Influence of Plasma Electrolytic Oxidation on Fatigue Behaviour of ZK60A-T5 Magnesium Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure
3.2. Mechanical Behaviour
3.3. Fracture Surfaces Analysis
4. Conclusions
- The microstructure of the alloy was partially recrystallized, with zones of fine equiaxed grains mixed with un-recrystallized dendrites, the latter characterized by a higher amount of Zr than the recrystallized ones.
- The PEO coating was uniform but with the typical micro-defective structure of these layers such as pores, microcracks, and microchannels.
- The PEO-treatment induced a fatigue strength reduction in the range of 14–17% at 107 cycles compared to the literature data for the untreated alloy.
- The fatigue strength reduction is probably mainly related to the intrinsic defectiveness of the PEO and the residual tensile stresses generated during the treatment. These induce PEO layer fragmentation during cyclic loading, facilitating the formation of fatigue crack nucleation sites.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, Z.M.; Wang, Q.G.; Luo, A.A.; Peng, L.M.; Fu, P.H.; Wang, Y.X. Improved high cycle fatigue properties of a new magnesium alloy. Mater. Sci. Eng. A 2013, 582, 170–177. [Google Scholar] [CrossRef]
- Friedrich, H.; Schumann, S. Research for a “new age of magnesium” in the automotive industry. J. Mater. Process. Technol. 2001, 117, 276–281. [Google Scholar] [CrossRef]
- Pantelakis, S.G.; Alexopoulos, N.D.; Chamos, S.N. Mechanical performance evaluation of cast magnesium alloys for automotive and aeronautical applications. J. Eng. Mater. Technol. 2007, 129, 422–430. [Google Scholar] [CrossRef]
- Karparvarfard, S.M.H.; Shaha, S.K.; Behravesh, S.B.; Jahed, H.; Williams, B.W. Microstructure, texture and mechanical behavior characterization of hot forged cast ZK60 magnesium alloy. J. Mater. Sci. Technol. 2017, 33, 907–918. [Google Scholar] [CrossRef]
- Robson, J.D.; Paa-Rai, C. The interaction of grain refinement and ageing in magnesium–zinc–zirconium (ZK) alloys. Acta Mater. 2015, 95, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, Q.; Luo, A.A.; Fu, P.; Peng, L. Fatigue strength dependence on the ultimate tensile strength and hardness in magnesium alloys. Int. J. Fatigue 2015, 80, 468–476. [Google Scholar] [CrossRef]
- Vasilev, E.; Linderov, M.; Nugmanov, D.; Sitdikov, O.; Markushev, M.; Vinogradov, A. Fatigue performance of Mg–Zn–Zr alloy processed by hot severe plastic deformation. Metals 2015, 5, 2316–2327. [Google Scholar] [CrossRef] [Green Version]
- Karparvarfard, S.M.H.; Shaha, S.K.; Behravesh, S.B.; Jahed, H.; Williams, B.W. Fatigue characteristics and modeling of cast and cast-forged ZK60 magnesium alloy. J. Mater. Sci. Technol. 2019, 118, 282–297. [Google Scholar] [CrossRef]
- Yang, F.; Yin, S.M.; Li, S.X.; Zhang, Z.F. Crack initiation mechanism of extruded AZ31 magnesium alloy in the very high cycle fatigue regime. Mater. Sci. Eng. A 2008, 491, 131–136. [Google Scholar] [CrossRef]
- Yerokhin, A.L.; Shatrov, A.; Samsonov, V.; Shashkov, P.; Leyland, A.; Matthews, A. Fatigue properties of keronite coatings on a magnesium alloy. Surf. Coat. Technol. 2004, 182, 78–84. [Google Scholar] [CrossRef]
- Khan, S.A.; Miyashita, Y.; Mutoh, Y.; Koike, T. Effect of anodized layer thickness on fatigue behavior of magnesium alloy. Mater. Sci. Eng. A 2008, 474, 261–269. [Google Scholar] [CrossRef]
- Nemcova, A.; Skeldon, P.; Thompson, G.E.; Morse, S.; Cizek, J.; Pacal, B. Influence of plasma electrolytic oxidation on fatigue performance of AZ61 magnesium alloy. Corros. Sci. 2014, 82, 58–66. [Google Scholar] [CrossRef]
- Blawert, C.; Bala, P. Plasma electrolytic oxidation treatment of magnesium alloy. In Surface Engineering of Light Alloys; Dong, H., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2010; pp. 155–183. [Google Scholar]
- Ceschini, L.; Morri, A.; Angelini, V.; Messieri, S. Fatigue behavior of the rare earth rich EV31A Mg alloy: Influence of plasma electrolytic oxidation. Metals 2017, 7, 212. [Google Scholar] [CrossRef]
- Yerokhin, A.L.; Nie, X.; Leyland, A.; Matthews, A.; Dowey, S.J. Plasma electrolysis for surface engineering. Surf. Coat. Technol. 1999, 122, 73–93. [Google Scholar] [CrossRef]
- Chen, H.; Kang, S.B.; Yu, H.; Cho, J.; Kim, H.W.; Min, G. Effect of heat treatment on microstructure and mechanical properties of twin roll cast and sequential warm rolled ZK60 alloy sheets. J. Alloy Compd. 2009, 476, 324–328. [Google Scholar] [CrossRef]
- Whalen, S.; Overman, N.; Joshi, V.; Varga, T.; Graff, D.; Lavender, C. Magnesium alloy ZK60 tubing made by shear assisted processing and extrusion (ShAPE). Mater. Sci. Eng. A 2019, 755, 278–288. [Google Scholar] [CrossRef]
- Gao, X.; Nie, J.F. Characterization of strengthening precipitate phases in a Mg–Zn alloy. Scr. Mater. 2007, 56, 645–648. [Google Scholar] [CrossRef]
- Volkova, E.F. Microstructural and mechanical characterization of magnesium based alloy MA14 (ZK60 A): Evolution under deformation and heat treatment. WIT Trans. Built Environ. 2014, 137, 17–23. [Google Scholar]
- Sun, M.; Easton, M.A.; StJohn, D.H.; Wu, G.; Abbott, T.B.; Ding, W. Grain refinement of magnesium alloys by Mg–Zr Master Alloys: The role of alloy chemistry and Zr particle number density. Adv. Eng. Mater. 2013, 15, 373–378. [Google Scholar] [CrossRef]
- ASTM B91-17, Standard Specification for Magnesium-Alloy Forgings; ASTM International: West Conshohocken, PA, USA, 2017; Available online: http://www.astm.org/cgi-bin/resolver.cgi?B91 (accessed on 3 April 2020).
- ASTM B661-12, Standard Practice for Heat Treatment of Magnesium Alloys; ASTM International: West Conshohocken, PA, USA, 2012; pp. 1–5. Available online: http://www.astm.org/cgi-bin/resolver.cgi?B661-12 (accessed on 3 April 2020).
- ISO 6506-1:2014 Metallic Materials–Brinell Hardness Test–Part 1: Test Method; International Organization for Standardization: Brussels, Belgium, 2014; Available online: https://www.iso.org/obp/ui/#iso:std:iso:6506:-1:ed-3:v1:en (accessed on 22 March 2020).
- ISO 1143:2010 Metallic Materials–Rotating Bar Bending Fatigue Testing; International Organization for Standardization: Brussels, Belgium, 2010; Available online: https://www.iso.org/obp/ui/#iso:std:41875:en (accessed on 9 January 2020).
- ISO 12107:2012 Metallic Materials–Fatigue Testing–Statistical Planning and Analysis of Data; International Organization for Standardization: Brussels, Belgium, 2012. Available online: https://www.iso.org/obp/ui/#iso:std:iso:12107:ed-2:v1:en (accessed on 9 January 2020).
- Wang, C.Y.; Wang, X.J.; Chang, H.; Wu, K.; Zheng, M.Y. Processing maps for hot working of ZK60 magnesium alloy. Mater. Sci. Eng. A 2007, 464, 52–58. [Google Scholar] [CrossRef]
- Jamali, A.; Mahmudi, R. Evolution of microstructure, texture, and mechanical properties in a multidirectionally forged ZK60 Mg alloy. Mater. Sci. Eng. A 2019, 752, 55–62. [Google Scholar] [CrossRef]
- Hadadzadeh, A.; Mokdad, F.; Shalchi Amirkhiz, B.; Wells, M.A.; Williams, B.W.; Chen, D.L. Bimodal grain microstructure development during hot compression of a cast-homogenized Mg–Zn–Zr alloy. Mater. Sci. Eng. A 2018, 724, 421–430. [Google Scholar] [CrossRef]
- Ohishi, K.; Mendis, C.L.; Homm, T.; Kamado, S.; Ohkubo, T.; Hono, K. Bimodally grained microstructure development during hot extrusion of Mg–2.4 Zn–0.1 Ag–0.1 Ca–0.16 Zr (at.%) alloys. Acta Mater. 2009, 57, 5593–5604. [Google Scholar] [CrossRef]
- Arrabal, R.; Matykina, E.; Hashimoto, T.; Skeldon, P.; Thompson, G.E. Characterization of AC PEO coatings on magnesium alloys. Surf. Coat. Technol. 2009, 203, 2207–2220. [Google Scholar] [CrossRef]
- Ko, Y.G.; Namgung, S.; Shin, D.H. Correlation between KOH concentration and surface properties of AZ91 magnesium alloy coated by plasma electrolytic oxidation. Surf. Coat. Technol. 2010, 205, 2525–2531. [Google Scholar] [CrossRef]
- Gao, Y.; Yerokhin, A.; Parfenov, E.; Matthews, A. Application of Voltage Pulse Transient Analysis during Plasma Electrolytic Oxidation for Assessment of Characteristics and Corrosion Behaviour of Ca- and P-containing Coatings on Magnesium. Electrochim. Acta 2014, 149, 218–230. [Google Scholar] [CrossRef]
- ASTM E140-12b. Standard Hardness Conversion Tables for Metals Relationship among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, and Scleroscope Hardness; ASTM International: West Conshohocken, PA, USA, 2002; pp. 1–25. Available online: http://www.astm.org/cgi-bin/resolver.cgi?E140-12b (accessed on 18 May 2020).
- Shiozawa, K. Databook on Fatigue Strength of Metallic Materials; Elsevier: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Sachs, N.W. Understanding the surface features of fatigue fractures: How they describe the failure cause and the failure history. J. Fail. Anal. Prev. 2005, 5, 11–15. [Google Scholar] [CrossRef]
- Becker, W.T.; Shipley, R.J. ASM Handbook: Failure Analysis and Prevention; ASM International: Materials Park, OH, USA, 2002; Volume 11, pp. 559–586. [Google Scholar]
Zn | Zr | Other | Mg |
---|---|---|---|
4.8 ÷ 6.2 | >0.45 | <0.3 | Bal. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morri, A.; Ceschini, L.; Martini, C.; Bernardi, A. Influence of Plasma Electrolytic Oxidation on Fatigue Behaviour of ZK60A-T5 Magnesium Alloy. Coatings 2020, 10, 1180. https://doi.org/10.3390/coatings10121180
Morri A, Ceschini L, Martini C, Bernardi A. Influence of Plasma Electrolytic Oxidation on Fatigue Behaviour of ZK60A-T5 Magnesium Alloy. Coatings. 2020; 10(12):1180. https://doi.org/10.3390/coatings10121180
Chicago/Turabian StyleMorri, Alessandro, Lorella Ceschini, Carla Martini, and Alessandro Bernardi. 2020. "Influence of Plasma Electrolytic Oxidation on Fatigue Behaviour of ZK60A-T5 Magnesium Alloy" Coatings 10, no. 12: 1180. https://doi.org/10.3390/coatings10121180
APA StyleMorri, A., Ceschini, L., Martini, C., & Bernardi, A. (2020). Influence of Plasma Electrolytic Oxidation on Fatigue Behaviour of ZK60A-T5 Magnesium Alloy. Coatings, 10(12), 1180. https://doi.org/10.3390/coatings10121180