Micro-Patterning of Magnetron Sputtered Titanium Dioxide Coatings and Their Efficiency for Photocatalytic Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Deposition
2.2. Characterisation of the Coatings
2.3. Photocatalytic Activity Assessment
2.3.1. Methylene Blue Degradation
2.3.2. Stearic Acid Degradation
2.3.3. Oleic Acid Degradation
3. Results
3.1. Coatings Overview
3.2. X-ray Diffraction (XRD) Results
3.3. X-ray Photoelectron Spectroscopy (XPS) Results
3.4. Band Gap Calculation
3.5. Photocatalytic Activity Assessment
3.5.1. Methylene Blue Degradation Test
3.5.2. Stearic Acid Degradation Test
3.5.3. Oleic Acid Degradation Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Malato, S.; Fernández-Ibáñez, P.; Maldonado, M.I.; Blanco, J.; Gernjak, W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today 2009, 147, 1–59. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B: Environ. 2012, 125, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Khataee, A.R.; Fathinia, M. Chapter 11—Recent Advances in Photocatalytic Processes by Nanomaterials. In New and Future Developments in Catalysis; Suib, S.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 267–288. [Google Scholar] [CrossRef]
- Chen, J.; Poon, C.-S. Photocatalytic construction and building materials: From fundamentals to applications. Build. Environ. 2009, 44, 1899–1906. [Google Scholar] [CrossRef]
- Hernandez-Alonso, M.D.; Fresno, F.; Suarez, S.; Coronado, J.M. Development of alternative photocatalysts to TiO2: Challenges and opportunities. Energy Environ. Sci. 2009, 2, 1231–1257. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X. Titanium dioxide photocatalysis: Present situation and future approaches. Comptes Rendus Chim. 2006, 9, 750–760. [Google Scholar] [CrossRef]
- Spasiano, D.; Marotta, R.; Malato, S.; Fernandez-Ibañez, P.; Di Somma, I. Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl. Catal. B: Environ. 2015, 170–171, 90–123. [Google Scholar] [CrossRef]
- ECHA proposes classification of TiO2 as category 2 carcinogen. Addit. Polym. 2017, 2017, 9–10. [CrossRef]
- Wang, Y.; He, Y.; Lai, Q.; Fan, M. Review of the progress in preparing nano TiO2: An important environmental engineering material. J. Environ. Sci. 2014, 26, 2139–2177. [Google Scholar] [CrossRef]
- Curcio, M.S.; Oliveira, M.P.; Waldman, W.R.; Sánchez, B.; Canela, M.C. TiO2 sol-gel for formaldehyde photodegradation using polymeric support: Photocatalysis efficiency versus material stability. Environ. Sci. Pollut. Res. 2015, 22, 800–809. [Google Scholar] [CrossRef]
- Nam, S.H.; Cho, S.J.; Jung, C.K.; Boo, J.H.; Sicha, J.; Herman, D.; Musil, J.; Vlcek, J. Comparison of hydrophilic properties of TiO2 thin films prepared by sol-gel method and reactive magnetron sputtering system. Thin Solid Film. 2011, 519, 6944–6950. [Google Scholar] [CrossRef]
- Zhou, W.; Du, G.; Hu, P.; Li, G.; Wang, D.; Liu, H.; Wang, J.; Boughton, R.I.; Liu, D.; Jiang, H. Nanoheterostructures on TiO2 nanobelts achieved by acid hydrothermal method with enhanced photocatalytic and gas sensitive performance. J. Mater. Chem. 2011, 21, 7937–7945. [Google Scholar] [CrossRef]
- Yang, D.; Liu, H.; Zheng, Z.; Yuan, Y.; Zhao, J.-C.; Waclawik, E.R.; Ke, X.; Zhu, H. An efficient photocatalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals. J. Am. Chem. Soc. 2009, 131, 17885–17893. [Google Scholar] [CrossRef] [PubMed]
- Karches, M.; Morstein, M.; Rudolf von Rohr, P.; Pozzo, R.L.; Giombi, J.L.; Baltanás, M.A. Plasma-CVD-coated glass beads as photocatalyst for water decontamination. Catal. Today 2002, 72, 267–279. [Google Scholar] [CrossRef]
- Dunnill, C.W.H.; Aiken, Z.A.; Pratten, J.; Wilson, M.; Morgan, D.J.; Parkin, I.P. Enhanced photocatalytic activity under visible light in N-doped TiO2 thin films produced by APCVD preparations using t-butylamine as a nitrogen source and their potential for antibacterial films. J. Photochem. Photobiol. A: Chem. 2009, 207, 244–253. [Google Scholar] [CrossRef]
- Kelly, P.J.; West, G.T.; Ratova, M.; Fisher, L.; Ostovarpour, S.; Verran, J. Structural formation and photocatalytic activity of magnetron sputtered titania and doped-titania coatings. Molecules 2014, 19, 16327–16348. [Google Scholar] [CrossRef]
- Ratova, M.; Kelly, P.J.; West, G.T.; Iordanova, I. Enhanced properties of magnetron sputtered photocatalytic coatings via transition metal doping. Surf. Coat. Technol. 2013, 228 (Suppl. 1), S544–S549. [Google Scholar] [CrossRef]
- Marcelino, R.B.P.; Amorim, C.C.; Ratova, M.; Delfour-Peyrethon, B.; Kelly, P. Novel and versatile TiO2 thin films on PET for photocatalytic removal of contaminants of emerging concern from water. Chem. Eng. J. 2019, 370, 1251–1261. [Google Scholar] [CrossRef]
- Boukrouh, S.; Bensaha, R.; Bourgeois, S.; Finot, E.; de Lucas, M.C.M. Reactive direct current magnetron sputtered TiO2 thin films with amorphous to crystalline structures. Thin Solid Film. 2008, 516, 6353–6358. [Google Scholar] [CrossRef]
- Daviosdottir, S.; Shabadi, R.; Galca, A.C.; Andersen, I.H.I.; Dirscherl, K.; Ambat, R. Investigation of DC magnetron-sputtered TiO2 coatings: Effect of coating thickness, structure, and morphology on photocatalytic activity. Appl. Surf. Sci. 2014, 313, 677–686. [Google Scholar] [CrossRef] [Green Version]
- Tavares, C.J.; Vieira, J.; Rebouta, L.; Hungerford, G.; Coutinho, P.; Teixeira, V.; Carneiro, J.O.; Fernandes, A.J. Reactive sputtering deposition of photocatalytic TiO2 thin films on glass substrates. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 2007, 138, 139–143. [Google Scholar] [CrossRef]
- Kelly, P.J.; Arnell, R.D. Magnetron sputtering: A review of recent developments and applications. Vacuum 2000, 56, 159–172. [Google Scholar] [CrossRef]
- Takeda, S.; Suzuki, S.; Odaka, H.; Hosono, H. Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering. Thin Solid Film. 2001, 392, 338–344. [Google Scholar] [CrossRef]
- Letcher, T.M.; Scott, J.L. Materials for a Sustainable Future; RSC Publishing: Cambridge, UK, 2012. [Google Scholar]
- Lin, Z.A.; Lu, W.C.; Wu, C.Y.; Chang, K.S. Facile fabrication and tuning of TiO2 nanoarchitectured morphology using magnetron sputtering and its applications to photocatalysis. Ceram. Int. 2014, 40, 15523–15529. [Google Scholar] [CrossRef]
- Wu, M.-C.; Chih, J.-S.; Huang, W.-K. Bismuth doping effect on TiO2 nanofibres for morphological change and photocatalytic performance. CrystEngComm 2014, 16, 10692–10699. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, M.; Liu, Z.; Tryk, D.A.; Nishimoto, S.; Murakami, T.; Fujishima, A. Superhydrophobic TiO2 surfaces: Preparation, photocatalytic wettability conversion, and superhydrophobic−superhydrophilic patterning. J. Phys. Chem. C 2007, 111, 14521–14529. [Google Scholar] [CrossRef]
- Pyun, M.W.; Kim, E.J.; Yoo, D.-H.; Hahn, S.H. Oblique angle deposition of TiO2 thin films prepared by electron-beam evaporation. Appl. Surf. Sci. 2010, 257, 1149–1153. [Google Scholar] [CrossRef]
- He, Y.P.; Zhang, Z.Y.; Zhao, Y.P. Optical and photocatalytic properties of oblique angle deposited TiO2 nanorod array. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2008, 26, 1350–1358. [Google Scholar] [CrossRef]
- Shang, J.; Li, W.; Zhu, Y. Structure and photocatalytic characteristics of TiO2 film photocatalyst coated on stainless steel webnet. J. Mol. Catal. A: Chem. 2003, 202, 187–195. [Google Scholar] [CrossRef]
- Atobe, M.; Yotsuya, S. Mask Vapor Deposition Method, Mask Vapor Deposition System, Mask, Process for Manufacturing, Mask, Apparatus for Manufacturing Display Panel, Display Panel and Electronic Device. U.S. Patent 20040142108A1, 22 July 2004. [Google Scholar]
- Nichols, R.; Mosier, J. Sputter Deposition Masking and Methods. U.S. Patent 20050006223A1, 13 January 2005. [Google Scholar]
- Demeter, A.; Tiron, V.; Lupu, N.; Stoian, G.; Sirghi, L. Plasma sputtering depositions with colloidal masks for fabrication of nanostructured surfaces with enhanced photocatalytic activity. Nanotechnology 2017, 28, 255302. [Google Scholar] [CrossRef]
- Paz, Y. Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications. Beilstein J. Nanotechnol. 2011, 2, 845–861. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Yang, M.; Zou, S.; Xie, J.; Yang, W. Positive and negative TiO2 micropatterns on organic polymer substrates. J. Am. Chem. Soc. 2007, 129, 1541–1552. [Google Scholar] [CrossRef] [PubMed]
- Klaysri, R.; Ratova, M.; Praserthdam, P.; Kelly, P. Deposition of visible light-active C-doped titania films via magnetron sputtering using CO2 as a source of carbon. Nanomaterials 2017, 7, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Ratova, M.; West, G.T.; Kelly, P.J.; Xia, X.; Gao, Y. Synergistic effect of doping with nitrogen and molybdenum on the photocatalytic properties of thin titania films. Vacuum 2015, 114, 205–212. [Google Scholar] [CrossRef]
- Ratova, M.; Klaysri, R.; Praserthdam, P.; Kelly, P.J. Visible light active photocatalytic C-doped titanium dioxide films deposited via reactive pulsed DC magnetron co-sputtering: Properties and photocatalytic activity. Vacuum 2018, 149, 214–224. [Google Scholar] [CrossRef]
- ISO27448 Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Test Method for Self-Cleaning Performance of Semiconducting Photocatalytic Materials—Measurement of Water Contact Angle; ISO: Geneva, Switzerland, 2009.
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef]
- Evans, P.; Mantke, S.; Mills, A.; Robinson, A.; Sheel, D.W. A comparative study of three techniques for determining photocatalytic activity. J. Photochem. Photobiol. A Chem. 2007, 188, 387–391. [Google Scholar] [CrossRef]
- Mills, A.; McFarlane, M. Current and possible future methods of assessing the activities of photocatalyst films. Catal. Today 2007, 129, 22–28. [Google Scholar] [CrossRef]
- Farahani, N.; Kelly, P.J.; West, G.; Ratova, M.; Hill, C.; Vishnyakov, V. Photocatalytic activity of reactively sputtered and directly sputtered titania coatings. Thin Solid Film. 2011, 520, 1464–1469. [Google Scholar] [CrossRef]
- Ratova, M.; West, G.; Kelly, P. Optimization studies of photocatalytic tungsten-doped titania coatings deposited by reactive magnetron co-sputtering. Coatings 2013, 3, 194–207. [Google Scholar] [CrossRef]
- Friedmann, D.; Mendive, C.; Bahnemann, D. TiO2 for water treatment: Parameters affecting the kinetics and mechanisms of photocatalysis. Appl. Catal. B: Environ. 2010, 99, 398–406. [Google Scholar] [CrossRef]
- Eufinger, K.; Poelman, D.; Poelman, H.; De Gryse, R.; Marin, G.B. Photocatalytic activity of dc magnetron sputter deposited amorphous TiO2 thin films. Appl. Surf. Sci. 2007, 254, 148–152. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Lee, Y.-L.; Lo, Y.-S.; Lin, C.-J.; Wu, C.-H. Thickness-dependent photocatalytic performance of nanocrystalline TiO2 thin films prepared by sol–gel spin coating. Appl. Surf. Sci. 2013, 280, 737–744. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, W.; Huang, F.; Wei, Q. Preparation and photocatalytic activity of TiO2-deposited fabrics. Int. J. Photoenergy 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
Sample ID | Stainless Steel Aperture, mm | Stainless Steel Wire Diameter, mm | Stainless Steel Mesh Open Area, % |
---|---|---|---|
TiO2 | – | – | – |
TiO2-M26 | 0.026 | 0.025 | 37 |
TiO2-M58 | 0.058 | 0.036 | 38 |
TiO2-M77 | 0.077 | 0.050 | 37 |
TiO2-M149 | 0.149 | 0.063 | 49 |
Sample ID | Coating Thickness, nm | Composition, at.% Ti/at.% O | Surface Area S3a, µm2 | Crystal Phase | Crystallite Size, nm | Band Gap, eV |
---|---|---|---|---|---|---|
TiO2 | 600 | 34.6/65.4 | 141.83 | Anatase | 14.6 | 3.20 |
TiO2-M26 | 180 | 35.2/64.8 | 1361.23 | Anatase | 14.7 | 3.21 |
TiO2-M58 | 240 | 32.9/67.1 | 779.51 | Anatase | 14.6 | 3.21 |
TiO2-M77 | 280 | 34.7/65.3 | 740.93 | Anatase | 14.5 | 3.20 |
TiO2-M149 | 480 | 35.0/65.0 | 419.67 | Anatase | 14.6 | 3.20 |
Sample ID | MB Degradation First Order Constant, ka × 10−5, s−1 | MB Removal After 1 h, % | Stearic acid Degradation First Order Constant, ka, A cm−1 h−1 | Oleic Acid Degradation,ΔWCA, ° | OA Degradation-Time to Superhydrophilic State, h (WCA ˂ 10°) |
---|---|---|---|---|---|
TiO2 | 1.39 | 6.3 | 0.069 | 41 | n/a |
TiO2-M26 | 2.40 | 11.4 | 0.206 | 55 | 48 |
TiO2-M58 | 1.91 | 10.2 | 0.142 | 55 | 72 |
TiO2-M77 | 1.71 | 9.5 | 0.104 | 56 | 96 |
TiO2-M149 | 1.47 | 7.2 | 0.087 | 55 | 96 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratova, M.; Sawtell, D.; Kelly, P.J. Micro-Patterning of Magnetron Sputtered Titanium Dioxide Coatings and Their Efficiency for Photocatalytic Applications. Coatings 2020, 10, 68. https://doi.org/10.3390/coatings10010068
Ratova M, Sawtell D, Kelly PJ. Micro-Patterning of Magnetron Sputtered Titanium Dioxide Coatings and Their Efficiency for Photocatalytic Applications. Coatings. 2020; 10(1):68. https://doi.org/10.3390/coatings10010068
Chicago/Turabian StyleRatova, Marina, David Sawtell, and Peter J. Kelly. 2020. "Micro-Patterning of Magnetron Sputtered Titanium Dioxide Coatings and Their Efficiency for Photocatalytic Applications" Coatings 10, no. 1: 68. https://doi.org/10.3390/coatings10010068
APA StyleRatova, M., Sawtell, D., & Kelly, P. J. (2020). Micro-Patterning of Magnetron Sputtered Titanium Dioxide Coatings and Their Efficiency for Photocatalytic Applications. Coatings, 10(1), 68. https://doi.org/10.3390/coatings10010068