Characteristics of MgIn2O4 Thin Film Transistors Enhanced by Introducing an MgO Buffer Layer
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, E.M.C.; Barquinha, P.M.C.; Pimentel, A.C.M.B.G.; Gonçalves, A.M.F.; Marques, A.J.S.; Pereira, L.M.N.; Martins, R.F.P. Fully transparent ZnO thin-film transistor produced at room temperature. Adv. Mater. 2005, 17, 590–594. [Google Scholar] [CrossRef]
- Jang, Y.K.; Kyoung, S.S.; Ji, S.J.; Tae, S.K.; Myung, K.R.; Kyung, B.P.; Byung, W.Y.; Jung, W.Y.; Young, G.L.; Kee, C.P.; et al. Bottom-gate gallium indium zinc oxide thin-film transistor array for high-resolution AMOLED display. IEEE Electron. Device Lett. 2008, 29, 1309–1311. [Google Scholar]
- Lee, S.; Arokia, N. Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain. Science 2016, 354, 302–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faber, H.; Das, S.; Lin, Y.H.; Pliatsikas, N.; Zhao, K.; Kehagias, T.; Dimitrakopulos, G.; Amassian, A.; Patsalas, P.A.; Anthopoulos, T.D. Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution. Sci. Adv. 2017, 3, e1602640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Li, X.; Lu, J.; Ye, Z.; Zhang, J.; Zhou, T.; Sun, R.; Chen, L.; Lu, B.; Pan, X. Characterization of amorphous Si-Zn-Sn-O thin films and applications in thin-film transistors. Appl. Phys. Lett. 2013, 103, 082109. [Google Scholar] [CrossRef]
- Noh, J.H.; Ryu, S.Y.; Jo, S.J.; Kim, C.S.; Sohn, S.W.; Rack, P.D.; Kim, D.J.; Baik, H.K. Indium oxide thin-film transistors fabricated by RF sputtering at room temperature. IEEE Electron. Device Lett. 2010, 31, 567–569. [Google Scholar]
- Kim, Y.G.; Kim, T.; Avis, C.; Lee, S.H.; Jang, J. Stable and high-performance indium oxide thin-film transistor by Ga doping. IEEE Trans. Electron. Devices 2016, 63, 1078–1084. [Google Scholar] [CrossRef]
- Luo, Y.R. Comprehensive Handbook of Chemical Bond. Energies; CRC Press: New York, NY, USA, 2007; pp. 9-65–9-70. [Google Scholar]
- Barbalace, K. “Periodic Table of Elements”. Environmental Chemistry.com 2007, 04–14. Available online: https://environmentalchemistry.com/ (accessed on 20 December 2020).
- Koide, H.; Nagao, Y.; Koumoto, K.; Takasaki, Y.; Umemura, T.; Kato, T.; Ikuhara, Y.; Ohta, H. Electric field modulation of thermopower for transparent amorphous oxide thin film transistors. Appl. Phys. Lett. 2010, 97, 182105. [Google Scholar] [CrossRef] [Green Version]
- Luka, G.; Krajewski, T.A.; Witkowski, B.S.; Wisz, G.; Virt, I.S.; Guziewicz, E.; Godlewski, M. Aluminum-doped zinc oxide films grown by atomic layer deposition for transparent electrode applications. J. Mater. Sci. Mater. Electron. 2011, 22, 1810–1815. [Google Scholar] [CrossRef] [Green Version]
- Zhan, R.; Dong, C.; Liu, P.T.; Shieh, H.P.D. Influence of channel layer and passivation layer on the stability of amorphous InGaZnO thin film transistors. Microelectron. Reliab. 2013, 53, 1879–1885. [Google Scholar] [CrossRef]
- Wu, C.H.; Chang, K.M.; Huang, S.H.; Deng, I.C.; Wu, C.J.; Chiang, W.H.; Chang, C.C. Characteristics of IGZO TFT Prepared by Atmospheric Pressure Plasma Jet Using PE-ALD Al2O3 Gate Dielectric. IEEE Electron. Device Lett. 2012, 33, 552–554. [Google Scholar] [CrossRef]
- Liu, G.X.; Liu, A.; Shan, F.K.; Meng, Y.; Shin, B.C.; Fortunato, E.; Martins, R. High-performance fully amorphous bilayer metal-oxide thin film transistors using ultra-thin solution-processed ZrOx dielectric. Appl. Phys. Lett. 2014, 105, 113509. [Google Scholar] [CrossRef]
- Na, S.Y.; Kim, Y.M.; Yoon, D.J.; Yoon, S.M. Improvement in negative bias illumination stress stability of In-Ga-Zn-O thin film transistors using HfO2 gate insulators by controlling atomic-layer-deposition conditions. J. Phys. D Appl. Phys. 2017, 50, 495109. [Google Scholar] [CrossRef]
- Jiang, G.; Liu, A.; Liu, G.; Zhu, C.; Meng, Y.; Shin, B.; Fortunato, E.; Martins, R.; Shan, F. Solution-processed high-κ magnesium oxide dielectrics for low-voltage oxide thin-film transistors. Appl. Phys. Lett. 2016, 109, 183508. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, H.S.; Kim, S.H.; Jang, N.W.; Yun, Y. Characterization of magnesium oxide gate insulators grown using RF sputtering for ZnO thin-film transistors. Curr. Appl. Phys. 2014, 14, 794–797. [Google Scholar] [CrossRef]
- Huang, H.Q.; Liu, F.J.; Sun, J.; Zhao, J.W.; Hu, Z.F.; Li, Z.J.; Zhang, X.Q.; Wang, Y.S. Effect of MgO buffer layer thickness on the electrical properties of MgZnO thin film transistors fabricated by plasma assisted molecular beam epitaxy. Appl. Surf. Sci. 2011, 257, 10721–10724. [Google Scholar] [CrossRef]
- Dai, S.; Wang, T.; Li, R.; Wang, Q.; Ma, Y.; Tian, L.; Su, J.; Wang, Y.; Zhou, D.; Zhang, X.; et al. Preparation and electrical properties of N-doped ZnSnO thin film transistors. J. Alloys Compd. 2018, 745, 256–261. [Google Scholar] [CrossRef]
- Dali, S.E.; Chockalingam, M.J. Combustion synthesis of magnesium indate, MgIn2O4. Mater. Chem. Phys. 2001, 70, 73–77. [Google Scholar] [CrossRef]
- Jeon, H.J.; Maeng, W.J.; Park, J.S. Effect of Al concentration on the electrical characteristics of solution-processed Al doped ZnSnO thin film transistors. Ceram. Int. 2014, 40, 8769–8774. [Google Scholar] [CrossRef]
- Lee, K.H.; Ok, K.C.; Kim, H.; Park, J.S. The influence of oxygen partial pressure on the performance and stability of Ge-doped InGaO thin film transistors. Ceram. Int. 2014, 40, 3215–3220. [Google Scholar] [CrossRef]
- Liu, L.C.; Chen, J.S.; Jeng, J.S. Role of oxygen vacancies on the bias illumination stress stability of solution-processed zinc tin oxide thin film transistors. Appl. Phys. Lett. 2014, 105, 023509. [Google Scholar] [CrossRef]
- Li, J.; Huang, C.X.; Zhang, J.H.; Zhu, W.Q.; Jiang, X.Y.; Zhang, Z.L. Characterization of novel BaZnSnO thin films by solution process and applications in thin film transistors. Mater. Res. Bull. 2015, 68, 22–26. [Google Scholar] [CrossRef]
- Choi, S.; Kim, J.Y.; Kang, H.; Ko, D.; Rhee, J.; Choi, S.J.; Kim, D.M.; Kim, D.H. Effect of oxygen content on current stress-induced instability in bottom-gate amorphous InGaZnO thin-film transistors. Materials 2019, 12, 3149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, J.; Xu, N.; Deng, S.; Chen, J.; She, J.; Shieh, H.P.D.; Liu, P.T.; Haung, Y.P. Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy. IEEE Trans. Electron. Devices 2011, 58, 1121–1126. [Google Scholar]
- Lu, H.; Bi, X.; Zhang, S.; Zhou, H. Ultraviolet detecting properties of amorphous MgInO thin film phototransistors. Semicond. Sci. Technol. 2015, 30, 125010. [Google Scholar] [CrossRef]
- Lu, H.; Zhou, X.; Liang, T.; Zhang, L.; Zhang, S. Oxide thin-film transistors with IMO and IGZO stacked active layers for UV detection. IEEE J. Electron. Devices Soc. 2017, 5, 504–508. [Google Scholar] [CrossRef]
- Chen, A.H.; Cao, H.T.; Zhang, H.Z.; Liang, L.Y.; Liu, Z.M.; Yu, Z.; Wan, Q. Influence of the channel layer thickness on electrical properties of indium zinc oxide thin-film transistor. Microelectron. Eng. 2010, 87, 2019–2023. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, J.; Meng, T.; Qu, M.; Zhang, Q. Influence of channel layer thickness on the stability of amorphous indium zinc oxide thin film transistors. Mater. Lett. 2016, 166, 46–50. [Google Scholar] [CrossRef]
Element | MIO without MgO Layer | MIO with 5 nm MgO | MgO Buffer Layer |
---|---|---|---|
Mg | 11.39% | 11.44% | 26.84% |
In | 41.84% | 31.44% | N/A |
O | 46.76% | 57.12% | 73.16% |
Mg/In | 0.27 | 0.36 | N/A |
MIO TFT | Oxygen Partial Pressure | MIO Thickness (nm) | VT (V) | μE (cm2/V∙s) | On/Off Ratio | SS (V/dec) | Nit (cm−2) |
---|---|---|---|---|---|---|---|
T1 | 0% | 50 | 0.97 | 0.34 | 1.49 × 103 | 1.01 | 1.72 × 1012 |
T2 | 2% | 50 | 1.15 | 0.29 | 8.06 × 103 | 0.77 | 1.28 × 1012 |
T3 | 4% | 50 | 2.34 | 0.02 | 3.35 × 103 | 0.70 | 1.17 × 1012 |
T4 | 2% | 30 | 1.54 | 0.23 | 5.88 × 104 | 0.61 | N/A |
T5 | 2% | 20 | 1.69 | 0.23 | 2.15 × 104 | 0.59 | N/A |
T6 | 2% | 10 | 2.52 | 0.06 | 1.52 × 104 | 0.46 | N/A |
MgO Thickness (nm) | VT (V) | μE (cm2/V∙s) | On/Off Ratio | SS (V/dec) | Nit (cm−2) |
---|---|---|---|---|---|
0 | 0.97 | 0.34 | 1.49 × 103 | 1.01 | 1.72 × 1012 |
5 | 2.01 | 4.81 | 9.68 × 103 | 0.76 | 1.27 × 1012 |
10 | 3.06 | 3.32 | 2.58 × 103 | 0.69 | 1.14 × 1012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.-D.; Chang, S.-P.; Huang, W.-L. Characteristics of MgIn2O4 Thin Film Transistors Enhanced by Introducing an MgO Buffer Layer. Coatings 2020, 10, 1261. https://doi.org/10.3390/coatings10121261
Chen W-D, Chang S-P, Huang W-L. Characteristics of MgIn2O4 Thin Film Transistors Enhanced by Introducing an MgO Buffer Layer. Coatings. 2020; 10(12):1261. https://doi.org/10.3390/coatings10121261
Chicago/Turabian StyleChen, Wei-De, Sheng-Po Chang, and Wei-Lun Huang. 2020. "Characteristics of MgIn2O4 Thin Film Transistors Enhanced by Introducing an MgO Buffer Layer" Coatings 10, no. 12: 1261. https://doi.org/10.3390/coatings10121261
APA StyleChen, W.-D., Chang, S.-P., & Huang, W.-L. (2020). Characteristics of MgIn2O4 Thin Film Transistors Enhanced by Introducing an MgO Buffer Layer. Coatings, 10(12), 1261. https://doi.org/10.3390/coatings10121261