Influence of Complex SiF62− Ions on the PEO Coatings Formed on Mg–Al6–Zn1 Alloy for Enhanced Wear and Corrosion Protection
Abstract
:1. Introduction
2. Experiment
2.1. PEO Process and Electrolytes
2.2. Coating Characterization
3. Results and Discussion
3.1. Microstructure of Coatings
3.2. Compositional and Phase Analysis
3.3. Mechanical Properties
3.4. Corrosion Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Curran, J.A.; Kalkancı, H.; Magurova, Y.; Clyne, T.W. Mullite-rich plasma electrolytic oxide coatings for thermal barrier applications. Surf. Coat. Technol. 2007, 201, 8683–8687. [Google Scholar] [CrossRef]
- Zeng, D.; Liu, Z.; Bai, S.; Wang, J. Influence of sealing treatment on the corrosion resistance of PEO coated Al–Zn–Mg–Cu alloy in various environments. Coatings 2019, 99, 867. [Google Scholar] [CrossRef] [Green Version]
- Gray, J.E.; Luan, B. Protective coatings onmagnesium and its alloys―A critical review. J. Alloys Compd. 2002, 336, 88–113. [Google Scholar] [CrossRef]
- Rahmati, M.; Raeissi, K.; Toroghinejad, M.R.; Hakimizad, A.; Santamaria, M. Effect of pulse current mode on microstructure, composition and corrosion performance of the coatings produced by plasma electrolytic oxidation on AZ31 Mg alloy. Coatings 2019, 99, 688. [Google Scholar] [CrossRef] [Green Version]
- Bertuccioli, C.; Garzoni, A.; Martini, C.; Morri, A.; Rondelli, G. Plasma electrolytic oxidation (PEO) layers from silicate/phosphate baths on Ti–6Al–4V for biomedical components: Influence of deposition conditions and surface finishing on dry sliding behaviour. Coatings 2019, 99, 614. [Google Scholar] [CrossRef] [Green Version]
- Rehman, Z.U.; Shin, S.H.; Kaseem, M.; Uzair, M.; Koo, B.H. Towards a compact coating formed on Al6061 alloy in phosphate based electrolyte via two-step PEO process and K2ZrF6 additives. Surf. Coat. Technol. 2017, 328, 355–360. [Google Scholar] [CrossRef]
- Wang, S.; Fu, L.; Nai, Z.; Liang, J.; Cao, B. Comparison of corrosion resistance and cytocompatibility of MgO and ZrO2 coatings on AZ31 magnesium alloy formed via plasma electrolytic oxidation. Coatings 2018, 8, 441. [Google Scholar] [CrossRef] [Green Version]
- Rehman, Z.U.; Koo, B.H. Two-Step plasma electrolytic oxidation coatings on AZ91D alloy in a K2ZrF6-Na2SiO3·10H2O based electrolyte solution. Sci. Adv. Mater. 2018, 10, 109–114. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Shin, S.H.; Lim, H.; Koo, B.H. Transformation of plasma electrolytic oxidation coatings from crater to cluster–based structure with increase in DC voltage and the role of ZrO2 nanoparticles. Surf. Coat. Technol. 2017, 311, 383–390. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Koo, B.H. Effect of Na2SiO3·5H2O concentration on the microstructure and corrosion properties of two-step PEO coatings formed on AZ91 alloy. Surf. Coat. Technol. 2017, 317, 117–124. [Google Scholar] [CrossRef]
- Duan, H.; Yan, C.; Wang, F. Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D. Electrochim. Acta 2007, 52, 3785–3793. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Yan, Z.; Wang, H.; Peng, P. Effect of potassium fluoride on structure and corrosion resistance of plasma electrolytic oxidation films formed on AZ31 magnesium alloy. J. Alloys Compd. 2009, 480, 469–474. [Google Scholar] [CrossRef]
- Barchiche, C.E.; Veys-Renaux, D.; Rocca, E. A better understanding of PEO on Mg alloys by using a simple galvanostatic electrical regime in a KOH-KF-Na3PO4 electrolyte. Surf. Coat. Technol. 2011, 205, 4243–4248. [Google Scholar] [CrossRef]
- Prescott, H.A.; Zhi-Jian, L.; Kemnitz, E.; Deutschb, J.; Lieske, H. New magnesium oxide fluorides with hydroxyl groups as catalysts for Michael additions. J. Mater. Chem. 2005, 5, 4616–4628. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Uzair, M.; Lim, H.T.; Koo, B.H. Structural and electrochemical properties of the catalytic CeO2 nanoparticles-based PEO ceramic coatings on AZ91 Mg alloy. J. Alloys Compd. 2017, 726, 284–294. [Google Scholar] [CrossRef]
- Mu, W.; Han, Y. Characterization and properties of the MgF2/ZrO2 composite coatings on magnesium prepared by micro-arc oxidation. Surf. Coat. Technol. 2008, 202, 4278–4284. [Google Scholar] [CrossRef]
- Liang, J.; Srinivasan, P.B.; Blawert, C.; Dietzel, W. Comparison of electrochemical corrosion behaviour of MgO and ZrO2 coatings on AM50 magnesium alloy formed by plasma electrolytic oxidation. Corros. Sci. 2009, 51, 2483–2492. [Google Scholar] [CrossRef] [Green Version]
- Rehman, Z.U.; Choi, D. Investigation of ZrO2 nanoparticles concentration and processing time effect on the localized PEO coatings formed on AZ91 alloy. J. Magnes. Alloys. 2019, 7, 555–565. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Koo, B.H. Combined effect of long processing time and Na2SiF6 on the properties of PEO coatings formed on AZ91D. J. Mater. Eng. Perform. 2016, 25, 3531–3537. [Google Scholar] [CrossRef]
- Kaseem, M.; Choi, K.; Ko, Y.G. A highly compact coating responsible for enhancing corrosion properties of Al–Mg–Si alloy. Mater. Lett. 2017, 196, 316–319. [Google Scholar] [CrossRef]
- Zhang, R.F.; Zhang, S.F.; Xiang, J.H.; Zhang, L.H.; Zhang, Y.Q.; Guo, S.B. Influence of sodium silicate concentration on properties of micro arc oxidation coatings formed onAZ91HP magnesium alloys. Surf. Coat. Technol. 2012, 206, 5072–5079. [Google Scholar] [CrossRef]
- Durdu, S.; Bayramoglu, S.; Demirtas, A.; Usta, M.; Ucisik, A.H. Characterization of AZ31 Mg Alloy coated by plasma electrolytic oxidation. Vacuum 2013, 88, 130–133. [Google Scholar] [CrossRef]
- Williams, J.A. Wear modelling: Analytical, computational and mapping: A continuum mechanics approach. Wear 1999, 225, 1–17. [Google Scholar] [CrossRef]
- Nemcova, A.; Skeldon, P.; Thompson, G.E.; Pacal, B. Effect of fluoride on plasma electrolytic oxidation of AZ61 magnesium alloy. Surf. Coat. Technol. 2013, 232, 827–838. [Google Scholar] [CrossRef]
Sample Codes | N2SiO3 (g/L) | NaOH (g/L) | Na2SiF6 (g/L) | Processing Time (min) |
---|---|---|---|---|
N1 | 12 | 3.5 | 0.1 | 30 |
N2 | – | – | 0.3 | – |
N3 | – | – | 0.5 | – |
N4 | – | – | 0.7 | – |
Samples | βa (V/decade) | βc (V/decade) | Ecorr (V) | Icorr (A/cm2) | Rp (Ω·cm2) |
---|---|---|---|---|---|
AZ61A | 0.09 | 0.19 | −1.31 | 3.06 × 10−4 | 1.5 × 101 |
N1 | 0.37 | 0.18 | −1.35 | 5.70 × 10−4 | 3.82 × 101 |
N2 | 1.01 | 0.68 | −0.28 | 5.80 × 10−7 | 2.04 × 105 |
N3 | 0.88 | 1.59 | −1.28 | 6.40 × 10−5 | 1.77 × 102 |
N4 | 0.84 | 0.64 | −0.85 | 9.21 × 10−6 | 1.72 × 104 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ur Rehman, Z.; Heun Koo, B.; Choi, D. Influence of Complex SiF62− Ions on the PEO Coatings Formed on Mg–Al6–Zn1 Alloy for Enhanced Wear and Corrosion Protection. Coatings 2020, 10, 94. https://doi.org/10.3390/coatings10020094
Ur Rehman Z, Heun Koo B, Choi D. Influence of Complex SiF62− Ions on the PEO Coatings Formed on Mg–Al6–Zn1 Alloy for Enhanced Wear and Corrosion Protection. Coatings. 2020; 10(2):94. https://doi.org/10.3390/coatings10020094
Chicago/Turabian StyleUr Rehman, Zeeshan, Bon Heun Koo, and Dongjin Choi. 2020. "Influence of Complex SiF62− Ions on the PEO Coatings Formed on Mg–Al6–Zn1 Alloy for Enhanced Wear and Corrosion Protection" Coatings 10, no. 2: 94. https://doi.org/10.3390/coatings10020094
APA StyleUr Rehman, Z., Heun Koo, B., & Choi, D. (2020). Influence of Complex SiF62− Ions on the PEO Coatings Formed on Mg–Al6–Zn1 Alloy for Enhanced Wear and Corrosion Protection. Coatings, 10(2), 94. https://doi.org/10.3390/coatings10020094