 |
HfC coating (−200 V) | 21.56 ± 0.3 | 265.24 ± 1.4 | 0.08 | 0.143 | 45.2 ± 1.1 | 0.14 |
Sample | Icorr (A/cm2) | Ecorr (mV) | Rc (Ω) |
---|---|---|---|
316L SS | 4.19 × 10−6 | −202 | - |
HfC coating (0 V) | 1.79 × 10−6 | −156 | 1.63 × 104 |
HfC coating (−100 V) | 7.62 × 10−7 | −191 | 6.12 × 105 |
HfC coating (−150 V) | 1.47 × 10−7 | −134 | 7.28 × 106 |
HfC coating (−200 V) | 2.23 × 10−8 | −82.5 | 3.84 × 107 |
Samples | Contact Angle (°) | Surface Energy Components (mN/m) | Interfacial Tensions | |||
---|---|---|---|---|---|---|
Water | Glycol | |||||
316L SS | 83.2 | 59.1 | 20.9 | 7.4 | 2.8 | 19.6 |
HfC coating (0 V) | 100 | 72.1 | 17.9 | 3 | 5.9 | 33.5 |
HfC coating (−100 V) | 89.3 | 68.1 | 18.1 | 8.2 | 2.2 | 25.4 |
HfC coating (−150 V) | 86.2 | 64.4 | 19.8 | 11.7 | 1.7 | 25.2 |
HfC coating (−200 V) | 84.7 | 62.1 | 18.8 | 11.2 | 1.6 | 24.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, D.; Wang, L.; Ding, M.-H.; Hu, Z.-N.; Zhao, J.-Y.; Zhou, G.-Y.; Feng, Z.-R. The Effects of Substrate Bias on the Properties of HfC Coatings Deposited by RF Magnetron Sputtering. Coatings 2021, 11, 963. https://doi.org/10.3390/coatings11080963
Pei D, Wang L, Ding M-H, Hu Z-N, Zhao J-Y, Zhou G-Y, Feng Z-R. The Effects of Substrate Bias on the Properties of HfC Coatings Deposited by RF Magnetron Sputtering. Coatings. 2021; 11(8):963. https://doi.org/10.3390/coatings11080963
Chicago/Turabian StylePei, Di, Li Wang, Ming-Hui Ding, Zhao-Nan Hu, Jun-Yu Zhao, Gui-Yuan Zhou, and Zheng-Rong Feng. 2021. "The Effects of Substrate Bias on the Properties of HfC Coatings Deposited by RF Magnetron Sputtering" Coatings 11, no. 8: 963. https://doi.org/10.3390/coatings11080963
APA StylePei, D., Wang, L., Ding, M.-H., Hu, Z.-N., Zhao, J.-Y., Zhou, G.-Y., & Feng, Z.-R. (2021). The Effects of Substrate Bias on the Properties of HfC Coatings Deposited by RF Magnetron Sputtering. Coatings, 11(8), 963. https://doi.org/10.3390/coatings11080963