Characterization of Dark-Colored Nanoporous Anodic Films on Zinc
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Anodizing Characteristics
3.2. Characterization of the Anodic Films
3.3. Mechanism of Dark Coloring
4. Conclusions
- Dark-colored anodic films were formed at voltages ≤6 V, where the steady-state current density increased with voltages. In contrast, the current density was almost independent of the anodizing voltage at ≥7 V, and colorless anodic films are developed.
- Porous anodic films developed at all the anodizing voltages were examined. The formation efficiency of the anodic films at high voltages was higher than that of the dark-colored anodic films.
- The dark-colored anodic films had a two-layer morphology and contained dispersed metallic zinc nanoparticles with a highly rough metal/film interface. Such a unique morphology is the primary reason for the dark coloring.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Masuda, H.; Fukuda, K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 1995, 268, 1466–1468. [Google Scholar] [CrossRef]
- Kikuchi, T.; Nakajima, D.; Nishinaga, O.; Natsui, S.; Suzuki, R. Porous aluminum oxide formed by anodizing in various electrolyte species. Curr. Nanosci. 2015, 11, 560–571. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, H.; Zhou, X.; Li, K.; Liao, Y.; Liang, Z.; Liu, L. Corrosion behavior of anodized Al-Cu-Li alloy: The role of intermetallic particle-introduced film defects. Corros. Sci. 2019, 158, 11. [Google Scholar] [CrossRef]
- Kikuchi, T.; Takenaga, A.; Natsui, S.; Suzuki, R.O. Advanced hard anodic alumina coatings via etidronic acid anodizing. Surf. Coat. Technol. 2017, 326, 72–78. [Google Scholar] [CrossRef]
- Zwilling, V.; Darque-Ceretti, E.; Boutry-Forveille, A.; David, D.; Perrin, M.Y.; Aucouturier, M. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf. Interface Anal. 1999, 27, 629–637. [Google Scholar] [CrossRef]
- Lee, K.; Mazare, A.; Schmuki, P. One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 2014, 114, 9385–9454. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, D.; Kim, D.; Schmuki, P. TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications. Nano Today 2013, 8, 235–264. [Google Scholar] [CrossRef]
- Habazaki, H.; Konno, Y.; Aoki, Y.; Skeldon, P.; Thompson, G.E. Galvanostatic growth of nanoporous anodic films on iron in ammonium fluoride−ethylene glycol electrolytes with different water contents. J. Phys. Chem. C 2010, 114, 18853–18859. [Google Scholar] [CrossRef]
- Prakasam, H.E.; Varghese, O.K.; Paulose, M.; Mor, G.K.; A Grimes, C. Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization. Nanotechnology 2006, 17, 4285–4291. [Google Scholar] [CrossRef]
- Shahzad, K.; Kowalski, D.; Zhu, C.; Aoki, Y.; Habazaki, H. Ex situ evidence for the role of a fluoride-rich layer switching the growth of nanopores to nanotubes: A Missing Piece of the Anodizing Puzzle. ChemElectroChem 2018, 5, 570. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Su, Z.; Lee, K.; Tsuchiya, H.; Schmuki, P. Self-organized cobalt fluoride nanochannel layers used as a pseudocapacitor material. Chem. Commun. 2014, 50, 7067–7070. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.S.; Kim, J.; Kim, J.S.; Nam, K.; Jo, H.; Son, Y.J.; Kang, J.; Jeong, J.; Choe, H.; Kwon, T.-H.; et al. Electrochemically synthesized mesoscopic nickel oxide films as photocathodes for dye-sensitized solar cells. ACS Appl. Energy Mater. 2018, 1, 4178–4185. [Google Scholar] [CrossRef]
- Chiku, M.; Toda, M.; Higuchi, E.; Inoue, H. NiO layers grown on a Ni substrate by galvanostatic anodization as a positive electrode material for aqueous hybrid capacitors. J. Power Sources 2015, 286, 193–196. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, J.; Choi, J. Understanding of anodization of zinc in an electrolyte containing fluoride ions. Electrochim. Acta 2008, 53, 7941–7945. [Google Scholar] [CrossRef]
- Tsuchiya, H.; Schmuki, P. Thick self-organized porous zirconium oxide formed in H2SO4/NH4F electrolytes. Electrochem. Commun. 2004, 6, 1131–1134. [Google Scholar] [CrossRef]
- Habazaki, H.; Oikawa, Y.; Fushimi, K.; Aoki, Y.; Shimizu, K.; Skeldon, P.; Thompson, G.E. Importance of water content in formation of porous anodic niobium oxide films in hot phosphate-glycerol electrolyte. Electrochim. Acta 2009, 54, 946–951. [Google Scholar] [CrossRef]
- Sieber, I.V.; Schmuki, P. Porous tantalum oxide prepared by electrochemical anodic oxidation. J. Electrochem. Soc. 2005, 152, C639–C644. [Google Scholar] [CrossRef]
- Garcia-Vergara, S.J.; Habazaki, H.; Skeldon, P.; Thompson, G.E. Formation of porous anodic alumina at high current efficiency. Nanotechnology 2007, 18, 415605. [Google Scholar] [CrossRef]
- Skeldon, P.; Thompson, G.E.; Garcia-Vergara, S.J.; Iglesias-Rubianes, L.; Blanco-Pinzon, C.E. A tracer study of porous anodic alumina. Electrochem. Solid-state Lett. 2006, 9, B47–B51. [Google Scholar] [CrossRef]
- Garcia-Vergara, S.; Skeldon, P.; Thompson, G.; Habazaki, H. A flow model of porous anodic film growth on aluminium. Electrochim. Acta 2006, 52, 681–687. [Google Scholar] [CrossRef]
- Garcia-Vergara, S.; Skeldon, P.; Thompson, G.; Habazaki, H. Stress generated porosity in anodic alumina formed in sulphuric acid electrolyte. Corros. Sci. 2007, 49, 3772–3782. [Google Scholar] [CrossRef]
- Houser, J.E.; Hebert, K.R. The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films. Nat. Mater. 2009, 8, 415–420. [Google Scholar] [CrossRef]
- Garcia-Vergara, S.; Skeldon, P.; Thompson, G.; Habakaki, H. Pore development in anodic alumina in sulphuric acid and borax electrolytes. Corros. Sci. 2007, 49, 3696–3704. [Google Scholar] [CrossRef]
- Garcia-Vergara, S.; Skeldon, P.; Thompson, G.; Habakaki, H. Tracer studies of anodic films formed on aluminium in malonic and oxalic acids. Appl. Surf. Sci. 2007, 254, 1534–1542. [Google Scholar] [CrossRef]
- Garcia-Vergara, S.J.; Skeldon, P.; Thompson, G.E.; Habazaki, H. A tracer investigation of chromic acid anodizing of aluminium. Surf. Interface Anal. 2007, 39, 860–864. [Google Scholar] [CrossRef]
- Garcia-Vergara, S.; Skeldon, P.; Thompson, G.; Habazaki, H. Formation of porous anodic alumina in alkaline borate electrolyte. Thin Solid Films 2007, 515, 5418–5423. [Google Scholar] [CrossRef]
- Basu, P.; Bhattacharyya, P.; Saha, N.; Saha, H.; Basu, S. The superior performance of the electrochemically grown ZnO thin films as methane sensor. Sens. Actuators B Chem. 2008, 133, 357–363. [Google Scholar] [CrossRef]
- Basu, P.K.; Saha, N.; Maji, S.; Saha, H.; Basu, S. Nanoporous ZnO thin films deposited by electrochemical anodization: Effect of UV light. J. Mater. Sci. Mater. Electron. 2008, 19, 493–499. [Google Scholar] [CrossRef]
- Basu, P.; Jana, S.K.; Saha, H.; Basu, S. Low temperature methane sensing by electrochemically grown and surface modified ZnO thin films. Sens. Actuators B Chem. 2008, 135, 81–88. [Google Scholar] [CrossRef]
- Ono, S.; Kobayashi, Y.; Asoh, H. Self-Organized and high aspect ratio nanoporous zinc oxide prepared by anodization. ECS Trans. 2019, 13, 183–189. [Google Scholar] [CrossRef]
- Dong, J.; Liu, Z.; Dong, J.; Ariyanti, D.; Niu, Z.; Huang, S.; Zhang, W.; Gao, W. Self-organized ZnO nanorods prepared by anodization of zinc in NaOH electrolyte. RSC Adv. 2016, 6, 72968–72974. [Google Scholar] [CrossRef]
- Kim, S.J.; Choi, J. Self-assembled arrays of ZnO stripes by anodization. Electrochem. Commun. 2008, 10, 175–179. [Google Scholar] [CrossRef]
- Batista-Grau, P.; Sánchez-Tovar, R.; Fernández-Domene, R.; García-Antón, J. Formation of ZnO nanowires by anodization under hydrodynamic conditions for photoelectrochemical water splitting. Surf. Coat. Technol. 2020, 381, 125197. [Google Scholar] [CrossRef]
- Dong, H.; Li, Q.; Virtanen, S. Fabrication of ZnO nanotube layer on Zn and evaluation of corrosion behavior and bioactivity in view of biodegradable applications. Appl. Surf. Sci. 2019, 494, 259–265. [Google Scholar] [CrossRef]
- Zaraska, L.; Mika, K.; Syrek, K.; Sulka, G.D. Formation of ZnO nanowires during anodic oxidation of zinc in bicarbonate electrolytes. J. Electroanal. Chem. 2017, 801, 511–520. [Google Scholar] [CrossRef]
- Zaraska, L.; Mika, K.; Hnida, K.E.; Gajewska, M.; Łojewski, T.; Jaskuła, M.; Sulka, G.D. High aspect-ratio semiconducting ZnO nanowires formed by anodic oxidation of Zn foil and thermal treatment. Mater. Sci. Eng. B 2017, 226, 94–98. [Google Scholar] [CrossRef]
- Mah, C.F.; Beh, K.P.; Yam, F.K.; Hassan, Z. Rapid formation and evolution of anodized-zn nanostructures in NaHCO3 solution. ECS J. Solid State Sci. Technol. 2016, 5, M105–M112. [Google Scholar] [CrossRef]
- Katwal, G.; Paulose, M.; Rusakova, I.A.; Martinez, J.E.; Varghese, O.K. Rapid growth of zinc oxide nanotube–nanowire hybrid architectures and their use in breast cancer-related volatile organics detection. Nano Lett. 2016, 16, 3014–3021. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, K.; Choi, J. Formation of ZnO nanowires during short durations of potentiostatic and galvanostatic anodization. Curr. Appl. Phys. 2013, 13, 1370–1375. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, Q.; Li, Z.; Yu, Y.; Peng, L.-M. Large-scale and rapid synthesis of ultralong zno nanowire films via anodization. J. Phys. Chem. C 2009, 114, 881–889. [Google Scholar] [CrossRef]
- Mika, K.; Socha, R.P.; Nyga, P.; Wiercigroch, E.; Malek, K.; Jarosz, M.; Uchacz, T.; Sulka, G.D.; Zaraska, L. Electrochemical synthesis and characterization of dark nanoporous zinc oxide films. Electrochim. Acta 2019, 305, 349–359. [Google Scholar] [CrossRef]
- Chen, Y.; Schneider, P.; Liu, B.-J.; Borodin, S.; Ren, B.; Erbe, A. Electronic structure and morphology of dark oxides on zinc generated by electrochemical treatment. Phys. Chem. Chem. Phys. 2013, 15, 9812–9822. [Google Scholar] [CrossRef] [PubMed]
- Curioni, M.; Gionfini, T.; Vicenzo, A.; Skeldon, P.; Thompson, G.E. Optimization of anodizing cycles for enhanced performance. Surf. Interface Anal. 2013, 45, 1485–1489. [Google Scholar] [CrossRef]
- Russo, V.; Ghidelli, M.; Gondoni, P.; Casari, C.; Bassi, A.L. Multi-wavelength Raman scattering of nanostructured Al-doped zinc oxide. J. Appl. Phys. 2014, 115, 73508. [Google Scholar] [CrossRef]
- Kshirsagar, S.D.; Shaik, U.P.; Krishna, M.G.; Tewari, S.P.; Mamidipudi, G.K. Photoluminescence study of ZnO nanowires with Zn residue. J. Lumin. 2013, 136, 26–31. [Google Scholar] [CrossRef]
- Zeng, H.; Cai, W.; Cao, B.; Hu, J.; Li, Y.; Liu, P. Surface optical phonon Raman scattering in Zn∕ZnO core-shell structured nanoparticles. Appl. Phys. Lett. 2006, 88, 181905. [Google Scholar] [CrossRef]
- Lee, W.; Ji, R.; Gösele, U.; Nielsch, K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 2006, 5, 741–747. [Google Scholar] [CrossRef]
- Lee, W.; Park, S.-J. Porous Anodic Aluminum Oxide: Anodization and templated synthesis of functional nanostructures. Chem. Rev. 2014, 114, 7487–7556. [Google Scholar] [CrossRef]
- Pringle, J. The anodic oxidation of superimposed metallic layers: Theory. Electrochim. Acta 1980, 25, 1423–1437. [Google Scholar] [CrossRef]
- Mainar, A.R.; Leonet, O.; Bengoechea, M.; Boyano, I.; De Meatza, I.; Kvasha, A.; Guerfi, A.; Blázquez, J.A. Alkaline aqueous electrolytes for secondary zinc-air batteries: An overview. Int. J. Energy Res. 2016, 40, 1032–1049. [Google Scholar] [CrossRef]
Anodizing Voltage (V) | 4 | 5 | 6 | 7 | 8 | 15 |
---|---|---|---|---|---|---|
Crystallite size (nm) | 21 | 19 | 18 | 14 | 15 | 12 |
(002) lattice spacing (nm) | 0.1362 | 0.1361 | 0.1361 | 0.1361 | 0.1361 | 0.1362 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masuda, R.; Kowalski, D.; Kitano, S.; Aoki, Y.; Nozawa, T.; Habazaki, H. Characterization of Dark-Colored Nanoporous Anodic Films on Zinc. Coatings 2020, 10, 1014. https://doi.org/10.3390/coatings10111014
Masuda R, Kowalski D, Kitano S, Aoki Y, Nozawa T, Habazaki H. Characterization of Dark-Colored Nanoporous Anodic Films on Zinc. Coatings. 2020; 10(11):1014. https://doi.org/10.3390/coatings10111014
Chicago/Turabian StyleMasuda, Ryoya, Damian Kowalski, Sho Kitano, Yoshitaka Aoki, Taisuke Nozawa, and Hiroki Habazaki. 2020. "Characterization of Dark-Colored Nanoporous Anodic Films on Zinc" Coatings 10, no. 11: 1014. https://doi.org/10.3390/coatings10111014
APA StyleMasuda, R., Kowalski, D., Kitano, S., Aoki, Y., Nozawa, T., & Habazaki, H. (2020). Characterization of Dark-Colored Nanoporous Anodic Films on Zinc. Coatings, 10(11), 1014. https://doi.org/10.3390/coatings10111014