Antibiotic Resistance in Nosocomial Bacteria Isolated from Infected Wounds of Hospitalized Patients in Czech Republic
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Patient Cohort
4.2. Microbiological Analysis
4.3. Molecular Biologic Analysis
Author Contributions
Funding
Conflicts of Interest
References
- Torok, M.E.; Moran, E.; Cooke, F. Oxford Handbook of Infectious Diseases and Microbiology; Oxford University Press: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Gajdacs, M. The Continuing Threat of Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2019, 8, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bone, R.C.; Balk, R.A.; Cerra, F.B.; Dellinger, R.P.; Fein, A.M.; Knaus, W.A.; Schein, R.M.; Sibbald, W.J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992, 101, 1644–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Tumbarello, M.; Sanguinetti, M.; Montuori, E.; Trecarichi, E.M.; Posteraro, B.; Fiori, B.; Citton, R.; D’Inzeo, T.; Fadda, G.; Cauda, R.; et al. Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae: Importance of inadequate initial antimicrobial treatment. Antimicrob Agents Chemother 2007, 51, 1987–1994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trecarichi, E.M.; Tumbarello, M.; Spanu, T.; Caira, M.; Fianchi, L.; Chiusolo, P.; Fadda, G.; Leone, G.; Cauda, R.; Pagano, L. Incidence and clinical impact of extended-spectrum-beta-lactamase (ESBL) production and fluoroquinolone resistance in bloodstream infections caused by Escherichia coli in patients with hematological malignancies. J. Infect. 2009, 58, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Herkel, T.; Uvizl, R.; Doubravska, L.; Adamus, M.; Gabrhelik, T.; Htoutou Sedlakova, M.; Kolar, M.; Hanulik, V.; Pudova, V.; Langova, K.; et al. Epidemiology of hospital-acquired pneumonia: Results of a Central European multicenter, prospective, observational study compared with data from the European region. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech Repub. 2016, 160, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Bogdanova, K.; Kolar, M.; Langova, K.; Dusek, M.; Mikyska, A.; Bostikova, V.; Bostik, P.; Olsovska, J. Inhibitory effect of hop fractions against Gram-positive multi-resistant bacteria. A pilot study. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech Repub. 2018, 162, 276–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogdanova, K.; Roderova, M.; Kolar, M.; Langova, K.; Dusek, M.; Jost, P.; Kubelkova, K.; Bostik, P.; Olsovska, J. Antibiofilm activity of bioactive hop compounds humulone, lupulone and xanthohumol toward susceptible and resistant staphylococci. Res. Microbiol. 2018, 169, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Giacometti, A.; Cirioni, O.; Schimizzi, A.M.; Del Prete, M.S.; Barchiesi, F.; D’Errico, M.M.; Petrelli, E.; Scalise, G. Epidemiology and microbiology of surgical wound infections. J. Clin. Microbiol. 2000, 38, 918–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedaoo, J.B.; Rathod, V.N.; Paramne, A.V. Bacteriology of surgical site infections and antibiotic susceptibility pattern in isolates of postoperative wound infections. Acad. J. Surg. 2018, 5, 16–20. [Google Scholar]
- Ho, M.L.; Seto, W.H.; Wong, L.C.; Wong, T.Y. Effectiveness of multifaceted hand hygiene interventions in long-term care facilities in Hong Kong: A cluster-randomized controlled trial. Infect. Control. Hosp. Epidemiol. 2012, 33, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Antibiotic resistance threats. Centers for Disease Control and Prevention. 2013. Available online: https://www.cdc.gov/drugresistance/biggest_threats.html (accessed on 25 March 2020).
- Kaier, K.; Frank, U.; Hagist, C.; Conrad, A.; Meyer, E. The impact of antimicrobial drug consumption and alcohol-based hand rub use on the emergence and spread of extended-spectrum beta-lactamase-producing strains: A time-series analysis. J. Antimicrob Chemother. 2009, 63, 609–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scudiero, O.; Brancaccio, M.; Mennitti, C.; Laneri, S.; Lombardo, B.; De Biasi, M.G.; De Gregorio, E.; Pagliuca, C.; Colicchio, R.; Salvatore, P.; et al. Human defensins: A novel approach in the fight against skin colonizing Staphylococcus aureus. Antibiotics 2020, 9, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Committee on Antimicrobial Susceptibility Testing. Available online: http://www.eucast.org (accessed on 25 March 2020).
- Htoutou Sedlakova, M.; Hanulik, V.; Chroma, M.; Hricova, K.; Kolar, M.; Latal, T.; Schaumann, R.; Rodloff, A.C. Phenotypic detection of broad-spectrum beta-lactamases in microbiological practice. Med. Sci. Monit. 2011, 17, BR147–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutka-Malen, S.; Evers, S.; Courvalin, P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J. Clin. Microbiol. 1995, 33, 1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chanawong, A.; M’Zali, F.H.; Heritage, J.; Lulitanond, A.; Hawkey, P.M. Characterisation of extended-spectrum beta-lactamases of the SHV family using a combination of PCR-single strand conformational polymorphism (PCR-SSCP) and PCR-restriction fragment length polymorphism (PCR-RFLP). FEMS Microbiol. Lett. 2000, 184, 85–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, D.C.; de Lencastre, H. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2002, 46, 2155–2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagani, L.; Dell’Amico, E.; Migliavacca, R.; D’Andrea, M.M.; Giacobone, E.; Amicosante, G.; Romero, E.; Rossolini, G.M. Multiple CTX-M-type extended-spectrum beta-lactamases in nosocomial isolates of Enterobacteriaceae from a hospital in northern Italy. J. Clin. Microbiol. 2003, 41, 4264–4269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Perez, F.J.; Hanson, N.D. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 2002, 40, 2153–2162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steward, C.D.; Rasheed, J.K.; Hubert, S.K.; Biddle, J.W.; Raney, P.M.; Anderson, G.J.; Williams, P.P.; Brittain, K.L.; Oliver, A.; McGowan, J.E., Jr.; et al. Characterization of clinical isolates of Klebsiella pneumoniae from 19 laboratories using the National Committee for Clinical Laboratory Standards extended-spectrum beta-lactamase detection methods. J. Clin. Microbiol. 2001, 39, 2864–2872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | Number of Samples | Percent of Total |
---|---|---|
Staphylococcus aureus | 2314 | 21.1 |
Escherichia coli | 1623 | 14.8 |
Pseudomonas aeruginosa | 1393 | 12.7 |
Enterococcus faecalis | 1020 | 9.3 |
Klebsiella pneumoniae | 899 | 8.2 |
Streptococcus pyogenes | 724 | 6.6 |
Proteus mirabilis | 680 | 6.2 |
Enterobacter spp. | 636 | 5.8 |
Enterococcus faecium | 329 | 3.0 |
Streptococcus agalactiae | 285 | 2.6 |
Morganella morganii | 230 | 2.1 |
Streptococcus anginosus | 219 | 2.0 |
Other | 625 | 5.7 |
Resistance Phenotype | Number of Isolates | Percent of Total |
---|---|---|
Methicillin-resistant Staphylococcus aureus | 199 | 8.6 |
Vancomycin-resistant enterococci | 46 | 3.4 |
Streptococci of the MLSB phenotype | 183 | 14.9 |
ESBL-producing Escherichia coli | 258 | 15.9 |
AmpC-producing Enterobacter spp. | 163 | 25.6 |
ESBL-producing Klebsiella pneumoniae | 434 | 48.3 |
Enterobacteria resistant to carbapenems | 32 | 0.8 |
Pseudomonas aeruginosa resistant to meropenem | 382 | 27.4 |
Pseudomonas aeruginosa resistant to ceftazidime | 263 | 18.9 |
Pseudomonas aeruginosa resistant to ciprofloxacin | 442 | 31.7 |
Pseudomonas aeruginosa resistant to gentamicin | 274 | 19.7 |
Pseudomonas aeruginosa resistant to piperacillin/tazobactam | 337 | 24.2 |
Targeted Gene | Primer Name | Sequence (5′ to 3′) a | Length (Bases) | Amplicon Size | Tm (°C) | Reference | |
---|---|---|---|---|---|---|---|
Enterobacterales | |||||||
ESBL | blaTEM type | TEM-F | GCGGAACCCCTATTTG | 16 | 964 bp | 56 | 12 |
TEM-R | ACCAATGCTTAATCAGTGAG | 20 | |||||
blaSHV type | SHV-F | CTTTACTCGCCTTTATCG | 18 | 827 bp | 56 | 13 | |
SHV-R | TCCCGCAGATAAATCACCA | 19 | |||||
blaCTX-M type | CTX-M-F | ATGTGCAGYACCAGTAARGT | 20 | 593 bp | 56 | 14 | |
CTX-M-R | TGGGTRAARTARGTSACCAGA | 21 | |||||
blaOXA-1-like type | OXA-1F | ACACAATACATATCAACTTCGC | 22 | 813 bp | 56 | 15 | |
OXA-1R | AGTGTGTTTAGAATGGTGATC | 21 | |||||
blaOXA-2-like type | OXA-2F | TTCAAGCCAAAGGCACGATAG | 21 | 702 bp | 58 | 15 | |
OXA-2R | TCCGAGTTGACTGCCGGGTTG | 21 | |||||
blaOXA-10-like type | OXA-10F | CGTGCTTTGTAAAAGTAGCAG | 21 | 651 bp | 56 | 15 | |
OXA-10R | CATGATTTTGGTGGGAATGG | 20 | |||||
AmpC | blaLAT type, blaCMY type, blaBIL type | CIT-F | TGGCCAGAACTGACAGGCAAA | 21 | 462 bp | 64 | 16 |
CIT-R | TTTCTCCTGAACGTGGCTGGC | 21 | |||||
blaMOX type, blaCMY type | MOX-F | GCTGCTCAAGGAGCACAGGAT | 21 | 520 bp | 64 | 16 | |
MOX-R | CACATTGACATAGGTGTGC | 19 | |||||
blaDHA type | DHA-F | AACTTTCACAGGTGTGCTGGGT | 22 | 405 bp | 64 | 16 | |
DHA-R | CCGTACGCATACTGGCTTTGC | 21 | |||||
blaACC type | ACC-F | AACAGCCTCAGCAGCCGGTTA | 21 | 346 bp | 64 | 16 | |
ACC-R | TTCGCCGCAATCATCCCTAGC | 21 | |||||
blaMIR type, blaACT type | EBC-F | TCGGTAAAGCCGATGTTGCGG | 21 | 302 bp | 64 | 16 | |
EBC-R | CTTCCACTGCGGCTGCCAGTT | 21 | |||||
blaFOX type | FOX-F | AACATGGGGTATCAGGGAGAT | 21 | 190 bp | 64 | 16 | |
FOX-R | CAAAGCGCGTAACCGGATTGG | 21 | |||||
Enterococcus faecium | |||||||
Vancomycin resistance | vanA/B genes | VanA-F | GGGAAAACGACAATTGC | 17 | 732 bp | 62 | 17 |
VanA-R | GTACAATGCGGCCGTTA | 17 | |||||
VanB-F | ATGGGAAGCCGATAGTC | 17 | 635 bp | 62 | 17 | ||
VanB-R | GATTTCGTTCCTCGACC | 17 | |||||
Staphylococcus aureus | |||||||
Methicillin resistance | mecA gene | MecA-F | TCCAGATTACAACTTCACCAGG | 22 | 162 bp | 53 | 18 |
MecA-R | CCACTTCATATCTTGTAACG | 20 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolar, M.; Cermak, P.; Hobzova, L.; Bogdanova, K.; Neradova, K.; Mlynarcik, P.; Bostik, P. Antibiotic Resistance in Nosocomial Bacteria Isolated from Infected Wounds of Hospitalized Patients in Czech Republic. Antibiotics 2020, 9, 342. https://doi.org/10.3390/antibiotics9060342
Kolar M, Cermak P, Hobzova L, Bogdanova K, Neradova K, Mlynarcik P, Bostik P. Antibiotic Resistance in Nosocomial Bacteria Isolated from Infected Wounds of Hospitalized Patients in Czech Republic. Antibiotics. 2020; 9(6):342. https://doi.org/10.3390/antibiotics9060342
Chicago/Turabian StyleKolar, Milan, Pavel Cermak, Lenka Hobzova, Katerina Bogdanova, Katerina Neradova, Patrik Mlynarcik, and Pavel Bostik. 2020. "Antibiotic Resistance in Nosocomial Bacteria Isolated from Infected Wounds of Hospitalized Patients in Czech Republic" Antibiotics 9, no. 6: 342. https://doi.org/10.3390/antibiotics9060342
APA StyleKolar, M., Cermak, P., Hobzova, L., Bogdanova, K., Neradova, K., Mlynarcik, P., & Bostik, P. (2020). Antibiotic Resistance in Nosocomial Bacteria Isolated from Infected Wounds of Hospitalized Patients in Czech Republic. Antibiotics, 9(6), 342. https://doi.org/10.3390/antibiotics9060342