Determination of Delafloxacin in Pharmaceutical Formulations Using a Green RP-HPTLC and NP-HPTLC Methods: A Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Used
2.2. Preparation of Stock Slutions and DLFX Calibration Curve
2.3. Sample Preparation for the Analysis of DLFX in Commercial Tablets
2.4. Preparation of and Characterization DLFX-Loaded SLNs
2.5. Sample Preparation for Determination of DLFX in In-House Developed SLNs
2.6. Instrumentation and Analytical Conditions
- HPTLC instrument: CAMAG TLC system (Muttenz, Basel-landschaft, Switzerland)
- Software: WinCAT (version 1.4.3.6336)
- Syringe for sample application: CAMAG microliter Syringe (Hamilton, Bonaduz, Switzerland)
- TLC plates: 10 × 20 cm glass backed plates pre-coated with RP-18 silica gel 60 F254S plates (E-Merck, Darmstadt, Germany) for RP-HPTLC method and 10 × 20 cm glass backed plates pre-coated with silica gel 60 F254S plates (E. Merck) for NP-HPTLC method
- Sample applicator: CAMAG Linomat-V
- Gas for sample application: Nitrogen
- Development chamber: CAMAG automatic developing chamber 2 (ADC2)
- TLC scanner: CAMAG TLC scanner-III
- Stationary phase: 10 × 20 cm glass backed plates pre-coated with RP-18 silica gel 60 F254S plates (E. Merck) for the RP-HPTLC method and 10 × 20 cm glass backed plates pre-coated with silica gel 60 F254S plates (E. Merck) for the NP-HPTLC method
- Mobile phase for a green RP-HPTLC method: ethanol:water:ammonia solution (5:4:2 v/v/v)
- Mobile phase for NP-HPTLC method: Ethyl acetate: methanol: ammonia solution (5:4:2 v/v/v)
- Saturation time of mobile phase: 30 min at 22 °C
- Development distance on plate: 80 mm
- Development mode: Linear ascending mode
- Sample application rate: 150 nL/s
- Densitometry of scanning mode: Absorbance/reflectance.
- Scanning wavelength of APM: 295 nm
2.7. Analytical Method Validation
3. Results and Discussion
3.1. Preparation and Characterization of DLFX-Loaded SLNs
3.2. Method Development
3.3. Method Validation
3.4. Determination of DLFX in Commercial Tablets and SLNs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Falcone, M.; Concia, E.; Giusti, M.; Mazzone, A.; Santini, C.; Stefani, S.; Violi, F. Acute bacterial skin and skin structure infections in internal medicine wards: Old and new drugs. Intern. Emerg. Med. 2016, 11, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Ray, G.T.; Suaya, J.A.; Baxter, R. Incidence, microbiology, and patient characteristics of skin and soft-tissue infections in a U.S. population: A retrospective population based study. BMC Infect. Dis. 2013, 13, E252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassetti, M.; Della Siega, P.; Pecori, D.; Scarparo, C.; Righi, E. Delafloxacin for the treatment of respiratory and skin infections. Expert. Opin. Investig. Drugs 2015, 24, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.C.; Crotty, M.P.; White, B.P.; Worley, M.V. What is old is new again: Delafloxacin, a modern fluoroquinolone. Pharmacotherapy 2018, 38, 108–121. [Google Scholar] [CrossRef]
- Markham, A. Delafloxacin: First global approval. Drugs 2017, 77, 1481–1486. [Google Scholar] [CrossRef] [Green Version]
- Hatoum, H.T.; Akhras, K.S.; Lin, S.J. The attributable clinical and economic burden of skin and skin structure infections in hospitalized patients: A matched cohort study. Diagn. Microbiol. Infect. Dis. 2009, 64, 305–310. [Google Scholar] [CrossRef]
- Thabit, A.K.; Crandon, J.L.; Nicolau, D.P. Pharmacodynamic and pharmacokinetic profiling of delafloxacin in a murine lung model against community-acquired respiratory tract pathogens. Int. J. Antimicrob. Agents 2016, 48, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Pecori, D.; Cojutti, P.; Righi, E.; Pea, F. Clinical and pharmacokinetic drug evaluation of delafloxacin for the treatment of acute bacterial skin and skin structure infections. Expert Opin. Drug. Metab. Toxicol. 2017, 13, 1193–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiu, J.; Ting, G.; Kiang, T.K. Clinical pharmacokinetics and pharmacodynamics of delafloxacin. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.; Ezzeldin, E.; Harqash, R.N.; Anwer, M.K.; Azam, F. Development and validation of a novel UPLC-MS/MS method for quantification of delafloxacin in plasma and aqueous humour for pharmacokinetic analyses. J. Chromatogr. B 2020, 1138, E121961. [Google Scholar] [CrossRef] [PubMed]
- Dhangar, K.R.; Shirkhedkar, A.A. Estimation of delafloxacin using derivative spectrophotometry and area under curve in bulk material and in laboratory mixture. J. Pharm. Technol. Res. Manag. 2016, 4, 81–97. [Google Scholar] [CrossRef]
- Alam, P.; Iqbal, M.; Ezzeldin, E.; Khalil, N.Y.; Foudah, A.I.; Alqarni, M.H.; Shakeel, F. Simple and accurate HPTLC-densitometric method for quantification of delafloxacin (a novel fluoroquinolone antibiotic) in plasma samples: Application to pharmacokinetic study in rats. Antiobiotics 2020, 9, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoover, R.; Hunt, T.; Benedict, M.; Paulson, S.K.; Lawrence, L.; Cammarata, S.; Sun, E. Single and multiple ascending-dose studies of oral delafloxacin: Effects of food, sex, and age. Clin. Ther. 2016, 38, 39–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoover, R.; Alcorn, H., Jr.; Lawrence, L.; Paulson, S.K.; Quintas, M.; Cammarata, S.K. Pharmacokinetics of intravenous delafloxacin in patients with end-stage renal disease. J. Clin. Pharmacol. 2018, 58, 913–919. [Google Scholar] [CrossRef]
- Hoover, R.K.; Alcorn, H., Jr.; Lawrence, L.; Paulson, S.K.; Quintas, M.; Cammarata, S.K. Delafloxacin pharmacokinetics in subjects with varying degrees of renal function. J. Clin. Pharmacol. 2018, 58, 814–822. [Google Scholar] [CrossRef] [Green Version]
- Alam, P.; Ezzeldin, E.; Iqbal, M.; Anwer, M.K.; Mostafa, G.A.E.; Alqarni, M.H.; Foudah, A.I.; Shakeel, F. Ecofriendly densitometric RP-HPTLC method for determination of rivaroxaban in nanoparticle formulations using green solvents. RSC Adv. 2020, 10, 2133–2140. [Google Scholar] [CrossRef] [Green Version]
- Haq, N.; Shakeel, F.; Alanazi, F.; Alshora, D.H.; Ibrahim, M.A. Development and validation of a green RP-HPLC method for the analysis of rosuvastatin: A step towards making liquid chromatography environmentally benign. Green Process. Synth. 2018, 7, 160–169. [Google Scholar] [CrossRef]
- Abou-Taleb, N.H.; Al-Enany, N.M.; El-Sherbiny, D.T.; El-Subbagh, H.I. Digitally enhanced thin layer chromatography for simultaneous determination of norfloxacin tinidazole with the aid of Taguchi orthogonal array and desirability function approach: Greenness assessment by analytical eco-scale. J. Sep. Sci. 2020, 43, 1195–1202. [Google Scholar] [CrossRef]
- Glazowska, J.; Kaminski, M.M.; Kaminski, M. Chromatographic separation, determination and identification of ecdysteroids: Focus on Maral root (Rhaponticum carthamoides, Leuzea carthamoides). J. Sep. Sci. 2018, 41, 4304–4314. [Google Scholar] [CrossRef]
- Haq, N.; Iqbal, M.; Alanazi, F.K.; Alsarra, I.A.; Shakeel, F. Applying green analytical chemistry for rapid analysis of drugs: Adding health to pharmaceutical industry. Arabian J. Chem. 2017, 10, S777–S785. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, F.A.; Elmansi, H.; Fathy, M.E. Green RP-HPLC method for simulatneous determination of moxifloxacin combinations: Investigation of the greenness for the proposed method. Microchem. J. 2019, 148, 151–161. [Google Scholar] [CrossRef]
- Ostovan, A.; Ghaedi, M.; Arabi, M.; Yang, Q.; Li, J.; Chen, L. Hydrophilic Multitemplate molecularly imprinted biopolymers based on a green synthesis strategy for determination of B family vitamins. ACS Appl. Mater. Interfaces 2018, 10, 4140–4150. [Google Scholar] [CrossRef] [PubMed]
- Haq, N.; Siddiqui, N.A.; Alam, P.; Shakeel, F.; Alanazi, F.K.; Alsarra, I.A. Estimation of sodium lauryl sulphate concentration in marketed formulations by stability-indicating ‘green’ planar chromatographic method. Chiang Mai J. Sci. 2018, 45, 1531–1542. [Google Scholar]
- Youssof, A.M.E.; Salem-Bekhit, M.M.; Shakeel, F.; Alanazi, F.K.; Haq, N. Analysis of anti-neoplastic drug in bacterial ghost matrix, w/o/w double nanoemulsion and w/onanoemulsion by a validated ‘green’ liquid chromatographic method. Talanta 2016, 154, 292–298. [Google Scholar] [CrossRef]
- Alsuwyeh, A.A.; Alanazi, F.; Shakeel, F.; Salem-Bekhit, M.M.; Haq, N. Estimation of anti-neoplastic drug doxorubicin in bacterial ghost matrix by new “environmentally benign” RP-HPLC method: A step towards sustainable development of pharmaceutical industry. Arab. J. Sci. Eng. 2018, 43, 181–190. [Google Scholar] [CrossRef]
- Al-Alamein, A.M.A.; Abd El-Rahman, M.K.; Abdel-Moety, E.M.; Fawaz, E.M. Green HPTLC-densitometric approach for simultaneous determination and impurity-profiling of ebastine and phenylephrine hydrochloride. Microchem. J. 2019, 147, 1097–1102. [Google Scholar] [CrossRef]
- Rezk, M.R.; Monir, H.H.; Marzouk, H.M. Novel determination of a new antiviral combination; sofosbuvir and velpatasvir by high performance thin layer chromatographic method; application to real human samples. Microchem. J. 2019, 146, 828–834. [Google Scholar] [CrossRef]
- Choma, I.M.; Olszowy, M.; Gnat, S. Determination of chlorogenic acid, polyphenols and antioxidants in green coffee by thin-layer chromatography, effect-directed analysis and dot blot- comparison to HPLC and spectrophotometry methods. J. Sep. Sci. 2019, 42, 1542–1549. [Google Scholar] [CrossRef]
- Eman, A.A. Canagliflozocin stability study and eco-friendly chromatographic determination of its degradation products: A comparative study. J. Sep. Sci. 2018, 41, 822–830. [Google Scholar] [CrossRef]
- Dong, S.; He, J.; Hou, H.; Shuai, Y.; Wang, Q.; Yang, W.; Sun, Z.; Li, Q.; Bi, K.; Liu, R. Quality assessment of Herba Leonuri based on the analysis of multiple components using normal- and reversed-phase chromatographic methods. J. Sep. Sci. 2017, 40, 4482–4494. [Google Scholar] [CrossRef]
- International Conference on Harmonization (ICH). Q2 (R1): Validation of Analytical Procedures–Text and Methodology; International Conference on Harmonization (ICH): Geneva, Switzerland, 2005. [Google Scholar]
- Anwer, M.K.; Iqbal, M.; Muharram, M.M.; Mohammad, M.; Ezzeldin, E.; Aldawsari, M.F.; Alalaiwe, A.; Imam, F. Development of lipomer nanoparticles for the enhancement of drug release, antimicrobial activity and bioavailability of delafloxacin. Pharmaceutics 2020, 12, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, S.; Al-Rehaily, A.J.; Alam, P.; Alqahtani, A.S.; Hidayatullah, S.; Rehman, M.T.; Mothana, R.A.; Abbas, S.S.; Khan, M.U.; Khalid, J.M.; et al. Antidiabetic, antixidant, molecular docking and HPTLC analysis of miquelianin isolated from Euphorbia schimperi C. Presl. Saudi Pharm. J. 2019, 27, 655–663. [Google Scholar] [CrossRef] [PubMed]
Formulation Composition | Characterization Parameter | ||
---|---|---|---|
DLFX (mg) | 10 | Particle size ± SD (nm) | 368.0 ± 5.2 |
SA (mg) | 400 | Polydispersity index ± SD | 0.2 ± 0.0 |
CS (mg) | 10 | Zeta potential ± SD (mV) | 19.2 ± 1.4 |
Pluronic F-127 (mg) | 50 | Entrapment efficiency ± SD (%) | 80.4 ± 3.1 |
Parameters | Green RP-HPTLC | NP-HPTLC |
---|---|---|
Linearity range (ng/band) | 25−1000 | 50−600 |
Regression equation | Y = 33.62x − 184.11 | Y = 23.90x + 201.55 |
R2 | 0.9996 | 0.9995 |
Slope ± SD | 33.62 ± 1.62 | 23.90 ± 0.86 |
Intercept ± SD | 184.11 ± 4.52 | 201.55 ± 6.73 |
Standard error of slope | 0.66 | 0.35 |
Standard error of intercept | 1.84 | 2.74 |
95% confidence interval of slope | 30.77−36.46 | 22.38−25.41 |
95% confidence interval of intercept | 176.16−192.05 | 189.72−213.37 |
LOD ± SD (ng/band) | 8.54 ± 0.22 | 17.31 ± 0.51 |
LOQ ± SD (ng/band) | 25.62 ± 0.66 | 51.93 ± 1.53 |
Conc. (ng/band) | Theoretical Content (ng) | Conc. Found (ng) ± SD | Recovery (%) | RSD (%) |
---|---|---|---|---|
Green RP-HPTLC method | ||||
75 | 75 | 73.8 ± 1.4 | 98.4 | 1.89 |
300 | 300 | 296.9 ± 3.8 | 98.9 | 1.29 |
400 | 400 | 402.8 ± 7.0 | 100.7 | 1.74 |
500 | 500 | 505.1 ± 7.5 | 101.0 | 1.48 |
NP-HPTLC method | ||||
150 | 150 | 144.2 ± 2.5 | 96.1 | 1.73 |
300 | 300 | 290.1 ± 4.8 | 96.7 | 1.66 |
400 | 400 | 383.7 ± 9.8 | 95.9 | 2.57 |
500 | 500 | 480.2 ± 12.7 | 96.0 | 2.65 |
Conc. (ng/band) | Repeatability (Intraday Precision) | Intermediate Precision (Interday) | ||||
---|---|---|---|---|---|---|
Area ± SD | Standard Error | RSD (%) | Area ± SD | Standard Error | RSD (%) | |
Green RP-HPTLC method | ||||||
75 | 2316.7 ± 29.2 | 11.9 | 1.26 | 2442.2 ± 32.4 | 13.2 | 1.32 |
300 | 9776.1 ± 112.2 | 45.8 | 1.14 | 9598.2 ± 121.8 | 49.7 | 1.26 |
400 | 13,676.3 ± 219.3 | 89.5 | 1.60 | 13,754.6 ± 234.9 | 95.9 | 1.70 |
NP-HPTLC method | ||||||
150 | 3961.6 ± 69.7 | 28.4 | 1.75 | 4088.4 ± 75.3 | 30.7 | 1.84 |
300 | 7345.1 ± 126.7 | 51.7 | 1.72 | 7415.3 ± 137.2 | 56.0 | 1.85 |
400 | 9826.7 ± 241.6 | 98.6 | 2.45 | 9754.6 ± 255.5 | 104.3 | 2.61 |
Conc. (ng/band) | Mobile Phase Composition (ethanol:water:ammonia Solution) | Results | ||||
---|---|---|---|---|---|---|
Original | Used | Area ± SD | % RSD | Rf | ||
Green RP-HPTLC method | ||||||
5.2:3.8:2 | +0.2 | 9614.8 ± 106.9 | 1.11 | 0.83 | ||
300 | 5:4:2 | 5:4:2 | 0.0 | 9589.8 ± 104.1 | 1.08 | 0.84 |
4.8:4.2:2 | −0.2 | 9454.3 ± 114.8 | 1.21 | 0.85 | ||
NP-HPTLC method | ||||||
Mobile phase composition (ethyl acetate: methanol: ammonia solution) | ||||||
5.2:3.8: 2 | +0.2 | 7374.6 ± 122.7 | 1.66 | 0.43 | ||
300 | 5:4:2 | 5:4:2 | 0.0 | 7298.4 ± 116.5 | 1.59 | 0.44 |
4.8:4.2:2 | −0.2 | 7153.7 ± 134.4 | 1.87 | 0.45 |
Samples | Theoretical Content (mg) | Content Found (ng) ± SD | Assay (%) |
---|---|---|---|
Green RP-HPTLC method | |||
Marketed tablets | 50 | 49.1 ± 1.0 | 98.2 |
SLNs | 50 | 50.5 ± 1.1 | 101.0 |
NP-HPTLC method | |||
Marketed tablets | 50 | 47.2 ± 1.2 | 94.4 |
SLNs | 50 | 47.5 ± 1.3 | 95.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, P.; Ezzeldin, E.; Iqbal, M.; Mostafa, G.A.E.; Anwer, M.K.; Alqarni, M.H.; Foudah, A.I.; Shakeel, F. Determination of Delafloxacin in Pharmaceutical Formulations Using a Green RP-HPTLC and NP-HPTLC Methods: A Comparative Study. Antibiotics 2020, 9, 359. https://doi.org/10.3390/antibiotics9060359
Alam P, Ezzeldin E, Iqbal M, Mostafa GAE, Anwer MK, Alqarni MH, Foudah AI, Shakeel F. Determination of Delafloxacin in Pharmaceutical Formulations Using a Green RP-HPTLC and NP-HPTLC Methods: A Comparative Study. Antibiotics. 2020; 9(6):359. https://doi.org/10.3390/antibiotics9060359
Chicago/Turabian StyleAlam, Prawez, Essam Ezzeldin, Muzaffar Iqbal, Gamal A.E. Mostafa, Md. Khalid Anwer, Mohammed H. Alqarni, Ahmed I. Foudah, and Faiyaz Shakeel. 2020. "Determination of Delafloxacin in Pharmaceutical Formulations Using a Green RP-HPTLC and NP-HPTLC Methods: A Comparative Study" Antibiotics 9, no. 6: 359. https://doi.org/10.3390/antibiotics9060359
APA StyleAlam, P., Ezzeldin, E., Iqbal, M., Mostafa, G. A. E., Anwer, M. K., Alqarni, M. H., Foudah, A. I., & Shakeel, F. (2020). Determination of Delafloxacin in Pharmaceutical Formulations Using a Green RP-HPTLC and NP-HPTLC Methods: A Comparative Study. Antibiotics, 9(6), 359. https://doi.org/10.3390/antibiotics9060359