Ophthalmic Nanosystems with Antioxidants for the Prevention and Treatment of Eye Diseases
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Pharmacokinetic Aspects of Ophthalmic Drug Administration
3.2. State of the Art in the Formulation of Ophthalmic Nanosystems with Antioxidants
3.3. Preclinical In Vivo and Ex-Vivo Studies with Ophthalmic Nanosystems with Antioxidants
3.4. Mechanisms of Action of Antioxidants Entrapped in Nanosystems with Ophthalmic Application
3.4.1. Baicalin
3.4.2. Cerium
3.4.3. Curcumin
3.4.4. Epigallocatechin Gallate (EGCG)
3.4.5. Lutein
3.4.6. Resveratrol
3.4.7. Silver
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Blindness and Vision Impairment. Available online: https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment (accessed on 8 October 2019).
- Contin, M.A.; Arietti, M.M.; Benedetto, M.M.; Bussi, C.; Guido, M.E. Photoreceptor damage induced by low-intensity light: Model of retinal degeneration in mammals. Mol. Vis. 2013, 19, 1614–1625. [Google Scholar] [PubMed]
- Kuse, Y.; Ogawa, K.; Tsuruma, K.; Shimazawa, M.; Hara, H. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light. Sci. Rep. 2014, 4, 5223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaadane, I.; Boulenguez, P.; Chahory, S.; Carre, S.; Savoldelli, M.; Jonet, L.; Behar-Cohen, F.; Martinsons, C.; Torriglia, A. Retinal damage induced by commercial light emitting diodes (LEDs). Free Radic. Biol. Med. 2015, 84, 373–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaadane, I.; Villalpando Rodriguez, G.E.; Boulenguez, P.; Chahory, S.; Carre, S.; Savoldelli, M.; Jonet, L.; Behar-Cohen, F.; Martinsons, C.; Torriglia, A. Effects of white light-emitting diode (LED) exposure on retinal pigment epithelium in vivo. J. Cell. Mol. Med. 2017, 21, 3453–3466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowluru, R.A.; Chan, P.-S. Oxidative stress and diabetic retinopathy. Exp. Diabetes Res. 2007, 2007, 43603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DaSilva, S.B.; Borges, S.; Ramos, O.; Pintado, M.; Ferreira, D.; Sarmento, B. Treating retinopathies-nanotechnology as a tool in protecting antioxidants agents. In Systems Biology of Free Radicals and Antioxidants; Laher, I., Ed.; Springer Verlag: Berlin/Heidelberg, Germany, 2014; pp. 3539–3555. [Google Scholar]
- Brandstetter, C.; Mohr, L.K.M.; Latz, E.; Holz, F.G. Light induces NLRP3 inflammasome activation in retinal pigment epithelial cells via lipofuscin-mediated photooxidative damage. J. Mol. Med. 2015, 93, 905–916. [Google Scholar] [CrossRef] [Green Version]
- Sparrow, J.R.; Fishkin, N.; Zhou, J.; Cai, B.; Jang, Y.P.; Krane, S.; Itagaki, Y.; Nakanishi, K. A2E, a byproduct of the visual cycle. Vis. Res. 2003, 43, 2983–2990. [Google Scholar] [CrossRef] [Green Version]
- Wihlmark, U.; Wrigstad, A.; Roberg, K.; Nilsson, S.E.; Brunk, U.T. Lipofuscin accumulation in cultured retinal pigment epithelial cells causes enhanced sensitivity to blue light irradiation. Free Radic. Biol. Med. 1997, 22, 1229–1234. [Google Scholar] [CrossRef]
- Marie, M.; Bigot, K.; Angebault, C.; Barrau, C.; Gondouin, P.; Pagan, D.; Fouquet, S.; Villette, T.; Sahel, J.-A.; Lenaers, G.; et al. Light action spectrum on oxidative stress and mitochondrial damage in A2E-loaded retinal pigment epithelium cells. Cell Death Dis. 2018, 9, 287. [Google Scholar] [CrossRef]
- Janagam, D.R.; Wu, L.; Lowe, T.L. Nanoparticles for drug delivery to the anterior segment of the eye. Adv. Drug Deliv. Rev. 2017, 122, 31–64. [Google Scholar] [CrossRef]
- Bisht, R.; Mandal, A.; Jaiswal, J.K.; Rupenthal, I.D. Nanocarrier mediated retinal drug delivery: Overcoming ocular barriers to treat posterior eye diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, e1473. [Google Scholar] [CrossRef] [PubMed]
- Cunha-Vaz, J.G. The blood-ocular barriers: Past, present and future. Doc. Ophthalmol. 1997, 93, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Del Amo, E.M.; Rimpela, A.-K.; Heikkinen, E.; Kari, O.K.; Ramsay, E.; Lajunen, T.; Schmitt, M.; Pelkonen, L.; Bhattacharya, M.; Richardson, D.; et al. Pharmacokinetic aspects of retinal drug delivery. Prog. Retin. Eye Res. 2017, 57, 134–185. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.; Liu, J.; Jin, S.; Guo, W.; Liang, X.; Hu, Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm. Sin. B 2017, 7, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Immordino, M.L.; Dosio, F.; Cattel, L. Stealth liposomes: Review of the basic science, rationale and clinical applications, existing and potential. Int. J. Nanomed. 2006, 1, 297–315. [Google Scholar]
- Wang, F.; Wang, Y.; Zhang, X.; Zhang, W.; Guo, S.; Jin, F. Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. J. Control. Release 2014, 174, 126–136. [Google Scholar] [CrossRef]
- Sahel, D.K.; Mittal, A.; Chitkara, D. CRISPR/Cas system for genome editing progress and prospects as a therapeutic tool. J. Pharmacol. Exp. Ther. 2019, 370, 725–735. [Google Scholar] [CrossRef]
- Ni, D.; Jiang, D.; Valdovinos, H.F.; Ehlerding, E.B.; Yu, B.; Barnhart, T.E.; Huang, P.; Cai, W. Bioresponsive polyoxometalate cluster for redox-activated photoacoustic imaging-guided photothermal cancer therapy. Nano Lett. 2017, 17, 3282–3289. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Jiang, D.; Ehlerding, E.B.; Rosenkrans, Z.T.; Engle, J.W.; Wang, Y.; Liu, H.; Ni, D.; Cai, W. Intrathecal administration of nanoclusters for protecting neurons against oxidative stress in cerebral ischemia/reperfusion injury. ACS Nano 2019, 13, 13382–13389. [Google Scholar] [CrossRef]
- Choi, H.W.; Kim, J.; Kim, J.; Kim, Y.; Song, H.B.; Kim, J.H.; Kim, K.; Kim, W.J. Light-induced acid generation on a gatekeeper for smart nitric oxide delivery. ACS Nano 2016, 10, 4199–4208. [Google Scholar] [CrossRef]
- Jeong, H.; Park, J.-H.; Shin, J.H.; Yoo, J.-C.; Park, C.Y.; Hong, J.P. Prolonged release period of nitric oxide gas for treatment of bacterial keratitis by amine-rich polymer decoration of nanoparticles. Chem. Mater. 2018, 30, 8528–8537. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, Y.; Li, X.; Zhang, G.; Zhang, G.; Hu, J. Light-triggered nitric oxide (NO) release from photoresponsive polymersomes for corneal wound healing. Chem. Sci. 2020, 11, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Giri, T.K.; Choudhary, C.; Ajazuddin, A.; Hemant, B.; Dulal, K.T. Prospects of pharmaceuticals and biopharmaceuticals loaded microparticles prepared by double emulsion technique for controlled delivery. Saudi Pharm. J. 2013, 21, 125–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvo, P.; Alonso, M.J.; Vila-Jato, J.L.; Robinson, J.R. Improved ocular bioavailability of indomethacin by novel ocular drug carriers. J. Pharm. Pharmacol. 1996, 48, 1147–1152. [Google Scholar] [CrossRef] [PubMed]
- Qaddoumi, M.G.; Ueda, H.; Yang, J.; Davda, J.; Labhasetwar, V.; Lee, V.H. The characteristics and mechanisms of uptake of PLGA nanoparticles in rabbit conjunctival epithelial cell layers. Pharm. Res. 2004, 21, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Abourashed, E.A. Bioavailability of Plant-Derived Antioxidants. Antioxidants 2013, 2, 309–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Zhang, X.; Wu, H.; Li, J.; Shu, L.; Liu, R.; Li, L.; Li, N. Preparation and evaluation of solid lipid nanoparticles of baicalin for ocular drug delivery system in vitro and in vivo. Drug Dev. Ind. Pharm. 2011, 37, 475–481. [Google Scholar] [CrossRef]
- Ashraf, O.; Nasr, M.; Nebsen, M.; Said, A.M.A.; Sammour, O. In vitro stabilization and in vivo improvement of ocular pharmacokinetics of the multi-therapeutic agent baicalin: Delineating the most suitable vesicular systems. Int. J. Pharm. 2018, 539, 83–94. [Google Scholar] [CrossRef]
- Yang, J.; Gong, X.; Fang, L.; Fan, Q.; Cai, L.; Qiu, X.; Zhang, B.; Chang, J.; Lu, Y. Potential of CeCl3@mSiO2 nanoparticles in alleviating diabetic cataract development and progression. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 1147–1155. [Google Scholar] [CrossRef]
- Kyosseva, S.V.; McGinnis, J.F. Cerium oxide nanoparticles as promising ophthalmic therapeutics for the treatment of retinal diseases. World J. Ophthalmol. 2015, 5, 23–30. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Jiang, T.; Zheng, L.; Wang, Z.; Zhang, J.; Yu, P. Protective effect of Coenzyme Q10 against oxidative damage in human lens epithelial cells by novel ocular drug carriers. Int. J. Pharmaceut. 2011, 403, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Maharjan, P.; Jin, M.; Park, T.; Maharjan, A.; Amatya, R.; Yang, J.; Min, K.A.; Shin, M.C. Potential albumin-based antioxidant nanoformulations for ocular protection against oxidative stress. Pharmaceutics 2019, 11, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.-Y.; Wang, M.-C.; Chen, Z.-Y.; Chiu, W.-Y.; Chen, K.-H.; Lin, I.-C.; Yang, W.-C.V.; Wu, C.-C.; Tseng, C.-L. Gelatin-epigallocatechin gallate nanoparticles with hyaluronic acid decoration as eye drops can treat rabbit dry-eye syndrome effectively via inflammatory relief. Int. J. Nanomed. 2018, 31, 7251–7273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djagny, V.B.; Wang, Z.; Xu, S. Gelatin: A valuable protein for food and pharmaceutical industries: Review. Crit. Rev. Food Sci. Nutr. 2001, 41, 481–492. [Google Scholar] [CrossRef]
- Fangueiro, J.F.; Andreani, T.; Fernandes, L.; Garcia, M.L.; Egea, M.A.; Silva, A.M.; Souto, E.B. Physicochemical characterization of epigallocatechin gallate lipid nanoparticles (EGCG-LNs) for ocular instillation. Colloids Surf. B Biointerfaces 2014, 123, 452–460. [Google Scholar] [CrossRef]
- Chang, C.Y.; Wang, M.C.; Miyagawa, T.; Chen, Z.Y.; Lin, F.H.; Chen, K.H.; Liu, G.S.; Tseng, C.L. Preparation of arginine-glycine-aspartic acid-modified biopolymeric nanoparticles containing epigalloccatechin-3-gallate for targeting vascular endothelial cells to inhibit corneal neovascularization. Int. J. Nanomed. 2017, 12, 279–294. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Wan, G.; Yan, P.; Qian, C.H.; Li, F.; Peng, G. Fabrication of resveratrol coated gold nanoparticles and investigation of their effect on diabetic retinopathy in streptozotocin induced diabetic rats. J. Photochem. Photobiol. B. Biol. 2019, 195, 51–57. [Google Scholar] [CrossRef]
- Liu, C.H.; Chiu, H.C.; Wu, W.C.; Sahoo, S.L.; Hsu, C.Y. Novel Lutein Loaded Lipid Nanoparticles on Porcine Corneal Distribution. J. Ophthalmol. 2014, 2014, 304694. [Google Scholar] [CrossRef]
- Bodoki, E.; Vostinaru, O.; Samoila, O.; Dinte, E.; Bodoki, A.E.; Swetledge, S.; Astete, C.E.; Sabliov, C.M. Topical nanodelivery system of lutein for the prevention of selenite-induced cataract. Nanomed. Nanotechnol. Biol. Med. 2019, 15, 188–197. [Google Scholar] [CrossRef]
- Natesan, S.; Pandian, S.; Ponnusamy, C.; Palanichamy, R.; Muthusamy, S.; Kandasamy, R. Co-encapsulated resveratrol and quercetin in chitosan and PEG modified chitosan nanoparticles: For efficient intraocular pressure reduction. Int. J. Biol. Macromol. 2017, 104, 1837–1845. [Google Scholar] [CrossRef]
- Anbukkarasi, M.; Thomas, P.A.; Sheu, J.-R.; Geraldine, P. In vitro antioxidant and anticataractogenic potential of silver nanoparticles biosynthesized using an ethanolic extract of Tabernaemontana divaricata leaves. Biomed. Pharmacother. 2017, 91, 467–475. [Google Scholar] [CrossRef]
- Vicario-de-la-Torre, M.; Benítez-del-Castillo, J.M.; Vico, E.; Guzmán, M.; de-Las-Heras, B.; Herrero-Vanrell, R.; Molina-Martínez, I.T. Design and characterization of an occular topical liposomal preparation to replenish the lipids of the tear film. Investig. Ophthalmol. Vis. Sci. 2014, 55, 7839–7847. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Guo, X.; Feng, M.; Mao, N. In vitro and in vivo studies on ocular vitamin A palmitate cationic liposomal in situ gels. Int. J. Pharm. 2013, 458, 305–314. [Google Scholar] [CrossRef]
- Hoyo, J.; Ivanova, K.; Guaus, E.; Tzanov, T. Multifunctional ZnO NPs-chitosan-gallic acid hybrid nanocoating to overcome contact lenses associated conditions and discomfort. J. Colloid Interface Sci. 2019, 543, 114–121. [Google Scholar] [CrossRef]
- Li, N.; Han, Z.; Li, L.; Zhang, B.; Liu, Z.; Li, J. The anti-cataract molecular mechanism study in selenium cataract rats for baicalin ophthalmic nanoparticles. Drug Des. Dev. Ther. 2018, 12, 1399–1411. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Patil, S.; Seal, S.; McGinnis, J.F. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat. Nanotechnol. 2006, 1, 142–150. [Google Scholar] [CrossRef]
- Cai, X.; Sezate, S.A.; Seal, S.; McGinnis, J.F. Sustained protection against photoreceptor degeneration in tubby mice by intravitreal injection of nanoceria. Biomaterials 2012, 33, 8771–8781. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Wong, L.L.; Karakoti, A.S.; Seal, S.; McGinnis, J.F. Nanoceria inhibit the development and promote the regression of pathologic retinal neovascularization in the Vldr knockout mouse. PLoS ONE 2011, 6, e16733. [Google Scholar] [CrossRef]
- Kyosseva, S.V.; Chen, L.; Seal, S.; McGinnis, J.F. Nanoceria inhibit expression of genes associated with inflammation and angiogenesis in the retina of Vldr null mice. Exp. Eye Res. 2013, 116, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Ren, K.; Lu, B.; Zhang, W.; Zhao, Y.; Tan, R.X.; Li, E. Baicalin from Scutellaria baicalensis blocks respiratory syncitial virus (RSV) infections and reduces inflammatory infiltration and lung injury in mice. Sci. Rep. 2016, 6, 35851. [Google Scholar]
- Nelson, B.C.; Johnson, M.E.; Walker, M.; Riley, K.R.; Sims, C.M. Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants 2016, 5, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korsvik, C.; Patil, S.; Seal, S.; Self, W.T. Superoxide dismutase mimetic properties exhibited by vacancy. engineered ceria nanoparticles. Chem. Commun. 2007, 10, 1056–1058. [Google Scholar] [CrossRef] [PubMed]
- Rzigalinski, B.A.; Meehan, K.; Davis, R.M.; Xu, Y.; Miles, W.C.; Cohen, C.A. Radical nanomedicine. Nanomedicine 2006, 1, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Luan, Q.F.; Yang, D.; Yao, X.; Zhou, K.B. Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. J. Phys. Chem. C 2011, 115, 4433–4438. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, K.B.; Zhai, Y.W.; Qin, F.; Pan, L.L.; Yao, X. Crystal plane effects of nano-CeO2 on its. antioxidant activity. RSC Adv. 2014, 4, 50325–50330. [Google Scholar] [CrossRef]
- Dowding, J.M.; Dosani, T.; Kumar, A.; Seal, S.; Self, W.T. Cerium oxide nanoparticles scavenge nitric oxide radical ((no)-n-center dot). Chem. Commun. 2012, 48, 4896–4898. [Google Scholar] [CrossRef]
- Pescosolido, N.; Giannotti, R.; Plateroti, A.M.; Pascarella, A.; Nebbioso, M. Curcumin: Therapeutical Potential in Ophthalmology. Planta Med. 2014, 80, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Mrudula, T.; Suryanarayana, P.; Srinivas, P.N.; Reddy, G.B. Effect of curcumin on hyperglycemia-induced vascular endothelial growth factor expression in streptozotocin-induced diabetic rat retina. Biochem. Biophys. Res. Commun. 2007, 361, 528–532. [Google Scholar] [CrossRef]
- Wei, H.C.; Zhang, X.S.; Zhao, J.F.; Wang, Z.Y.; Bickers, D.; Lebwohl, M. Scavenging of hydrogen peroxide and inhibition of ultraviolet light-induced oxidative DNA damage by aqueous extracts from green and black teas. Free Radic. Biol. Med. 1999, 26, 1427–1435. [Google Scholar] [CrossRef]
- Kim, H.-S.; Quon, M.J.; Kim, J.-A. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the gren tea polyphenol, epigallocatechin 3-gallate. Redox Biol. 2014, 2, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Krinsky, N.I. Possible biologic mechanisms for a protective role of xantophylls. J. Nutr. 2002, 132, 540S–542S. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Qin, T.; Liu, Z.; Caceres, M.A.; Ronchi, C.; Chen, C.Y.O.; Yeum, K.J.; Taylor, A.; Blumberg, J.B.; Liu, Y.; et al. Lutein and zeaxanthin supplementation reduces H2O2-induced oxidative damage in human lens epithelial cells. Mol. Vis. 2011, 17, 3180–3190. [Google Scholar] [PubMed]
- Arnal, E.; Miranda, M.; Almansa, I.; Muriach, M.; Barcia, J.M.; Romero, F.J.; Diaz-Llopis, M.; Bosch-Morell, F. Lutein prevents cataract development and progression in diabetic rats. Graefes Arch. Clin. Exp. Ophtalmol. 2009, 247, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-H.; Yu, R.-B.; Liu, R.; Hao, Z.-X.; Han, C.-C.; Zhu, Z.-H.; Ma, L. Association between lutein and zeaxanthin status and the risk of cataract: A meta-analysis. Nutrients 2014, 6, 452–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salehi, B.; Mishra, A.P.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Tsouh Foukou, P.V.; Martins, N.; Sharifi-Rad, J. Resveratrol: A double-edged sword in health benefits. Biomedicines 2018, 6, 91. [Google Scholar] [CrossRef] [Green Version]
- Morones-Ramirez, J.R.; Winkler, J.A.; Spina, C.S.; Collins, J.J. Silver enhances antibiotic activity against Gram-negative bacteria. Sci. Transl. Med. 2013, 5, 190ra81. [Google Scholar] [CrossRef] [Green Version]
- Das, G.; Patra, J.K.; Debnath, T.; Ansari, A.; Shin, H.-S. Investigation of antioxidant, antibacterial, antidiabetic and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus. PLoS ONE 2019, 14, e0220950. [Google Scholar] [CrossRef] [Green Version]
Nanosystem | Active Principle | Excipients | Characteristics | Reference | ||
---|---|---|---|---|---|---|
Particle Size (nm) | Zeta Potential (mV) | Entrapment Efficiency (%) | ||||
Solid lipid nanoparticles | Baicalin | Not available | 91.42 ± 1.02 | −33.5 ± (−1.28) | 62.45% ± 1.67% | Liu et al., 2011 [29] |
Liposomes | Baicalin | PC Labrasol Cholesterol Bile salts Span 60 | 667.9 ± 157 | −16.8 ± (−1.86) | >94% | Ashraf et al., 2018 [30] |
Nanoparticles | CeCl3@mSiO2 | Mesoporous silica nanoparticles | 87.6 ± 8.9 | – | 7.35% ± 4.33% | Yang et al., 2017 [31] |
Nanoparticles | Cerium oxide (CeO2, nanoceria) | Cerium nitrate hexahydrate | 3–5 | – | – | Kyosseva et al., 2015 [32] |
Liposomes | CoQ10 | N-trimethyl chitosan PC Cholesterol | 63–78 | 8.83–24.5 | >97% | Wang et al., 2011 [33] |
Nanoparticles | Curcumin | Bovine serum albumin Glutaraldehyde | 203.2 ± 15.4 | −17.04 ± (−1.5) | >90% | Kim et al., 2019 [34] |
Nanoparticles | EGCG | Gelatin HA | 253.4 ± 7.3 | 9.2 ± 1.8 | 97.8% ± 0.5% good tolerance | Huang et al., 2018 [35] |
Lipid nanoparticles | EGCG | CTAB DDAB | <300 | – | >90% | Fangueiro et al., 2014 [37] |
Nanoparticles | EGCG | Gelatine HA RGD | 168.87 ± 22.5 | 19.7 ± 2 | up to 95% | Chang et al., 2017 [38] |
Nanoparticles | Gold Resveratrol | Green synthetic method | 20 | – | – | Dong et al., 2019 [39] |
Lipid nanocarriers combined with CD | Lutein | CD Tween 80 Span 60 Transcutol HP | 336.8 ± 43 | –28 | 68.1% ± 3.3% | Liu et al., 2014 [40] |
Lipid nanocarriers | Lutein | Tween 80 Span 60 Transcutol HP | 229.8.8 ± 65 | −34.3 ± 0.2 | 59.0% ± 1.5% | Liu et al., 2014 [40] |
Nanoparticles | Lutein | PLGA Tween 80 Poloxamer 407 Poly(ethyleneoxid) | 222.9 ± 1.2 | −32.4 ± 3.9 | 96.2% ± 2.7% | Bodoki et al., 2019 [41] |
Nanoparticles | Resveratrol | Chitosan TPP PEG | – | 129 | 91.89% ± 1.11% | Natesan et al., 2017 [42] |
Nanoparticles | Resveratrol Quercetin | Chitosan TPP PEG | – | 308 | 81.34% ± 3.21% | Natesan et al., 2017 [42] |
Nanoparticles | Silver | Tabernaemontana divaricata extract | 15–50 | – | – | Anbukkarasi et al., 2017 [43] |
Liposomes | α-tocopherol | PC Cholesterol Sodium hyaluronate | >1 | – | – | Vicario-de-l a-Torre et al., 2014 [44] |
Nanoparticles | Ursolic acid | Bovine serum albumin Glutaraldehyde | 234.7 ± 13.1 | −11.66 ± (−1.1) | >90% | Kim et al., 2019 [34] |
Liposomes | Vitamin A palmitate | N-trimethyl chitosan Poloxamer 407 | <100 | 41.5–53.7 | >84% | He et al., 2013 [45] |
Nanoparticles | ZnO Galic acid coating on contact lenses | Chitosan | <40 | – | – | Hoyo et al., 2019 [46] |
Type of Formulation/Mode of Administration/Dose | Experimental Model | Findings | Reference |
---|---|---|---|
Baicalin: Solid lipid nanoparticles with baicalin/Corneal/20 µL | Selenite induced cataract in rat pups | Reduction of cataract onset and progression | Li et al., 2018 [47] |
Cerium: Solid nanoparticles (5 nm) with CeO2/Intravitreal/0.1–1 µM | Light-induced photoreceptor degeneration in albino rats | In vivo protection of photoreceptor cells by radical-scavenging mechanism | Chen et al., 2006 [48] |
Solid nanoparticles (3–5 nm) with CeO2/Intravitreal/1 µM | Tubby (tub/tub) mutant mouse model | Protection of retinal structure and function by up-regulation of genes associated with antioxidant defenses | Cai et al., 2012 [49] |
Solid nanoparticles (3–5 nm) with CeO2/intravitreal/1 mM | Vldr knockout mouse model | Inhibition of retinal lesions by reduction of ROS and VEGF levels | Zhou et al., 2012 [50] |
Solid nanoparticles (3–5 nm) with CeO2/Intravitreal/1 mM | Vldr knockout mouse model | Inhibition of retinal pro-inflammatory cytokines and pro-angiogenic factors | Kyosseva et al., 2013 [51] |
Curcumin: Nanoparticles (100 nm) with curcumin | Ex-vivo oxidative stress on rabbit cornea and retina | Reduction of reactive oxygen species (ROS) in rabbit retina | Kim et al., 2019 [34] |
Epigallocatechin gallate :Solid nanoparticles (250 nm) of epigallocatechin gallate/Corneal/20 µL | Dry eye syndrome (DES) rabbit model | Normalization of corneal architecture, inhibition of inflammatory cytokine production | Huang et al., 2018 [35] |
Lutein: PLGA nanoparticles (222.9 nm) with lutein/Corneal/1278 µg/mL | Selenite induced cataract in rat pups | Reduction of cataract onset and progression | Bodoki et al., 2019 [41] |
Resveratrol: Chitosan nanoparticles (100 nm) with resveratrol/Corneal/50 µL | Normotensive eye rabbit model | Reduction of intraocular pressure | Natesan et al., 2017 [42] |
Silver: Silver nanoparticles (15–50 nm) | Ex-vivo model of selenite-induced cataract in rats | Reduction of cataract onset and progression | Anbukkarasi et al., 2017 [43] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinte, E.; Vostinaru, O.; Samoila, O.; Sevastre, B.; Bodoki, E. Ophthalmic Nanosystems with Antioxidants for the Prevention and Treatment of Eye Diseases. Coatings 2020, 10, 36. https://doi.org/10.3390/coatings10010036
Dinte E, Vostinaru O, Samoila O, Sevastre B, Bodoki E. Ophthalmic Nanosystems with Antioxidants for the Prevention and Treatment of Eye Diseases. Coatings. 2020; 10(1):36. https://doi.org/10.3390/coatings10010036
Chicago/Turabian StyleDinte, Elena, Oliviu Vostinaru, Ovidiu Samoila, Bogdan Sevastre, and Ede Bodoki. 2020. "Ophthalmic Nanosystems with Antioxidants for the Prevention and Treatment of Eye Diseases" Coatings 10, no. 1: 36. https://doi.org/10.3390/coatings10010036
APA StyleDinte, E., Vostinaru, O., Samoila, O., Sevastre, B., & Bodoki, E. (2020). Ophthalmic Nanosystems with Antioxidants for the Prevention and Treatment of Eye Diseases. Coatings, 10(1), 36. https://doi.org/10.3390/coatings10010036