Fatigue Endurance Assessment of DLC Coatings on High-Speed Steels at Ambient and Elevated Temperatures by Repetitive Impact Tests
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Determination of the HSS Substrate Temperature Depended Strength
3.2. Characterization of the Applied DLC Coating’s Mechanical Properties
3.3. DLC Coatings’ Fatigue Endurance after 106 Impacts at Various Temperatures
3.4. Theoretical Explanation of the Attained Experimental Results via FEM Supported Calculations
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Al Mahmud, K.A.H.; Kalam, M.A.; Masjuki, H.H.; Mobarak, H.M.; Zulkifli, N.W.M. An updated overview of diamond-like carbon coating in tribology. Crit. Rev. Solid State Mater. Sci. 2015, 40, 90–118. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Erdemir, A.; Meletis, E.I. An investigation of the relationship between graphitization and frictional behavior of DLC coatings. Surf. Coat. Technol. 1996, 86–87, 564–568. [Google Scholar] [CrossRef]
- Ma, T.-B.; Hu, Y.-Z.; Wang, H. Molecular dynamics simulation of shear-induced graphitization of amorphous carbon films. Carbon 2009, 47, 1953–1957. [Google Scholar] [CrossRef]
- Santiago, J.A.; Fernández-Martínez, I.; Sánchez-López, J.C.; Rojas, T.C.; Wennberg, A.; Bellido-González, V.; Molina-Aldareguia, J.M.; Monclús, M.A.; González-Arrabal, R. Tribomechanical properties of hard Cr-doped DLC coatings deposited by low-frequency HiPIMS. Surf. Coat. Technol. 2020, 382, 124899. [Google Scholar] [CrossRef]
- Johnston, S.V.; Hainsworth, S.V. Effect of DLC coatings on wear in automotive applications. Surf. Eng. 2005, 2, 67–71. [Google Scholar] [CrossRef]
- Bouzakis, K.-D.; Skordaris, G.; Bouzakis, A. Impact test applications in surface engineering for coatings characterization. In Proceedings of the 10th International Congress on Machining, Antalya, Turkey, 7–9 November 2019; pp. 201–207. [Google Scholar]
- Bouzakis, K.-D.; Vidakis, N.; David, K. The concept of an advanced impact tester supported by evaluation software for the fatigue strength characterization of hard layered media. Thin Solid Films 1999, 355–356, 322–329. [Google Scholar] [CrossRef]
- Bouzakis, K.-D.; Michailidis, N.; Skordaris, G.; Bouzakis, E.; Biermann, D.; M’Saoubi, R. Cutting with coated tools: Coating technologies, characterization methods and performance optimization. CIRP Ann. Manuf. Technol. 2012, 61, 703–723. [Google Scholar] [CrossRef]
- Bouzakis, K.-D.; Mirisidis, I.; Michailidis, N.; Lili, E.; Sampris, A.; Erkens, G.; Cremer, R. Wear of Tools Coated with Various PVD Films: Correlation with Impact Test Results by Means of FEM Simulations. Plasma Process. Polym. 2007, 4, 301–310. [Google Scholar] [CrossRef]
- Bouzakis, K.-D.; Batsiolas, M.; Maliaris, G.; Pappa, M.; Bouzakis, E.; Skordaris, G. New methods for characterizing coating properties at ambient and elevated temperatures. Key Eng. Mater. 2010, 438, 107–114. [Google Scholar] [CrossRef]
- Bouzakis, K.-D.; Michailidis, N.; Hadjiyiannis, S.; Skordaris, G.; Erkens, G. Continuous FEM simulation of the nanoindentation: Actual indenter tip geometries, material elastoplastic deformation laws and universal hardness. Z. Metallkd. 2002, 93, 862–869. [Google Scholar] [CrossRef]
- Bouzakis, K.-D.; Michailidis, N.; Hadjiyiannis, S.; Skordaris, G.; Erkens, G. The effect of specimen roughness and indenter tip geometry on the determination accuracy of thin hard coatings stress–strain laws by nanoindentation. Mater. Charact. 2002, 49, 149–156. [Google Scholar] [CrossRef]
- Bouzakis, K.-D.; Michailidis, N. Deviations in determining coatings’ and other materials’ mechanical properties, when considering different indenter tip geometries and calibration procedures. Surf. Coat. Technol. 2007, 202, 1108–1112. [Google Scholar] [CrossRef]
- Bouzakis, K.-D.; Pappa, M.; Maliaris, G.; Michailidis, N. Fast determination of parameters describing manufacturing imperfections and operation wear of nanoindenter tips. Surf. Coat. Technol. 2013, 215, 218–223. [Google Scholar] [CrossRef]
- Zůda, J.; Buršíková, V.; Čech, J.; Sťahel, P. Thermal Stability of Diamond Like Carbon Thin Films Prepared Using Plasma Enhanced Chemical Vapor Deposition. In Proceedings of the 5th International Conference Juniormat ’05, Brno, Czech Republic, 20–21 September 2005; pp. 47–50. [Google Scholar]
- Tallant, D.R.; Parmeter, J.E.; Siegal, M.P.; Simpson, R.L. The thermal stability of diamond-like carbon. Diam. Relat. Mater. 1995, 4, 191–199. [Google Scholar] [CrossRef]
- Buršíková, V.; Navrátil, V.; Zajíčková, L.; Janča, J. Temperature dependence of mechanical properties of DLC/Si protective coatings prepared by PECVD. Mater. Sci. Eng. A 2002, 324, 251–254. [Google Scholar] [CrossRef]
- Bouzakis, K.-D.; Asimakopoulos, A.; Skordaris, G.; Pavlidou, E.; Erkens, G. The inclined impact test: A novel method for the quantification of the adhesion properties of PVD films. Wear 2007, 262, 1471–1478. [Google Scholar] [CrossRef]
- Bouzakis, K.-D.; Charalampous, P.; Skordaris, G.; Dimofte, F.; Ene, N.M.; Ehinger, R.; Gardner, S.; Modrzejewski, B.S.; Fetty, J.R. Fatigue and adhesion characterization of DLC coatings on steel substrates by perpendicular and inclined impact tests. Surf. Coat. Technol. 2015, 275, 207–213. [Google Scholar] [CrossRef]
- Skordaris, G.; Bouzakis, K.-D.; Charalampous, P.; Kotsanis, T.; Bouzakis, E.; Bejjani, R. Bias voltage effect on the mechanical properties, adhesion and milling performance of PVD films on cemented carbide inserts. Wear 2018, 404–405, 50–61. [Google Scholar] [CrossRef]
- Klocke, F. Manufacturing Processes 1; RWTH, Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 107–109. [Google Scholar] [CrossRef] [Green Version]
- Schwan, J.; Ulrich, S.; Roth, H.; Ehrhardt, H.; Silva, S.R.P.; Robertson, J.; Samlenski, R.; Brenn, R. Tetrahedral amorphous carbon films prepared by magnetron sputtering and dc ion plating. J. Appl. Phys. 1996, 79, 1416–1422. [Google Scholar] [CrossRef] [Green Version]
- Schwan, J.; Ulrich, S.; Batori, V.; Ehrhardt, H.; Silva, S.R.P. Raman spectroscopy on amorphous carbon films. J. Appl. Phys. 1996, 80, 440–447. [Google Scholar] [CrossRef] [Green Version]
- Erdemir, A. The role of hydrogen in tribological properties of diamond-like carbon films. Surf. Coat. Technol. 2001, 146–147, 292–297. [Google Scholar] [CrossRef]
- Bouzakis, K.-D.; Maliaris, G.; Makrimallakis, S. Strain rate effect on the fatigue failure of thin PVD coatings: An investigation by a novel impact tester with adjustable repetitive force. Int. J. Fatigue 2012, 44, 89–97. [Google Scholar] [CrossRef]
- Wheeler, J.M.; Gunner, A.G. Analysis of failure modes under nano-impact fatigue of coatings via high-speed sampling. Surf. Coat. Technol. 2013, 232, 264–268. [Google Scholar] [CrossRef]
Case Nr. | Temperature [°C] | Critical Impact Force F [daN] | Maximum Equivalent Stress [GPa] | |
---|---|---|---|---|
Loading | Relaxation | |||
1 | 25 | 180 | 4.28 | 1.68 |
2 | 80 | 80 | 3.84 | 1.02 |
3 | 150 | 42 | 3.48 | 0.66 |
4 | 200 | 25 | 2.88 | 0.48 |
5 | 300 | 3 | 0.88 | 0 |
6 | 350 | 0 | 0 | 0 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouzakis, E. Fatigue Endurance Assessment of DLC Coatings on High-Speed Steels at Ambient and Elevated Temperatures by Repetitive Impact Tests. Coatings 2020, 10, 547. https://doi.org/10.3390/coatings10060547
Bouzakis E. Fatigue Endurance Assessment of DLC Coatings on High-Speed Steels at Ambient and Elevated Temperatures by Repetitive Impact Tests. Coatings. 2020; 10(6):547. https://doi.org/10.3390/coatings10060547
Chicago/Turabian StyleBouzakis, Emmanouil. 2020. "Fatigue Endurance Assessment of DLC Coatings on High-Speed Steels at Ambient and Elevated Temperatures by Repetitive Impact Tests" Coatings 10, no. 6: 547. https://doi.org/10.3390/coatings10060547
APA StyleBouzakis, E. (2020). Fatigue Endurance Assessment of DLC Coatings on High-Speed Steels at Ambient and Elevated Temperatures by Repetitive Impact Tests. Coatings, 10(6), 547. https://doi.org/10.3390/coatings10060547