Surface Morphological and Chemical Features of Anticorrosion ZrO2–TiO2 Coatings: Impact of Zirconium Precursor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Types
2.1.1. Samples Type A
2.1.2. Samples Type B
2.2. Differential Thermal (DTA)/Thermogravimetric (TG) Analyses
2.3. XRD Studies
2.4. Infrared Analyses
2.5. SEM Studies
2.6. AFM studies
2.7. XPS Investigations
2.8. Contact Angle Measurements
2.9. Neutral Salt Spray (NSS) Tests
2.10. Potentiodynamic Investigations
3. Results
3.1. Differential Thermal (DTA)/Thermogravimetric (TG) Analyses
3.2. XRD Studies
3.3. Infrared Analyses
3.4. SEM Studies
3.5. AFM Studies
3.6. XPS Investigations
3.7. Contact angle and NSS Measurements
3.7.1. Relationships between the Corrosion Stability and Hydrophobicity
3.7.2. Relationships between the Corrosion Stability and Surface Chemistry
3.8. Potentiodynamic Investigations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raps, D.; Hack, T.; Wehr, J.; Zheludkevich, M.L.; Bastos, A.C.; Ferreira, M.G.S.; Nuyken, O. Electrochemical study of inhibitor-containing organic–inorganic hybrid coatings on AA2024. Corros. Sci. 2009, 51, 1012–1021. [Google Scholar] [CrossRef]
- Fuchs-Godec, R. The adsorption, CMC determination and corrosion inhibition of some N-alkyl quaternary ammonium salts on carbon steel surface in 2M H2SO4. Colloids Surf. A Physicochem. Eng. Asp. 2006, 280, 130–139. [Google Scholar] [CrossRef]
- Jenkins, A.; Grainger, N.; Blezard, M.; Pepin, M. Quaternary Ammonium Corrosion Inhibitors. U.S. Patent 9,103,039, 11 August 2015. [Google Scholar]
- Tang, J.; Hu, Y.; Han, Z.; Wang, H.; Zhu, Y.; Wang, Y.; Nie, Z.; Wang, Y. Experimental and theoretical study on the synergistic inhibition effect of pyridine derivatives and sulfur-containing compounds on the corrosion of carbon steel in CO2-Saturated 3.5 wt.% NaCl Solution. Molecules 2018, 23, 3270. [Google Scholar] [CrossRef][Green Version]
- Alzahrani, K.A.H.; Deeth, R.J. Molecular modeling of zinc paddlewheel molecular complexes and the pores of a flexible metal organic framework. J. Mol. Model 2016, 22, 80. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Boshkova, N.D.; Petrov, P.D.; Chukova, V.; Lutov, L.S. Vitkova.D.; Boshkov, N.S. Surface morphology and corrosion behavior of zinc and zinc composite coatings with Cr(III) based conversion films. Bulg. Chem. Commun. 2016, 48, 53–59. [Google Scholar]
- Peshova, M.T.; Bachvarov, V.D.; Vitkova, S.D.; Boshkov, N.S. Obtaining and protective properties of passive films on Zn and Zn-Fe-P ternary alloys. Bulg. Chem. Commun. 2016, 48, 50–56. [Google Scholar]
- Boshkov, N.; Boshkova, N.; Bachvarov, V.; Peshova, M.; Lutov, L. Corrosion investigations of black chromite films on Zn and Zn-Co coatings with low cobalt content. J. Mater. Eng. Perform. 2015, 24, 4736–4745. [Google Scholar] [CrossRef]
- Tomachuk, C.R.; Elsner, C.I.; Di Sarli, A.R.; Ferraz, O.B. Corrosion resistance of Cr(III) conversion treatments applied on electrogalvanised steel and subjected to chloride. Mater. Chem. Phys. 2010, 119, 19–29. [Google Scholar] [CrossRef][Green Version]
- Hadley, J.; Verberne, W.; Wing, L.; Grady, J.O. Corrosion resistance without hexavalent chromium: New zinc plating systems. Met. Finish. 2002, 100, 33–36. [Google Scholar] [CrossRef]
- Wang, D.P.; Wang, S.L.; Wang, J.Q. Relationship between amorphous structure and corrosion behaviour in a Zr–Ni metallic glass. Corros. Sci. 2012, 59, 88–95. [Google Scholar] [CrossRef]
- Diegle, R.B.; Sorensen, N.R.; Tsuru, T.; Latanision, R.M. 2—The corrosion resistance of glassy alloys. Treatise Mater. Sci. Technol. 1983, 23, 59–102. [Google Scholar] [CrossRef]
- Ayer, R.; Ling, S.; Jin, H.W.; Pokutylowicz, N.; Koo, J.Y. The role of amorphous structure on corrosion resistance: Corrosion behavior of amorphous and crystalline zr2fe in slightly acidic chloride solution. In Proceedings of the Seventeenth International Offshore and Polar Engineering Conference, Lisbon, Portugal, 1–6 July 2007. [Google Scholar]
- Masumoto, T.; Hashimoto, K. Corrosion properties of amorphous metals. J. Phys. Coll. 1980, 41, C8-894–C8-900. [Google Scholar] [CrossRef]
- Wachtman, J.B.; Haber, A.R. Ceramic Films and Coatings; William Andrew Publishing, Noyes: Norwich, NY, USA, 1993. [Google Scholar]
- Hirano, M.; Nakahara, C.; Ota, K.; Inagaki, M. Direct formation of zirconia-doped titania with stable anatase-type structure by thermal hydrolysis. J. Am. Ceram. Soc. 2002, 85, 1333–1335. [Google Scholar] [CrossRef]
- Fu, X.; Clark, L.A.; Yang, Q.; Anderson, M.A. Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2. Environ. Sci. Technol. 1996, 30, 647–653. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.-L.; Li, Z.-X.; Fang, C.-J.; Duan, W.-T.; Li, X.-G.; Yan, C.-H. Highly ordered mesoporous titania-zirconia photocatalyst for applications in degradation of rhodamine-B and hydrogen evolution. Microporous Mesoporous Mat. 2009, 124, 169–178. [Google Scholar] [CrossRef]
- Sulym, I.; Goncharuk, O.; Sternik, D.; Skwarek, E.; Derylo-Marczewska, A.; Janusz, W.; Gun’ko, V.M. Silica-supported titania-zirconia nanocomposites: Structural and morphological characteristics in different media. Nanoscale Res. Lett. 2016, 11, 111–120. [Google Scholar] [CrossRef][Green Version]
- Reddy, B.M.; Khan, A. Recent advances on TiO2-ZrO2 mixed oxides as catalysts and catalyst supports. Catal. Rev. 2005, 47, 257–296. [Google Scholar] [CrossRef]
- Hachisuka, I.; Yoshida, T.; Ueno, H.; Takahashi, N.; Suda, A.; Sugiura, M. Improvement of NOx storage-reduction catalyst. SAE Tech. Paper 2002. [Google Scholar] [CrossRef]
- Kitiyanan, A.; Sakulkhaemaruethai, S.; Suzuki, Y.; Yoshikawa, S. Structural and photovoltaic properties of binary TiO2–ZrO2 oxides system prepared by sol–gel method. Compos. Sci. Technol. 2006, 66, 1259–1265. [Google Scholar] [CrossRef]
- Miao, X.; Sun, D.; Hoo, P.W.; Liu, J.; Hu, Y.; Chen, Y. Effect of titania addition on yttria-stabilised tetragonal zirconia ceramics sintered at high temperatures. Ceram. Int. 2004, 30, 1041–1047. [Google Scholar] [CrossRef]
- Biju, K.P.; Jain, M.K. Sol–gel derived TiO2:ZrO2 multilayer thin films for humidity sensing application. Sens. Actuators B Chem. 2008, 128, 407–413. [Google Scholar] [CrossRef]
- Piwonski, I.; Soliwoda, K.; Kisielewska, A.; Stanecka-Badura, R.; Kadziola, K. The effect of the surface nanostructure and composition on the antiwear properties of zirconia–titania coatings. Ceram. Int. 2013, 39, 1111–1123. [Google Scholar] [CrossRef]
- Sudhagar, P.; Nagarajan, S.; Mohana, M.; Raman, V.; Nishimura, T.; Kim, S.; Kang, Y.S.; Rajendran, N. Nanocomposite coatings on biomedical grade stainless steel for improved corrosion resistance and biocompatibility. Appl. Mater. Interf. 2012, 4, 5134–5141. [Google Scholar] [CrossRef]
- ISO 10289:2006 Methods for Corrosion Testing of Metallic and Other Inorganic Coatings on Metallic Substrates—Rating of Test Specimens and Manufactured Articles Subjected to Corrosion Tests; CP 401-1214; International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 9227:2017 Corrosion Tests in Artificial Atmospheres—Salt Spray Tests; CP 401-1214; International Organization for Standardization: Geneva, Switzerland, 2017.
- Tiwari, S.K.; Adhikary, J.; Singh, T.B.; Singh, R. Preparation and characterization of sol gel derived yttria doped zirconia coatings on AISI 316L. Thin Solid Film. 2009, 517, 4502–4508. [Google Scholar] [CrossRef]
- Bachvarova-Nedelcheva, A.; Yordanov, S.; Iordanova, R.; Stambolova, I. The solvent role on the hydrolysis-condensation processes and obtaining of TiO2 nanopowders. J. Chem. Technol. Metall. 2019, 54, 292–302. [Google Scholar]
- Marquez, M.E.; Picquart, M.; Bokhimi, X.; Lopez, T.; Quintana, P.; Coronado, J.M. X-ray diffraction and Raman scattering study of nanostructured ZrO2-TiO2 oxides prepared by sol gel. J. Nanosci. Nanotechnol. 2008, 8, 6623–6629. [Google Scholar] [CrossRef]
- Aust, U.; Benfer, S.; Dietze, M.; Rost, A.; Tomandi, G. Development of microporous ceramic membranes in the system TiO2/ZrO2. J. Membr. Sci. 2006, 281, 463–471. [Google Scholar] [CrossRef]
- Bu, A.; Wang, J.; Zhang, J.; Bai, J.; Shi, Z.; Liu, Q.; Ji, G. Corrosion behavior of ZrO2–TiO2 nanocomposite thin films coating on stainless steel through sol–gel method. J. Sol-Gel Sci. Technol. 2016, 81, 633–638. [Google Scholar] [CrossRef]
- Zou, H.; Lin, Y.S. Structural and surface chemical properties of sol–gel derived TiO2–ZrO2 oxides. Appl. Catal. A 2004, 265, 35–42. [Google Scholar] [CrossRef]
- Hu, M.; Payzant, Z.C.; Booth, E.A.; Rawn, K.R.; Hunt, R.D.; Allard, L.F. Ultrafine microsphere particles of zirconium titanate produced by homogeneous dielectric-tuning coprecipitation. J. Mater. Sci. 2003, 38, 3831–3844. [Google Scholar] [CrossRef]
- Georgieva, I.; Danchova, N.; Gutzov, S.; Trendafilova, I. DFT modeling, UV-Vis and IR spectroscopic study of acetylacetone-modified zirconia sol-gel materials. J. Mol. Model. 2012, 18, 2409–2422. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, M.; Takami, C.; Adschiri, T.; Nakane, T.; Satoa, K.; Naka, T. Simple and rapid synthesis of ZrO2 nanoparticles from Zr(OEt)4 and Zr(OH)4 using a hydrothermal method. CrystEngComm 2012, 14, 2117–2123. [Google Scholar] [CrossRef]
- Velasco, M.J.; Rubio, F.; Rubio, J.; Oteo, J. Hydrolysis of titanium tetrabutoxide. Study by FT-IR spectroscopy. Spectr. Lett. 1999, 32, 289–304. [Google Scholar] [CrossRef]
- Das, V.K.; Das, S.; Thakur, A.J. Protection and deprotection chemistry catalyzed by zirconium oxychloride octahydrate (ZrOCl2·8H2O). Green Chem. Lett. Rev. 2012, 5, 577–586. [Google Scholar] [CrossRef][Green Version]
- Babiarczuk, B.; Szczurek, A.; Donesz-Sikorska, A.; Rutkowska, I.; Krzak, J. The influence of an acid catalyst on the morphology, wettabillity, adhesion and chemical structure properties of TiO2 and ZrO2 sol–gel thin films. J. Surf. Coat. Technol. 2016, 285, 134–145. [Google Scholar] [CrossRef]
- Fetisov, A.V.; Kozhina, G.A.; Estemirova, S.K.; Fetisov, V.B.; Gulyaeva, R.I. XPS study of the chemical stability of DyBa2C3O6+δ superconductor. Phys. C Supercond. 2015, 508, 62–68. [Google Scholar] [CrossRef][Green Version]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Waltham, MA, USA, 1992. [Google Scholar]
- Bumajdad, A.; Nazeer, A.A.; Al Sagheer, F.; Zaki, M.I. Controlled Synthesis of ZrO2 nanoparticles with tailored size, morphology and crystal phases via organic/inorganic hybrid films. Sci. Rep. 2018, 8, 3695. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Shi, Z.; Zhou, Z.; Shum, P.; Li, K.-Y.L. Thermal stability wettability and corrosion resistance of sputtered ceria films on 316 stainless steel. Appl. Surf. Sci. 2017, 477, 166–171. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, D.; Qui, R.; Hou, B. Super-hydrophobic film prepared on zinc as corrosion barrier. Corr. Sci. 2011, 532080–532086. [Google Scholar] [CrossRef]
- Yu, D.; Tian, J. Super-hydrophobicity: It is really better than hydrophobicity on anti-corrosion? Colloids Surf. A 2014, 445, 75–78. [Google Scholar] [CrossRef]
- Huang, Q.; Yang, Y.; Hu, R.; Lin, C.; Sun, L.; Vogler, E.A. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO2-nanotube-coated 316L stainless steel. Colloids Surf. B 2015, 125, 134–141. [Google Scholar] [CrossRef]
- Li, W.; Li, D.Y. Influence of surface morphology on corrosion and electronic behavior. Acta Mater. 2006, 54, 445–452. [Google Scholar] [CrossRef]
- Zuo, Y.; Wang, H.; Xiong, J. The aspect ratio of surface grooves and metastable pitting of stainless steel. Corros. Sci. 2002, 44, 25–35. [Google Scholar] [CrossRef]
- Burstein, G.T.; Vines, S.P. Repetitive nucleation of corrosion pits on stainless steel and the effects of surface roughness. J. Electrochem. Soc. 2001, 148, B504. [Google Scholar] [CrossRef]
- Holgado, J.P.; Pérez-Sánchez, M.; Yubero, F.; Espinós, J.P.; González-Elipe, A.R. Corrosion resistant ZrO2 thin films prepared at room temperature by ion beam chemical vapor deposition. Surf. Coat. Technol. 2002, 151–152, 449–453. [Google Scholar] [CrossRef]
- Ghasemi, A.; Shahrabi, T.; Oskuie, A.A.; Hasannejad, H.; Sanjabi, S. Effect of heat treatment on corrosion properties of sol gel titania-ceria nanocomposite coatings. J. Alloys Compd. 2010, 504, 237–242. [Google Scholar] [CrossRef]
- Xueqing, W.; Changqing, X. Influence of crystallization on corrosion resistance on Al86Ni6La6Cu2 amorphous alloy. J. Rare Earth 2008, 26, 745–748. [Google Scholar] [CrossRef]
Sample | Rq (nm) | Ra (nm) |
---|---|---|
A4 fresh | 31.0 | 23.2 |
A4 after | 22.2 | 18.4 |
B4 fresh | 12.8 | 10.1 |
B4 after | 9.5 | 6.7 |
A5 fresh | 49.0 | 35.7 |
A5 after | 51.4 | 39.6 |
B5 fresh | 15.2 | 11.3 |
B5 after | 26.4 | 18.2 |
Sample | Ecorr (V) | Icorr (A/cm2) | Ipass (A/cm2) |
---|---|---|---|
A4 | –700 | 7.0 × 10−6 | 9.5 × 10−5 |
B4 | –674 | 2.5 × 10−6 | 3.8 × 10−5 |
A5 | –685 | 3.8 × 10−6 | 9.4 × 10−5 |
B5 | –675 | 4.1 × 10−6 | 6.7 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stambolova, I.; Stoyanova, D.; Shipochka, M.; Boshkova, N.; Eliyas, A.; Simeonova, S.; Grozev, N.; Boshkov, N. Surface Morphological and Chemical Features of Anticorrosion ZrO2–TiO2 Coatings: Impact of Zirconium Precursor. Coatings 2021, 11, 703. https://doi.org/10.3390/coatings11060703
Stambolova I, Stoyanova D, Shipochka M, Boshkova N, Eliyas A, Simeonova S, Grozev N, Boshkov N. Surface Morphological and Chemical Features of Anticorrosion ZrO2–TiO2 Coatings: Impact of Zirconium Precursor. Coatings. 2021; 11(6):703. https://doi.org/10.3390/coatings11060703
Chicago/Turabian StyleStambolova, Irina, Daniela Stoyanova, Maria Shipochka, Nelly Boshkova, Alexander Eliyas, Silviya Simeonova, Nikolay Grozev, and Nikolai Boshkov. 2021. "Surface Morphological and Chemical Features of Anticorrosion ZrO2–TiO2 Coatings: Impact of Zirconium Precursor" Coatings 11, no. 6: 703. https://doi.org/10.3390/coatings11060703