Te-Embedded Nanocrystalline PbTe Thick Films: Structure and Thermoelectric Properties Relationship
Abstract
1. Introduction
2. Materials and Method
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Curzon, F.L.; Ahlborn, B. Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 1975, 43, 22–24. [Google Scholar] [CrossRef]
- Vining, C.B. An inconvenient truth about thermoelectrics. Nat. Mater. 2009, 8, 83–85. [Google Scholar] [CrossRef]
- Shakouri, A. Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 2011, 41, 399–431. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef]
- Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D.; et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008, 320, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Faleev, S.V.; Léonard, F. Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Phys. Rev. B 2008, 77. [Google Scholar] [CrossRef]
- Sumithra, S.; Takas, N.J.; Misra, D.K.; Nolting, W.M.; Poudeu, P.; Stokes, K.L. Enhancement in thermoelectric figure of merit in nanostructured Bi2Te3 with semimetal nanoinclusions. Adv. Energy Mater. 2011, 1, 1141–1147. [Google Scholar] [CrossRef]
- Chen, J.; Sun, T.; Sim, D.; Peng, H.; Wang, H.; Fan, S.; Hng, H.H.; Ma, J.; Boey, F.Y.C.; Li, S.; et al. Sb2Te3Nanoparticles with enhanced seebeck coefficient and low thermal conductivity. Chem. Mater. 2010, 22, 3086–3092. [Google Scholar] [CrossRef]
- Han, L.; Fang, H.; Du, C.; Sun, J.; Li, Y.; Ma, W. Synthesis of ultra-narrow PbTe nanorods with extremely strong quantum confinement. J. Mater. Sci. Technol. 2019, 35, 703–710. [Google Scholar] [CrossRef]
- Rojas-Chávez, H.; Juárez-García, J.; Herrera-Rivera, R.; Flores-Rojas, E.; González-Domínguez, J.; Cruz-Orea, A.; Cayetano-Castro, N.; Ávila-García, A.; Mondragón-Sánchez, M. The high-energy milling process as a synergistic approach to minimize the thermal conductivity of PbTe nanostructures. J. Alloys Compd. 2020, 820, 153167. [Google Scholar] [CrossRef]
- Hsieh, H.-C.; Wang, C.-H.; Lan, T.-W.; Lee, T.-H.; Chen, Y.-Y.; Chu, H.-S.; Wu, A.T. Joint properties enhancement for PbTe thermoelectric materials by addition of diffusion barrier. Mater. Chem. Phys. 2020, 246, 122848. [Google Scholar] [CrossRef]
- Ohta, M.; Jood, P.; Murata, M.; Lee, C.-H.; Yamamoto, A.; Obara, H. An integrated approach to thermoelectrics: Combining phonon dynamics, nanoengineering, novel materials development, module fabrication, and metrology. Adv. Energy Mater. 2018, 9, 1–29. [Google Scholar] [CrossRef]
- Novak, T.G.; Kim, K.; Jeon, S. 2D and 3D nanostructuring strategies for thermoelectric materials. Nanoscale 2019, 11, 19684–19699. [Google Scholar] [CrossRef]
- Fleurial, J.-P.; Snyder, G.J.; Herman, J.A.; Giauque, P.H. Thick-film thermoelectric microdevices. In Proceedings of the Eighteenth International Conference on Thermoelectrics, Baltimore, MD, USA, 29 August–2 September 1999. [Google Scholar]
- Semeniouk, V.; Fleurial, J.-P. Modeling and minimization of intercascade thermal resistance in multi-stage thermoelectric cooler. In Proceedings of the XVI International Conference on Thermoelectrics, Dresden, Germany, 26–29 August 1997. [Google Scholar]
- Anatychuk, L.; Luste, O.; Vikhor, L. Optimal functions as an effective method for thermoelectric devices design. In Proceedings of the Fifteenth International Conference on Thermoelectrics, Pasadena, CA, USA, 26–29 March 1996; pp. 223–226. [Google Scholar]
- Anatychuk, L.I.; Luste, O.J. Physical principles of microminiaturization in thermoelectricity. In Proceedings of the Fifteenth International Conference on Thermoelectrics, Pasadena, CA, USA, 26–29 March 1996. [Google Scholar]
- Snyder, G.J.; Lim, J.R.; Huang, C.-K.; Fleurial, J.-P. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nat. Mater. 2003, 2, 528–531. [Google Scholar] [CrossRef]
- Dini, J.W. Electrodeposition—The Materials Science of Coating and Substrates; Noyes Publications: Westwood, NJ, USA, 1993. [Google Scholar]
- Rostek, R.; Stein, N.; Boulanger, C. A review of electroplating for V–VI thermoelectric films: From synthesis to device integration. J. Mater. Res. 2015, 30, 2518–2543. [Google Scholar] [CrossRef]
- Xiao, F.; Hangarter, C.; Yoo, B.; Rheem, Y.; Lee, K.-H.; Myung, N.V. Recent progress in electrodeposition of thermoelectric thin films and nanostructures. Electrochim. Acta 2008, 53, 8103–8117. [Google Scholar] [CrossRef]
- Beaunier, L.; Cachet, H.; Cortes, R.; Froment, M. Epitaxial electrodeposition of lead telluride films on indium phosphide single crystals. J. Electroanal. Chem. 2002, 532, 215–218. [Google Scholar] [CrossRef]
- Li, G.-R.; Yao, C.-Z.; Lu, X.-H.; Zheng, F.-L.; Feng, Z.-P.; Yu, X.-L.; Su, C.-Y.; Tong, Y.-X. Facile and efficient electrochemical synthesis of PbTe dendritic structures. Chem. Mater. 2008, 20, 3306–3314. [Google Scholar] [CrossRef]
- Ni, Y.; Zhang, Y.; Hong, J. Potentiostatic electrodeposition route for quick synthesis of featherlike PbTe dendrites: Influencing factors and shape evolution. Cryst. Growth Des. 2011, 11, 2142–2148. [Google Scholar] [CrossRef]
- Mondal, A.; Mukherrjee, N.; Bhar, S.; Banerjee, D. An electrochemical technique to deposit thin films of PbTe. Thin Solid Film. 2006, 515, 1255–1259. [Google Scholar] [CrossRef]
- Li, X.; Nandhakumar, I.S. Direct electrodeposition of PbTe thin films on n-type silicon. Electrochem. Commun. 2008, 10, 363–366. [Google Scholar] [CrossRef]
- Ivanova, Y.A.; Ivanou, D.K.; Streltsov, E.A. Electrochemical deposition of PbTe onto n-Si(100) wafers. Electrochem. Commun. 2007, 9, 599–604. [Google Scholar] [CrossRef]
- Xiao, F.; Yoo, B.; Ryan, M.A.; Lee, K.-H.; Myung, N.V. Electrodeposition of PbTe thin films from acidic nitrate baths. Electrochim. Acta 2006, 52, 1101–1107. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions; Pergamon Press Inc.: Long Island City, NY, USA, 1966. [Google Scholar]
- Saloniemi, H.; Kanniainen, T.; Ritala, M.; Leskelä, M. Electrodeposition of PbTe thin films. Thin Solid Films 1998, 326, 78–82. [Google Scholar] [CrossRef]
- Saloniemi, H.; Kemell, M.; Ritala, M.; Leskelä, M. PbTe electrodeposition studied by combined electrochemical quartz crystal microbalance and cyclic voltammetry. J. Electroanal. Chem. 2000, 482, 139–148. [Google Scholar] [CrossRef]
- Miranda, C.R.B.; Abramof, P.G.; De Melo, F.C.L.; Ferreira, N.G. Morphology and stress study of nanostructured porous silicon as a substrate for PbTe thin films growth by electrochemical process. Mater. Res. 2004, 7, 619–623. [Google Scholar] [CrossRef][Green Version]
- Qiu, X.; Lou, Y.; Samia, A.C.S.; Devadoss, A.; Burgess, J.D.; Dayal, S.; Burda, C. PbTe Nanorods by Sonoelectrochemistry. Angew. Chem. Int. Ed. 2005, 44, 5855–5857. [Google Scholar] [CrossRef]
- Erdoğan, İ.Y.; Ozer, T.O.; Bülbül, F.; Demir, Ü. Characterization of size-quantized PbTe thin films synthesized by an electrochemical co-deposition method. Thin Solid Films 2009, 517, 5419–5424. [Google Scholar] [CrossRef]
- Butler, I.B.; Schoonen, M.A.A.; Rickard, D.T. Removal of dissolved oxygen from water: A comparison of four common techniques. Talanta 1994, 41, 211–215. [Google Scholar] [CrossRef]
- Wu, T.; Lee, H.-K.; Myung, N.V. Electrodeposition of dense lead telluride thick films in alkaline solutions. J. Electrochem. Soc. 2016, 163, D801–D808. [Google Scholar] [CrossRef]
- Yoo, I.-J.; Song, Y.; Lim, D.C.; Myung, N.V.; Lee, K.H.; Oh, M.; Lee, D.; Kim, Y.D.; Kim, S.; Choa, Y.-H.; et al. Thermoelectric characteristics of Sb2Te3 thin films formed via surfactant-assisted electrodeposition. J. Mater. Chem. A 2013, 1, 5430–5435. [Google Scholar] [CrossRef]
- Kim, J.; Zhang, M.; Bosze, W.; Park, S.-D.; Lim, J.-H.; Myung, N.V. Maximizing thermoelectric properties by nanoinclusion of γ-SbTe in Sb2Te3 film via solid-state phase transition from amorphous Sb–Te electrodeposits. Nano Energy 2015, 13, 727–734. [Google Scholar] [CrossRef]
- Kim, J.; Lee, K.H.; Kim, S.-D.; Lim, J.-H.; Myung, N.V. Simple and effective fabrication of Sb2Te3 films embedded with Ag2Te nanoprecipitates for enhanced thermoelectric performance. J. Mater. Chem. A 2017, 6, 349–356. [Google Scholar] [CrossRef]
- Mostany, J.; Scharifker, B.R.; Saavedra, K.; Borras, C. Electrochemical nucleation and the classical theory: Overpotential and temperature dependence of the nucleation rate. Russ. J. Electrochem. 2008, 44, 652–658. [Google Scholar] [CrossRef]
- Moti’, E.; Shariat, M.H.; Bahrololoom, M.E. Influence of cathodic overpotential on grain size in nanocrystalline nickel deposition on rotating cylinder electrodes. J. Appl. Electrochem. 2008, 38, 605–612. [Google Scholar] [CrossRef]
- Milchev, A.; Lacmann, R. On the nucleation theory of electrochemical alloy formation I. overvoltage dependence of the stationary nucleation rate. J. Cryst. Growth 1991, 110, 919–924. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, M.; Lee, K.-H.; Lee, C.-M.; Lee, H.-K.; Choa, Y.; Myung, N.V. Electrodeposition of compact tellurium thick films from alkaline baths. J. Electrochem. Soc. 2016, 164, D82–D87. [Google Scholar] [CrossRef]
- Mo, M.; Zeng, J.; Liu, X.; Yu, W.; Zhang, S.; Qian, Y. Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes. Adv. Mater. 2002, 14, 1658–1662. [Google Scholar] [CrossRef]
- Hippel, G.A.v. Structure, conductivity in the VIb group of the periodic system. J. Chem. Phys. 1948, 16, 372–380. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, M.; Lee, K.-H.; Kim, S.-I.; Choa, Y.; Myung, N.V. Synthesis of tellurium heterostructures by galvanic displacement reaction of zinc in alkaline baths. Electrochim. Acta 2014, 150, 298–307. [Google Scholar] [CrossRef]
- Wu, T.; Myung, L.Y.; Zhang, M.; Lee, K.-H.; Lee, Y.L.; Lim, H.-R.; Kim, B.S.; Choa, Y.-H.; Myung, N.V. Size controlled synthesis of tellurium nanorices by galvanic displacement reaction of aluminum. Electrochim. Acta 2015, 176, 1382–1392. [Google Scholar] [CrossRef]
- Patterson, A.L. The scherrer formula for X-ray particle size determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Williamson, G.; Hall, W. X-ray line broadening from filed aluminium and wolfram. Acta Met. 1953, 1, 22–31. [Google Scholar] [CrossRef]
- Burton, A.W.; Ong, K.; Rea, T.; Chan, I.Y. On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater. 2009, 117, 75–90. [Google Scholar] [CrossRef]
- Weidmann, E.; Anderson, J. Structure and growth of oriented tellurium thin films. Thin Solid Films 1971, 7, 265–276. [Google Scholar] [CrossRef]
- Sciences, C. Large grain tellurium thin films. Thin Solid Films 1972, 11, 229–236. [Google Scholar]
- Santucci, S.; Di Nardo, S.; Lozzi, L.; Passacantando, M.; Picozzi, P. XPS, LEED and AFM investigation of the Si(100) surface after the deposition and annealing of tellurium thin films. Surf. Sci. 1996, 352–354, 1027–1032. [Google Scholar] [CrossRef]
- Bhandarkar, V.; Sen, S.; Muthe, K.; Kaur, M.; Kumar, M.S.; Deshpande, S.; Gupta, S.; Yakhmi, J.V.; Sahni, V. Effect of deposition conditions on the microstructure and gas-sensing characteristics of Te thin films. Mater. Sci. Eng. B 2006, 131, 156–161. [Google Scholar] [CrossRef]
- Kim, D.-H.; Lee, G.-H. Effect of rapid thermal annealing on thermoelectric properties of bismuth telluride films grown by co-sputtering. Mater. Sci. Eng. B 2006, 131, 106–110. [Google Scholar] [CrossRef]
- Rostek, R.; Sklyarenko, V.; Woias, P. Influence of vapor annealing on the thermoelectric properties of electrodeposited Bi2Te3. J. Mater. Res. 2011, 26, 1785–1790. [Google Scholar] [CrossRef]
- Kim, D.H.; Kwon, I.H.; Kim, C.; Han, B.; Im, H.J.; Kim, H. Tellurium-evaporation-annealing for p -type bismuth—Antimony—Telluride thermoelectric materials. J. Alloys Compd. 2013, 548, 126–132. [Google Scholar] [CrossRef]
- Zalar, S.M. High-Temperature Resistivity of the Chalcopyritic Compound CulnTe2. J. Electrochem. Soc. 1966, 113, 230. [Google Scholar] [CrossRef]
- Ostwald, W. Studies on the formation and transformation of solid bodies. Z. Phys. Chem. 1897, 22, 289–330. [Google Scholar]
- McNaught, A.D.; Wilkinson, A. Compendium of Chemical Terminology; International Union of Pure and Applied Chemistry: Raleigh, NC, USA, 1997. [Google Scholar]
- Ratke, L.; Voorhees, P.W. Growth and Coarsening Ostwald Ripening in Material Processing; Springer: Berlin, Germany, 2002. [Google Scholar]
- CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2002.
- Rojas-Chávez, H.; Cruz-Martínez, H.; Flores-Rojas, E.; Juárez-García, J.M.; Gonzalez-Dominguez, J.L.; Daneu, N.; Santoyo-Salazar, J.; Santoyo, J. The mechanochemical synthesis of PbTe nanostructures: Following the Ostwald ripening effect during milling. Phys. Chem. Chem. Phys. 2018, 20, 27082–27092. [Google Scholar] [CrossRef] [PubMed]
- Seto, J.Y.W. The electrical properties of polycrystalline silicon films. J. Appl. Phys. 1975, 46, 5247–5254. [Google Scholar] [CrossRef]
- Scheele, M.; Oeschler, N.; Veremchuk, I.; Peters, S.-O.; Littig, A.; Kornowski, A.; Klinke, C.; Weller, H. Thermoelectric properties of lead chalcogenide core–shell nanostructures. ACS Nano 2011, 5, 8541–8551. [Google Scholar] [CrossRef]
- Kishimoto, K.; Yamamoto, K.; Koyanagi, T. Influences of potential barrier scattering on the thermoelectric properties of sintered n-Type PbTe with a small grain size. Jpn. J. Appl. Phys. 2003, 42, 501–508. [Google Scholar] [CrossRef]
- Kishimoto, K.; Koyanagi, T. Preparation of sintered degenerate n-type PbTe with a small grain size and its thermoelectric properties. J. Appl. Phys. 2002, 92, 2544. [Google Scholar] [CrossRef]
- Schenk, M.; Berger, H.; Klimakow, A.; Mühlberg, M.; Wienecke, M. Nonstoichiometry and point defects in PbTe. Cryst. Res. Technol. 1988, 23, 77–84. [Google Scholar] [CrossRef]
- Strauss, A.J. Effect of Pb- and Te-saturation on carrier concentrations in impurity-doped PbTe. J. Electron. Mater. 1973, 2, 553–569. [Google Scholar] [CrossRef]
- Allgaier, R.S. Valence bands in lead telluride. J. Appl. Phys. 1961, 32, 2185. [Google Scholar] [CrossRef]
- Brebrick, R.F.; Gubner, E. Composition stability limits of PbTe. II. J. Chem. Phys. 1962, 36, 1283–1289. [Google Scholar] [CrossRef]
- Fritts, R.W. Thermoelectric Materials and Devices; Reinhold Publication Corporation: New York, NY, USA, 1960; pp. 143–162. [Google Scholar]
- LaLonde, A.D.; Pei, Y.; Wang, H.; Snyder, G.J. Lead telluride alloy thermoelectrics. Mater. Today 2011, 14, 526–532. [Google Scholar] [CrossRef]
- Shogenji, K.; Uchiyama, S. On electrical resistivity and hall coefficient of PbTe crystals. J. Phys. Soc. Jpn. 1957, 12, 252–258. [Google Scholar] [CrossRef]
- Allgaier, R.S.; Scanlon, W.W. Mobility of electrons and holes in PbS, PbSe, and PbTe between room temperature and 4.2 °K. Phys. Rev. 1958, 111, 1029–1037. [Google Scholar] [CrossRef]
- Miller, E.; Komarek, K.; Cadoff, I. Interrelation of electronic properties and defect equilibria in PbTe. J. Appl. Phys. 1961, 32, 2457–2465. [Google Scholar] [CrossRef]
- Scanlon, W.W. Precipitation of Te and Pb in PbTe crystals. Phys. Rev. 1962, 126, 509–513. [Google Scholar] [CrossRef]
- Crocker, A.J.; Rogers, L.M. Interpretation of the Hall coefficient, electrical resistivity and Seebeck coefficient of p-type lead telluride. Br. J. Appl. Phys. 1967, 18, 563–573. [Google Scholar] [CrossRef]
- Das, V.D.; Bhat, K.S. Anomalous temperature dependence of thermoelectric power of PbTe thin films. J. Appl. Phys. 1983, 54, 6641. [Google Scholar] [CrossRef]
- Heremans, J.P.; Thrush, C.M.; Morelli, D.T. Thermopower enhancement in lead telluride nanostructures. Phys. Rev. B 2004, 70, 115334. [Google Scholar] [CrossRef]
- Martin, J.; Wang, L.; Chen, L.; Nolas, G.S. Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites. Phys. Rev. B 2009, 79, 115311. [Google Scholar] [CrossRef]
- Bagiyeva, G.Z.; Mustafayev, N.B.; Abdinova, G.D.; Abdinov, D.S. Electrical properties of PbTe single crystals with excess tellurium. Semiconductors 2011, 45, 1391–1394. [Google Scholar] [CrossRef]
- Rawat, P.K.; Paul, B.; Banerji, P. Lead telluride based thermoelectrics: Approaches for higher efficiency. In Materials and Processes for Energy: Communicating Current Research and Technological Developments; Formatex Research Center: Badajoz, Spain, 2013; Volume 1, pp. 840–851. [Google Scholar]
- Wright, D.A. Materials for direct-conversion thermoelectric generators. Metallurg. Rev. 1970, 15, 147–160. [Google Scholar]
- Popescu, A.; Woods, L.M.; Martin, J.; Nolas, G.S. Model of transport properties of thermoelectric nanocomposite materials. Phys. Rev. B 2009, 79, 205302. [Google Scholar] [CrossRef]
Ref. | Year | Grain Size | S (µV K−1) | σ (S cm−1) | PF (µW K−2 m−1) | κ (W m−1 K−1) | p (1019 cm−3) | µ (cm2 V−1 s−1) |
---|---|---|---|---|---|---|---|---|
[74] | 1957 | – | – | 25 | – | – | – | 500 |
[75] | 1958 | – | – | 329 | – | – | 0.302 | 724 |
[76] | 1961 | – | 260 | 40 | – | – | – | 560 |
[70] | 1961 | – | – | – | – | – | 0.0048–1.67 | – |
[77] | 1962 | – | 440 | 17.2 | 333 | – | 0.015 | 715 |
– | 420 | 24.4 | 430 | – | 0.019 | 790 | ||
– | 370 | 38.5 | 527 | – | 0.033 | 730 | ||
– | 340 | 52.6 | 608 | – | 0.048 | 690 | ||
– | 290 | 109.9 | 924 | – | 0.100 | 680 | ||
[78] | 1967 | – | 400 | 62 | 992 | – | 0.043 | 900 |
[69] | 1973 | – | – | – | – | 0.4–0.8 | – | |
[79] | 1983 | – | 350–470 | – | – | – | – | – |
[68] | 1988 | – | – | – | – | 0.2–1.2 | – | |
[80] | 2004 | ≥60 nm | 406 | – | – | – | 0.038 | – |
44 nm | 456 | – | – | – | 0.046 | – | ||
42 nm | 508 | 6.7 | 173 | – | 0.021 | – | ||
– | 494 | – | – | – | 0.014 | – | ||
36 nm | 189 | 22.2 | 79 | – | 0.820 | – | ||
– | 174 | – | – | – | 0.760 | – | ||
– | 265 | – | – | – | 0.220 | – | ||
[81] | 2009 | 316 nm | 328 | 40.2 | 432 | 2.2 | 0.095 | – |
396 nm | 324 | 79.4 | 834 | 2.5 | 0.150 | – | ||
[82] | 2011 | – | 180 | 25.1 | 81 | – | – | – |
– | 300 | 52.5 | 473 | – | – | – | ||
[83] | 2013 | – | 330 | 25 | 280 | – | – | – |
– | 315 | 50 | 500 | – | – | – | ||
– | 305 | 83 | 780 | – | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Lim, J.-H.; Lee, K.-H.; Kim, J.; Myung, N.V. Te-Embedded Nanocrystalline PbTe Thick Films: Structure and Thermoelectric Properties Relationship. Coatings 2021, 11, 356. https://doi.org/10.3390/coatings11030356
Wu T, Lim J-H, Lee K-H, Kim J, Myung NV. Te-Embedded Nanocrystalline PbTe Thick Films: Structure and Thermoelectric Properties Relationship. Coatings. 2021; 11(3):356. https://doi.org/10.3390/coatings11030356
Chicago/Turabian StyleWu, Tingjun, Jae-Hong Lim, Kyu-Hwan Lee, Jiwon Kim, and Nosang V. Myung. 2021. "Te-Embedded Nanocrystalline PbTe Thick Films: Structure and Thermoelectric Properties Relationship" Coatings 11, no. 3: 356. https://doi.org/10.3390/coatings11030356
APA StyleWu, T., Lim, J.-H., Lee, K.-H., Kim, J., & Myung, N. V. (2021). Te-Embedded Nanocrystalline PbTe Thick Films: Structure and Thermoelectric Properties Relationship. Coatings, 11(3), 356. https://doi.org/10.3390/coatings11030356