Antimicrobial Stewardship: From Bedside to Theory. Thirteen Examples of Old and More Recent Strategies from Everyday Clinical Practice
Abstract
:1. Introduction
2. Thirteen Common Scenarios of Clinical AMS Strategies
2.1. Antibiotic Dosing Strategies
2.1.1. Example 1
2.1.2. Intervention 1
2.1.3. Comment 1
2.2. Narrowing the Antibiotic Spectrum (Reducing the Induction of Multidrug-Resistant Bacteria and Clostridioides Difficile Infection)
2.2.1. Example 2
2.2.2. Intervention 2
2.2.3. Comment 2
2.3. Unnecessary Double Anaerobic Coverage
2.3.1. Example 3
2.3.2. Intervention 3
2.3.3. Comment 3
2.4. Shift to Oral Antibiotic Regimen
2.4.1. Example 4
2.4.2. Intervention 4
2.4.3. Comment 4
2.4.4. Example 5
2.4.5. Intervention 5
2.4.6. Comment 5
2.5. Shortening Antibiotic Duration
2.5.1. Example 6
2.5.2. Intervention 6
2.5.3. Comment 6
2.5.4. Example 7
2.5.5. Intervention 7
2.5.6. Comment 7
2.6. De-Hospitalizing Patients
2.6.1. Example 8
2.6.2. Intervention 8
2.6.3. Comment 8
2.7. ESBL or Carbapenem-Resistant Enterobacteriaceae (CRE) Urinary Tract Infections
2.7.1. Example 9
2.7.2. Intervention 9
2.7.3. Comment 9
2.8. Biomarkers and Urinary Antigens as Stewardship Tools
2.8.1. Example 10
2.8.2. Intervention 10
2.8.3. Comment 10
2.8.4. Example 11
2.8.5. Intervention 11
2.8.6. Comment 11
2.9. Old Antibiotics Reuse
2.9.1. Example 12
2.9.2. Intervention 12
2.9.3. Comment 12
2.10. Antibiotic Allergy De-Labelling
2.10.1. Example 13
2.10.2. Intervention 13
2.10.3. Comment 13
3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zellweger, R.M.; Carrique-Mas, J.; Limmathurotsakul, D.; Day, N.P.J.; Thwaites, G.E.; Baker, S. Southeast Asia antimicrobial resistance network a current perspective on antimicrobial resistance in Southeast Asia. J. Antimicrob. Chemother. 2017, 72, 2963–2972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention (U.S.). Antibiotic Resistance Threats in the United States; Centres for Disease Control and Prevention: Atlanta, GA, USA, 2019.
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Review on Antimicrobial Resistance. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations; Review on Antimicrobial Resistance: London, UK, 2014. [Google Scholar]
- Schuts, E.C.; Hulscher, M.E.; Mouton, J.W.; Verduin, C.M.; Stuart, J.W.C.; Overdiek, H.W.; van der Linden, P.D.; Natsch, S.; Hertogh, C.M.; Wolfs, T.F.W.; et al. Current evidence on hospital antimicrobial stewardship objectives: A systematic review and meta-analysis. Lancet Infect. Dis. 2016, 16, 847–856. [Google Scholar] [CrossRef]
- Fantoni, M.; Murri, R.; Scoppettuolo, G.; Fabbiani, M.; Ventura, G.; Losito, R.; Berloco, F.; Spanu, T.; Sanguinetti, M.; Cauda, R. Resource-saving advice from an infectious diseases specialist team in a large university hospital: An exportable model? Future Microbiol. 2015, 10, 15–20. [Google Scholar] [CrossRef]
- Barlam, T.F.; Cosgrove, S.E.; Abbo, L.M.; MacDougall, C.; Schuetz, A.N.; Septimus, E.J.; Srinivasan, A.; Dellit, T.H.; Falck-Ytter, Y.T.; Fishman, N.O.; et al. Implementing an antibiotic stewardship program: Guidelines by the infectious diseases society of america and the society for healthcare epidemiology of America. Clin. Infect. Dis. 2016, 62, e51–e77. [Google Scholar] [CrossRef]
- Dyar, O.J.; Huttner, B.; Schouten, J.; Pulcini, C.; ESGAP (ESCMID Study Group for Antimicrobial stewardshiP). What is antimicrobial stewardship? Clin. Microbiol. Infect. 2017, 23, 793–798. [Google Scholar] [CrossRef] [Green Version]
- Cunha, C.B. Antimicrobial stewardship programs: Principles and practice. Med. Clin. N. Am. 2018, 102, 797–803. [Google Scholar] [CrossRef]
- Cooke, F.J.; Holmes, A.H. The missing care bundle: Antibiotic prescribing in hospitals. Int. J. Antimicrob. Agents 2007, 30, 25–29. [Google Scholar] [CrossRef]
- Roberts, J.A.; Abdul-Aziz, M.-H.; Davis, J.S.; Dulhunty, J.M.; Cotta, M.O.; Myburgh, J.; Bellomo, R.; Lipman, J. Continuous versus intermittent β-Lactam infusion in severe sepsis. A Meta-analysis of Individual Patient Data from Randomized Trials. Am. J. Respir. Crit. Care Med. 2016, 194, 681–691. [Google Scholar] [CrossRef]
- Magill, S.S.; Edwards, J.R.; Bamberg, W.; Beldavs, Z.G.; Dumyati, G.; Kainer, M.A.; Lynfield, R.; Maloney, M.; McAllister-Hollod, L.; Nadle, J.; et al. Multistate point-prevalence survey of health care-associated infections. N. Engl. J. Med. 2014, 370, 1198–1208. [Google Scholar] [CrossRef] [Green Version]
- Owens, R.C., Jr.; Donskey, C.J.; Gaynes, R.P.; Loo, V.G.; Muto, C.A. Antimicrobial-associated risk factors for Clostridium difficile infection. Clin. Infect. Dis. 2008, 46, S19–S31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skrlin, J.; Bacic Vrca, V.; Marusic, S.; Ciric-Crncec, M.; Mayer, L. Impact of ceftriaxone de-restriction on the occurrence of ESBL-positive bacterial strains and antibiotic consumption. J. Chemother. 2011, 23, 341–344. [Google Scholar] [CrossRef]
- Song, Y.J.; Kim, M.; Huh, S.; Lee, J.; Lee, E.; Song, K.-H.; Kim, E.S.; Kim, H.B. Impact of an antimicrobial stewardship program on unnecessary double anaerobic coverage prescription. Infect. Chemother. 2015, 47, 111–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hecker, M.T.; Aron, D.C.; Patel, N.P.; Lehmann, M.K.; Donskey, C.J. Unnecessary use of antimicrobials in hospitalized patients. Arch. Intern. Med. 2003, 163, 972. [Google Scholar] [CrossRef] [PubMed]
- Brook, I.; Wexler, H.M.; Goldstein, E.J.C. Antianaerobic antimicrobials: Spectrum and susceptibility testing. Clin. Microbiol. Rev. 2013, 26, 526–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iversen, K.; Ihlemann, N.; Gill, S.U.; Madsen, T.; Elming, H.; Jensen, K.T.; Bruun, N.E.; Høfsten, D.E.; Fursted, K.; Christensen, J.J.; et al. Partial Oral versus intravenous antibiotic treatment of endocarditis. N. Engl. J. Med. 2019, 380, 415–424. [Google Scholar] [CrossRef]
- Li, H.-K.; Rombach, I.; Zambellas, R.; Walker, A.S.; McNally, M.A.; Atkins, B.L.; Lipsky, B.A.; Hughes, H.C.; Bose, D.; Kümin, M.; et al. Oral versus intravenous antibiotics for bone and joint infection. N. Engl. J. Med. 2019, 380, 425–436. [Google Scholar] [CrossRef]
- Yahav, D.; Franceschini, E.; Koppel, F.; Turjeman, A.; Babich, T.; Bitterman, R.; Neuberger, A.; Ghanem-Zoubi, N.; Santoro, A.; Eliakim-Raz, N.; et al. Seven Versus 14 days of antibiotic therapy for uncomplicated gram-negative bacteremia: A noninferiority randomized controlled trial. Clin. Infect. Dis. 2019, 69, 1091–1098. [Google Scholar] [CrossRef]
- Gjika, E.; Beaulieu, J.-Y.; Vakalopoulos, K.; Gauthier, M.; Bouvet, C.; Gonzalez, A.; Morello, V.; Steiger, C.; Hirsiger, S.; Lipsky, B.A.; et al. Two weeks versus four weeks of antibiotic therapy after surgical drainage for native joint bacterial arthritis: A prospective, randomised, non-inferiority trial. Ann. Rheum. Dis. 2019, 78, 1114–1121. [Google Scholar] [CrossRef] [Green Version]
- Athlin, S.; Lidman, C.; Lundqvist, A.; Naucler, P.; Nilsson, A.C.; Spindler, C.; Strålin, K.; Hedlund, J. Management of community-acquired pneumonia in immunocompetent adults: Updated Swedish guidelines 2017. Infect. Dis. 2018, 50, 247–272. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence. Pneumonia in Adults: Diagnosis and Management; National Institute for Health and Care Excellence: London, UK, 2020. [Google Scholar]
- Chastre, J.; Wolff, M.; Fagon, J.-Y.; Chevret, S.; Thomas, F.; Wermert, D.; Clementi, E.; Gonzalez, J.; Jusserand, D.; Asfar, P.; et al. Comparison of 8 vs. 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: A randomized trial. JAMA 2003, 290, 2588–2598. [Google Scholar] [CrossRef] [PubMed]
- Coplen, D.E. Executive summary: International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the infectious diseases society of america and the european society for microbiology and infectious diseases. Yearb. Urol. 2011, 2011, 240–241. [Google Scholar]
- Sawyer, R.G.; Claridge, J.A.; Nathens, A.B.; Rotstein, O.D.; Duane, T.M.; Evans, H.L.; Cook, C.H.; O’Neill, P.J.; Mazuski, J.E.; Askari, R.; et al. Trial of short-course antimicrobial therapy for intraabdominal infection. N. Engl. J. Med. 2018, 378, 686. [Google Scholar] [CrossRef] [Green Version]
- Voumard, R.; Gardiol, C.; André, P.; Arensdorff, L.; Cochet, C.; Boillat-Blanco, N.; Decosterd, L.; Buclin, T.; de Vallière, S. Efficacy and safety of continuous infusions with elastomeric pumps for outpatient parenteral antimicrobial therapy (OPAT): An observational study. J. Antimicrob. Chemother. 2018, 73, 2540–2545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waineo, M.F.; Kuhn, T.C.; Brown, D.L. The pharmacokinetic/pharmacodynamic rationale for administering vancomycin via continuous infusion. J. Clin. Pharm. Ther. 2015, 40, 259–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, J.A.; Kirkpatrick, C.M.J.; Roberts, M.S.; Dalley, A.J.; Lipman, J. First-dose and steady-state population pharmacokinetics and pharmacodynamics of piperacillin by continuous or intermittent dosing in critically ill patients with sepsis. Int. J. Antimicrob. Agents 2010, 35, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Binson, G.; Grignon, C.; Le Moal, G.; Lazaro, P.; Lelong, J.; Roblot, F.; Venisse, N.; Dupuis, A. Overcoming stability challenges during continuous intravenous administration of high-dose amoxicillin using portable elastomeric pumps. PLoS ONE 2019, 14, e0221391. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Hidalgo, L.; López-Cortes, L.E.; Luque-Márquez, R.; Gálvez-Acebal, J.; de Alarcón, A.; López-Cortes, L.F.; Gutiérrez-Valencia, A.; Gil-Navarro, M.V. Ampicillin and ceftriaxone solution stability at different temperatures useful for outpatient parenteral antimicrobial therapy (OPAT). Antimicrob. Agents Chemother. 2020. [Google Scholar] [CrossRef]
- Burgess, D.S.; Summers, K.K.; Hardin, T.C. Pharmacokinetics and pharmacodynamics of aztreonam administered by continuous intravenous infusion. Clin. Ther. 1999, 21, 1882–1889. [Google Scholar] [CrossRef]
- Tice, A.D.; Rehm, S.J.; Dalovisio, J.R.; Bradley, J.S.; Martinelli, L.P.; Graham, D.R.; Gainer, R.B.; Kunkel, M.J.; Yancey, R.W.; Williams, D.N.; et al. Practice guidelines for outpatient parenteral antimicrobial therapy. IDSA guidelines. Clin. Infect. Dis. 2004, 38, 1651–1672. [Google Scholar] [CrossRef] [Green Version]
- Patel, R.P.; Jacob, J.; Sedeeq, M.; Ming, L.C.; Wanandy, T.; Zaidi, S.T.R.; Peterson, G.M. Stability of cefazolin in polyisoprene elastomeric infusion devices. Clin. Ther. 2018, 40, 664–667. [Google Scholar] [CrossRef] [PubMed]
- Voumard, R.; Van Neyghem, N.; Cochet, C.; Gardiol, C.; Decosterd, L.; Buclin, T.; de Valliere, S. Antibiotic stability related to temperature variations in elastomeric pumps used for outpatient parenteral antimicrobial therapy (OPAT). J. Antimicrob. Chemother. 2017, 72, 1462–1465. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Huang, S.; Zhu, P.; Xi, X. Continuous versus intermittent infusion of cefepime in neurosurgical patients with post-operative intracranial infections. Int. J. Antimicrob. Agents 2014, 43, 68–72. [Google Scholar] [CrossRef]
- Available online: http://products.sanofi.ca/en/claforan.pdf (accessed on 8 December 2019).
- Available online: http://www.just.edu.jo/DIC/DrugsLibrary/Cefotaxime.pdf (accessed on 8 December 2019).
- Cavalli, Z.; Becker, A.; Bosch, A.; Conrad, A.; Triffault-Filit, C.; Valour, F.; Laurent, F.; Cohen, S.; Chidiac, C.; Ferry, T. Prolonged cefoxitin infusion using mobile elastomeric infusors in outpatients with bone and joint infection. J. Bone Jt. Infect. 2018, 3, 182–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madfai, F.A.; Al Madfai, F.; Zaidi, S.T.R.; Ming, L.C.; Wanandy, T.; Patel, R.P. Physical and chemical stability of ceftaroline in an elastomeric infusion device. Eur. J. Hosp. Pharm. 2018, 25, e115–e119. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.E.; Selby, P.R.; Mellor, C.S.; Cheam, D.B. Ceftazidime stability and pyridine toxicity during continuous i.v., infusion. Am. J. Health Syst. Pharm. 2019, 76, 200–205. [Google Scholar] [CrossRef]
- Torres-Del-Pliego, E.; Delgado-Mejía, E.; Gil-Alonso, L.; Del Mar-Periáñez-Párraga, L. First case of ceftazidime/avibactam administration in home care. ESBL producing Klebsiella pneumoniae bacteremia. Enferm. Infecc. Microbiol. Clin. 2017, 35, 322–323. [Google Scholar] [CrossRef]
- Terracciano, J.; Rhee, E.G.; Walsh, J. Chemical stability of ceftolozane/tazobactam in polyvinylchloride bags and elastomeric pumps. Curr. Ther. Res. Clin. Exp. 2017, 84, 22–25. [Google Scholar] [CrossRef]
- Stiles, M.L.; Allen, L.V., Jr.; Fox, J.L. Stability of ceftazidime (with arginine) and of cefuroxime sodium in infusion-pump reservoirs. Am. J. Hosp. Pharm. 1992, 49, 2761–2764. [Google Scholar] [CrossRef]
- Vercheval, C.; Streel, S.; Servais, A.-C.; Fillet, M.; Van Hees, T. Stability of 90 mg/mL cefuroxime sodium solution for administration by continuous infusion. J. Chemother. 2018, 30, 371–374. [Google Scholar] [CrossRef]
- Zeller, V.; Dzeing-Ella, A.; Kitzis, M.-D.; Ziza, J.-M.; Mamoudy, P.; Desplaces, N. Continuous clindamycin infusion, an innovative approach to treating bone and joint infections. Antimicrob. Agents Chemother. 2010, 54, 88–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howden, B.P.; Richards, M.J. The efficacy of continuous infusion flucloxacillin in home therapy for serious staphylococcal infections and cellulitis. J. Antimicrob. Chemother. 2001, 48, 311–314. [Google Scholar] [CrossRef] [Green Version]
- Fomicyt 40mg/mL Powder for Solution for Infusion—100mL Bottle—Summary of Product Characteristics (SmPC)—(emc). Available online: https://www.medicines.org.uk/emc/product/5439/smpc (accessed on 7 December 2019).
- Asuphon, O.; Montakantikul, P.; Houngsaitong, J.; Kiratisin, P.; Sonthisombat, P. Optimizing intravenous fosfomycin dosing in combination with carbapenems for treatment of Pseudomonas aeruginosa infections in critically ill patients based on pharmacokinetic/pharmacodynamic (PK/PD) simulation. Int. J. Infect. Dis. 2016, 50, 23–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foy, F.; Luna, G.; Martinez, J.; Nizich, Z.; Seet, J.; Lie, K.; Sunderland, B.; Czarniak, P. An investigation of the stability of meropenem in elastomeric infusion devices. Drug Des. Dev. Ther. 2019, 13, 2655–2665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nesseler, N.; Verdier, M.-C.; Launey, Y.; Malherbe, A.; Dermu, M.; Piau, C.; Flécher, E.; Tribut, O.; Mallédant, Y.; Seguin, P. High-dose continuous oxacillin infusion results in achievement of pharmacokinetics targets in critically ill patients with deep sternal wound infections following cardiac surgery. Antimicrob. Agents Chemother. 2014, 58, 5448–5455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, T.; Enoki, Y.; Uno, S.; Uwamino, Y.; Iketani, O.; Hasegawa, N.; Matsumoto, K. Stability of benzylpenicillin potassium and ampicillin in an elastomeric infusion pump. J. Infect. Chemother. 2018, 24, 856–859. [Google Scholar] [CrossRef]
- Vella-Brincat, J.W.A.; Begg, E.J.; Gallagher, K.; Kirkpatrick, C.M.J.; Zhang, M.; Frampton, C.; Chambers, S.T. Stability of benzylpenicillin during continuous home intravenous therapy. J. Antimicrob. Chemother. 2004, 53, 675–677. [Google Scholar] [CrossRef] [Green Version]
- Laterre, P.-F.-F.; Laterre, P.; Wittebole, X.; Van de Velde, S.; Muller, A.E.; Mouton, J.W.; Carryn, S.; Tulkens, P.M.; Dugernier, T. Temocillin (6 g daily) in critically ill patients: Continuous infusion versus three times daily administration. J. Antimicrob. Chemother. 2015, 70, 891–898. [Google Scholar] [CrossRef]
- Carryn, S.; Couwenbergh, N.; Tulkens, P.M. Long-term stability of temocillin in elastomeric pumps for outpatient antibiotic therapy in cystic fibrosis patients. J. Antimicrob. Chemother. 2010, 65, 2045–2046. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.S.; Balfour, J.A.; Bryson, H.M. Fosfomycin tromethamine. A review of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy as a single-dose oral treatment for acute uncomplicated lower urinary tract infections. Drugs 1997, 53, 637–656. [Google Scholar] [CrossRef]
- Roberts, M.J.; Scott, S.; Harris, P.N.; Naber, K.; Wagenlehner, F.M.; Doi, S.A. Comparison of fosfomycin against fluoroquinolones for transrectal prostate biopsy prophylaxis: An individual patient-data meta-analysis. World J. Urol. 2018, 36, 323–330. [Google Scholar] [CrossRef]
- Durante-Mangoni, E.; Andini, R.; Zampino, R. Management of carbapenem-resistant Enterobacteriaceae infections. Clin. Microbiol. Infect. 2019, 25, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Schimmel, J.J.; Haessler, S.; Imrey, P.; Lindenauer, P.K.; Richter, S.S.; Yu, P.-C.; Rothberg, M.B. Pneumococcal urinary antigen testing in US hospitals: A missed opportunity for antimicrobial stewardship. Clin. Infect. Dis. 2019. [Google Scholar] [CrossRef]
- De Jong, E.; van Oers, J.A.; Beishuizen, A.; Vos, P.; Vermeijden, W.J.; Haas, L.E.; Loef, B.G.; Dormans, T.; van Melsen, G.C.; Kluiters, Y.C.; et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: A randomised, controlled, open-label trial. Lancet Infect. Dis. 2016, 16, 819–827. [Google Scholar] [CrossRef]
- Alexandre, K.; Fantin, B. Pharmacokinetics and pharmacodynamics of temocillin. Clin. Pharmacokinet. 2018, 57, 287–296. [Google Scholar] [CrossRef]
- Trubiano, J.A.; Beekmann, S.E.; Worth, L.J.; Polgreen, P.M.; Thursky, K.A.; Slavin, M.A.; Grayson, M.L.; Phillips, E.J. Improving antimicrobial stewardship by antibiotic allergy delabeling: Evaluation of knowledge, attitude, and practices throughout the emerging infections network. Open Forum Infect. Dis. 2016, 3, ofw153. [Google Scholar] [CrossRef] [PubMed]
- Timbrook, T.T.; Morton, J.B.; McConeghy, K.W.; Caffrey, A.R.; Mylonakis, E.; LaPlante, K.L. The Effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: A systematic review and meta-analysis. Clin. Infect. Dis. 2017, 64, 15–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berbari, E.F.; Kanj, S.S.; Kowalski, T.J.; Darouiche, R.O.; Widmer, A.F.; Schmitt, S.K.; Hendershot, E.F.; Holtom, P.D.; Huddleston, P.M.; Petermann, G.W.; et al. 2015 Infectious Diseases Society of America (IDSA) Clinical practice guidelines for the diagnosis and treatment of native vertebral osteomyelitis in adults. Clin. Infect. Dis. 2015, 61, e26–e46. [Google Scholar] [CrossRef] [Green Version]
Degree of Activity | ||
---|---|---|
Antibiotics with Anaerobic Coverage | Beta-Lactamase Producing Anaerobes | Other Anaerobes |
Amoxicillin/clavulanate | +++ | +++ |
Cefoxitin | ++ | +++ |
Chloramphenicol | +++ | +++ |
Clindamycin | ++ | +++ |
Ertapenem | +++ | +++ |
Imipenem | +++ | +++ |
Meropenem | +++ | +++ |
Metronidazole | +++ | +++ |
Moxifloxacin | ++ | ++ |
Penicillin | 0 | +++ |
Piperacillin/tazobactam | +++ | +++ |
Ticarcillin | + | +++ |
Tigecycline | ++ | +++ |
Penicillin and methicillin sensitive S. aureus and coagulase-negative staphylococci | amoxicillin 1 g q6 h and fusidic acid 750 mg q12 h |
amoxicillin 1 g q6 h and rifampicin 600 mg q12h | |
linezolid 600 mg q12 h and fusidic acid 750 mg q12 h | |
linezolid 600 mg q12 h and rifampicin 600 mg q12 h | |
Methicillin sensitive S. aureus and coagulase-negative staphylococci | dicloxacillin 1 g q6 h and fusidic acid 750 mg q12 h |
dicloxacillin 1 g q6 h and rifampicin 600 mg q12 h | |
linezolid 600 mg q12 h and fucidic acid 750 mg q12 h | |
linezolid 600 mg q12 h and rifampicin 600 mg q12 h | |
Methicillin resistant coagulase-negative staphylococci | linezolid 600 mg q12 h and fusidic acid 750 mg q12 h |
linezolid 600 mg q12 h and rifampicin 600 mg q12 h | |
E. faecalis | amoxicillin 1 g q6 h and rifampicin 600 mg q12 h |
amoxicillin 1 g q6 h and moxifloxacin 400 mg q24 h | |
linezolid 600 mg q12 h and rifampicin 600 mg q12 h | |
linezolid 600 mg q12 h and moxifloxacin 400 mg q24 h | |
Streptococci with a penicillin MIC < 1 mg/L | amoxicillin 1 g q6 h and rifampicin 600 mg q12 h |
linezolid 600 mg q12 h and rifampicin 600 mg q12 h | |
linezolid 600 mg q12 h and moxifloxacin 400 mg q24 h | |
Streptococci with penicillin MIC ≥ 1 mg/L | linezolid 600 mg q12 h and rifampicin 600 mg q12 h |
moxifloxacin 400 mg q24 h and rifampicin 600 mg q12 h | |
moxifloxacin 400 mg q24 h and clindamycin 600 mg q8 h |
Antibiotic | Stability at 25 °C | Diluent | Existing Data in Elastomeric Pumps | References |
---|---|---|---|---|
amoxicillin | 12 h | WFI/NS | Yes | [30] |
ampicillin | 30 h | NS | Yes but conflicting | [31] |
aztreonam | 48 | D5W | Yes | [32] |
Cefazolin * | 24 h | NS/D5W | Yes | [33,34,35] |
cefepime | 24 h | NS | Yes | [35,36] |
Cefotaxime * | 12–24 h | NS/D5W | No | [37,38] |
cefoxitin | 48 h | NS/D5W | Yes | [39] |
ceftaroline | 24 h | NS/D5W | Yes | [40] |
ceftazidime | 48 h | NS | Yes | [33,41] |
ceftazidime/avibactam | 12 h | NS/D5W/RL | Yes | [42] |
ceftolozane/tazobactam | 24 h | NS/D5W | Yes | [43] |
cefuroxime | 48 h | NS | Yes | [44,45] |
clindamycin | 16 d | D5W | No | [46] |
flucloxacillin | 24 h | NS | Yes | [35,47] |
Fosfomycin * | 24 h | WFI | No | [48,49] |
meropenem | 4 h | NS | Unsuitable (short stability) | [50] |
oxacillin | 24 h | NS | No | [51] |
benzylpenicillin potassium | 24–48 h | RA | Yes | [33,52] |
benzylpenicillin sodium | 12–24 h | NS | Yes | [53] |
piperacillin/tazobactam | 24 h | NS | Yes | [35] |
temocillin | 24 h | WFI | Yes | [54,55] |
vancomycin | 7 d | NS | Yes | [27] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Bella, S.; Beović, B.; Fabbiani, M.; Valentini, M.; Luzzati, R. Antimicrobial Stewardship: From Bedside to Theory. Thirteen Examples of Old and More Recent Strategies from Everyday Clinical Practice. Antibiotics 2020, 9, 398. https://doi.org/10.3390/antibiotics9070398
Di Bella S, Beović B, Fabbiani M, Valentini M, Luzzati R. Antimicrobial Stewardship: From Bedside to Theory. Thirteen Examples of Old and More Recent Strategies from Everyday Clinical Practice. Antibiotics. 2020; 9(7):398. https://doi.org/10.3390/antibiotics9070398
Chicago/Turabian StyleDi Bella, Stefano, Bojana Beović, Massimiliano Fabbiani, Michael Valentini, and Roberto Luzzati. 2020. "Antimicrobial Stewardship: From Bedside to Theory. Thirteen Examples of Old and More Recent Strategies from Everyday Clinical Practice" Antibiotics 9, no. 7: 398. https://doi.org/10.3390/antibiotics9070398
APA StyleDi Bella, S., Beović, B., Fabbiani, M., Valentini, M., & Luzzati, R. (2020). Antimicrobial Stewardship: From Bedside to Theory. Thirteen Examples of Old and More Recent Strategies from Everyday Clinical Practice. Antibiotics, 9(7), 398. https://doi.org/10.3390/antibiotics9070398