Narrow-Spectrum Antibacterial Agents—Benefits and Challenges
Abstract
1. Why Narrow Spectrum Antibacterial Approaches Are Needed
2. Current Narrow Spectrum Antibacterial Efforts
3. Challenges Remain to Develop Narrow Spectrum Antibacterial Agents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ardal, C.; Findlay, D.; Savic, M.; Carmeli, Y.; Gyssens, I.; Laxminarayan, R.; Outterson, K.; Rex, J.H. Innovative Medicines Initiative DRIVE-AB Report. Revitalizing the Antibiotic Pipeline: Stimulating Innovation while driving Sustainable Use and Global Access. 2018. Available online: http://drive-ab.eu/wp-content/uploads/2018/01/DRIVE-AB-Final-Report-Jan2018.pdf (accessed on 31 May 2020).
- Mullard, A. Achaogen bankruptcy highlights antibacterial development woes. Nat. Rev. Drug Discov. 2019, 18, 411–412. [Google Scholar] [CrossRef] [PubMed]
- Roland, D. Antibiotic Makers Struggle, Hurting War on Superbugs. 2019. Available online: https://www.wsj.com/articles/antibiotic-makers-find-rewards-for-tackling-superbugs-are-scarce-11578259557 (accessed on 31 May 2020).
- Rawson, T.M.; Moore, L.S.P.; Zhu, N.; Ranganathan, N.; Skolimowska, K.; Gilchrist, M.; Satta, G.; Cooke, G.; Holmes, A. Bacterial and fungal co-infection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing. Clin. Infect. Dis. 2020, ciaa530. [Google Scholar] [CrossRef]
- World Health Organization. Record Number of Countries Contribute Data Revealing Disturbing Rates of Antimicrobial Resistance. 2020. Available online: https://www.who.int/news-room/detail/01-06-2020-record-number-of-countries-contribute-data-revealing-disturbing-rates-of-antimicrobial-resistance (accessed on 6 June 2020).
- Rawson, T.M.; Ming, D.; Ahmad, R.; Moore, L.S.P.; Holmes, A.H. Antimicrobial Use, Drug-Resistant Infections and COVID-19. Nat. Rev. Microbiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control. Antibiotic Resistance Threats in the United States. 2019. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed on 31 May 2020).
- Poirel, L.; Rodriguez-Martinez, J.M.; Mammeri, H.; Liard, A.; Nordmann, P. Origin of plasmid-mediated quinolone resistance determinant QnrA. Antimicrob. Agents Chemother. 2005, 49, 3523–3525. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, S.D.; Johnstone, M.; Manzano, A.; Alm, R.A. Prevalence of macrolide-resistance genes in contemporary clinical isolates of Escherichia coli and Klebsiella pneumonia. In Proceedings of the 28th ECCMID, Madrid, Spain, 21–24 April 2018. [Google Scholar]
- Lahiri, S.D.; McLaughlin, R.E.; Whiteaker, J.D.; Ambler, J.E.; Alm, R.A. Molecular characterization of MRSA isolates bracketing the current EUCAST ceftaroline-susceptible breakpoint for Staphylococcus aureus: The role of PBP2a in the activity of ceftaroline. J. Antimicrob. Chemother. 2015, 70, 2488–2498. [Google Scholar] [CrossRef]
- Kelley, W.L.; Jousselin, A.; Barras, C.; Lelong, E.; Renzoli, A. Missense mutations in PBP2A affecting Ceftaroline susceptibility detected in epidemic hospital-acquired Methicillin-resistant Staphylococcus aureus clonotypes ST228 and ST247 in western Switzerland archived since 1998. Antimicrob. Agents Chemother. 2015, 59, 1922–1930. [Google Scholar] [CrossRef]
- Lahiri, S.D.; Alm, R.A. Identification of non-PBP2a resistance mechanisms in Staphylococcus aureus after serial passage with ceftaroline: Involvement of other PBPs. J. Antimicrob. Chemother. 2016, 71, 3050–3057. [Google Scholar] [CrossRef] [PubMed]
- Alm RAMcLaughlin, R.E.; Kos, V.; Sader, H.S.; Iaconis, J.P.; Lahiri, S.D. Analysis of Staphylococcus aureus clinical isolates with reduced susceptibility to ceftaroline: An epidemiological and structural perspective. J. Antimicrob. Chemother. 2014, 69, 2065–2075. [Google Scholar]
- Centers for Disease Control. Antibiotic Resistance Threats in the United States. 2013. Available online: https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf (accessed on 31 May 2020).
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; WHO Pathogens Priority List Working Group; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- World Health Organization. Antibacterial Agents in Clinical Development: An Analysis of the Antibacterial Clinical Development Pipeline. 2019. Available online: https://apps.who.int/iris/bitstream/handle/10665/330420/9789240000193-eng.pdf (accessed on 31 May 2020).
- World Health Organization. WHO Antibacterial Preclinical Pipeline Review. 2019. Available online: https://apps.who.int/iris/bitstream/handle/10665/330290/WHO-EMP-IAU-2019.12-eng.pdf?sequence=1&isAllowed=y (accessed on 31 May 2020).
- Theuretzbacher, U.; Outterson, K.; Engel, A.; Karlén, A. The global preclinical antibacterial pipeline. Nat. Rev. Microbiol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Bassetti, M.; Tiseo, G.; Giordano, C.; Nencini, E.; Russo, A.; Graziano, E.; Tagliaferri, E.; Leonildi, A.; Barnini, S.; et al. Time to appropriate antibiotic therapy is a predictor of outcome in patients with bloodstream infection caused by KPC-producing Klebsiella pneumoniae. Crit. Care 2020, 24, 29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Micek, S.T.; Kollef, M.H. Time to appropriate antibiotic therapy is an independent determinant of postinfection ICU and hospital lengths of stay in patients with sepsis. Crit. Care Med. 2015, 43, 2133–2140. [Google Scholar] [CrossRef] [PubMed]
- Zasowski, E.J.; Bassetti, M.; Blasi, F.; Goossens, H.; Rello, J.; Sotgiu, G.; Tavoschi, L.; Arber, M.R.; McCool, R.; Patterson, J.V.; et al. A systematic review of the effect of delayed appropriate antibiotic treatment on the outcomes of patients with severe bacterial infections. Chest 2020. [Google Scholar] [CrossRef] [PubMed]
- Sherwin, R.; Winters, M.E.; Vilke, G.M.; Wardi, G. Does early and appropriate antibiotic administration improve mortality in emergency department patients with severe sepsis or septic shock? J. Emerg. Med. 2017, 53, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Tsalik, E.L.; Bonomo, R.A.; Fowler, V.G., Jr. New molecular diagnostic approaches to bacterial infections and antibacterial resistance. Ann. Rev. Med. 2018, 69, 379–394. [Google Scholar] [CrossRef] [PubMed]
- Dedrick, R.M.; Guerrero-Bustamante, C.A.; Garlena, R.A.; Russell, D.A.; Ford, K.; Harris, K.; Gilmour, K.C.; Soothill, J.; Jacobs-Sera, D.; Schooley, R.T.; et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 2019, 25, 730–733. [Google Scholar] [CrossRef] [PubMed]
- Schooley, R.T.; Biswas, B.; Gill, J.J.; Hernandez-Morales, A.; Lancaster, J.; Lessor, L.; Barr, J.J.; Reed, S.L.; Rohwer, F.; Benler, S.; et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 2017, 61, e00954-17. [Google Scholar] [CrossRef] [PubMed]
- Aslam, S.; Courtwright, A.M.; Koval, C.; Lehman, S.M.; Morales, S.; Furr, C.L.; Rosas, F.; Brownstein, M.J.; Fackler, J.R.; Sisson, B.M.; et al. Early clinical experience of bacteriophage therapy in 3 lung transplant recipients. Am. J. Transplant. 2019, 19, 2631–2639. [Google Scholar] [CrossRef] [PubMed]
Product Name (Synonym) | Product Class (Description) | Target Species a | Development Stage | Clinical Trial Identifier | Developer |
---|---|---|---|---|---|
Durlobactam + sulbactam (ETX2514SUL) | Small molecule b | Acinetobacter baumannii | Phase III | NCT02971423, NCT03445195 | Entasis Therapeutics |
Zoliflodacin (ETX0914) | Small molecule | Neisseria gonorrhoeae | Phase III | NCT02257918, NCT03959527 | Entasis Therapeutics/GARDP |
Afabicin (Debio-1450) | Small molecule | Staphylococcus aureus | Phase II | NCT02426918 | Debiopharm International |
AR-501 (Panaecin) | Small molecule | Pseudomonas aeruginosa | Phase I | NCT03669614 | Aridis Pharmaceuticals |
TXA709 | Small molecule | Staphylococcus aureus | Phase I | Not registered | Taxis |
TNP-2198 | Small molecule | Helicobacter pylori | Phase I | Not registered | TenNor Therapeutics |
BCM-0184 | Small molecule | Staphylococcus aureus | Phase I | Not registered | Biocidium Biopharmaceuticals |
AR-301 (Salvecin) | Biological (monoclonal Ab) | Staphylococcus aureus | Phase III | NCT03816956 | Aridis Pharmaceuticals |
CF-301 (Exebacase) | Biological (phage endolysin) | Staphylococcus aureus | Phase III | NCT03163446, NCT03446053 | Contrafect |
SAL-200 (tonabacase) | Biological (phage endolysin) | Staphylococcus aureus | Phase II | NCT03089697, NCT03446053 | Intron Biotechnology |
514G3 | Biological (monoclonal Ab) | Staphylococcus aureus | Phase II | NCT02357966 | Xbiotech |
AR-101 (Aerumab) | Biological (monoclonal Ab) | Pseudomonas aeruginosa | Phase II | NCT03027609 | Aridis Pharmaceuticals |
MEDI-3902 c | Biological (monoclonal Ab) | Pseudomonas aeruginosa | Phase II | NCT02696902 | AstraZeneca |
MEDI-4893 (Suvratoxumab) c | Biological (monoclonal Ab) | Staphylococcus aureus | Phase II | NCT02296320 | AstraZeneca |
LBP-EC01 d | Biological (Bacteriophage) | Escherichia coli | Phase I | NCT04191148 | Locus Biosciences |
Phagebank d | Biological (Bacteriophage) | Escherichia coli or Klebsiella pneumoniae | Phase I | NCT04287478 | Adaptive Phage Therapeutics |
DSTA-4637S | Biological (monoclonal Ab –drug conjugate) | Staphylococcus aureus | Phase I | NCT02596399, NCT03162250 | Roche/Genetech |
Species | Number | Cellular Metabolism | Phage Products | Anti-Virulence | Direct Membrane | Cell Wall Synthesis | Immuno-Modulation | Not Disclosed |
---|---|---|---|---|---|---|---|---|
Acinetobacter baumannii | 9 | 1 | 1 | 3 | 1 | 3 | ||
Clostridium difficile | 8 | 3 | 1 | 2 | 1 | 1 | ||
Escherichia coli | 10 | 9 | 1 | |||||
Helicobacter pylori | 2 | 2 | ||||||
Klebsiella pneumoniae | 1 | 1 | ||||||
Mycobacterium tuberculosis | 43 | 24 | 1 | 1 | 6 | 1 | 10 | |
Neisseria gonorrhoeae | 2 | 1 | 1 | |||||
Pseudomonas aeruginosa | 18 | 1 | 7 | 6 | 1 | 2 | 1 | |
Staphylococcus aureus | 7 | 4 | 2 | 1 | ||||
Total | 100 | 30 | 23 | 12 | 8 | 8 | 4 | 15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alm, R.A.; Lahiri, S.D. Narrow-Spectrum Antibacterial Agents—Benefits and Challenges. Antibiotics 2020, 9, 418. https://doi.org/10.3390/antibiotics9070418
Alm RA, Lahiri SD. Narrow-Spectrum Antibacterial Agents—Benefits and Challenges. Antibiotics. 2020; 9(7):418. https://doi.org/10.3390/antibiotics9070418
Chicago/Turabian StyleAlm, Richard A., and Sushmita D. Lahiri. 2020. "Narrow-Spectrum Antibacterial Agents—Benefits and Challenges" Antibiotics 9, no. 7: 418. https://doi.org/10.3390/antibiotics9070418
APA StyleAlm, R. A., & Lahiri, S. D. (2020). Narrow-Spectrum Antibacterial Agents—Benefits and Challenges. Antibiotics, 9(7), 418. https://doi.org/10.3390/antibiotics9070418