Innate Antimicrobial Defense of Skin and Oral Mucosa
Abstract
1. Permeability Barriers
2. pH
3. Nutrients
4. Antimicrobial Peptides
5. Lysozyme
6. Other Proteins in Saliva
7. Antimicrobial Lipids
8. Highlights
Funding
Conflicts of Interest
References
- Kligman, A.M. Corneobiology and Corneotherapy—A final chapter. Int. J. Cosmet. Sci. 2011, 33, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Hoath, S.B.; Leahy, D.G. The organization of human epidermis: Functional epidermal; units and phi proportionality. J. Investig. Dermatol. 2003, 121, 1440–1446. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, I.C.; Linder, J.E. An examination of cellular organization within the stratum corneum by a silver staining method. J. Investig. Dermatol. 1973, 61, 245–250. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nemes, Z.; Steinert, P.M. Bricks and mortar of the epidermal barrier. Exp. Mol. Med. 1999, 31, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Breathnach, A.S.; Goodman, T.; Stolinski, C.; Gross, M. Freeze-fracture replication of cells of stratum corneum of human epidermis. J. Anat. 1973, 114, 65–81. [Google Scholar]
- Elias, P.M.; McNutt, N.S.; Friend, D.S. Membrane alterations during cornification of mammalian squamous epithelia: A freeze-fracture, tracer and thin section study. Anat. Rec. 1977, 189, 577–593. [Google Scholar] [CrossRef]
- Madison, K.C.; Swartzendruber, D.C.; Wertz, P.W.; Downing, D.T. Presence of intact intercellular lipid lamellae in the upper layers of the stratum corneum. J. Investig. Dermatol. 1987, 88, 714–718. [Google Scholar] [CrossRef]
- Steinert, P.M.; Roop, D.R. Molecular and cellular biology of intermediate filaments. Annu. Rev. Biochem. 1988, 57, 593–625. [Google Scholar] [CrossRef]
- Gray, G.M.; Yardley, H.J. Different populations of pig epidermal cells: Isolation and lipid composition. J. Lipid Res. 1975, 16, 441–447. [Google Scholar]
- Presland, R.B.; Dale, B.A. Epithelial structural proteins of the skin and oral cavity: Function in health and disease. Crit. Rev. Oral Biol. Med. 2000, 11, 383–408. [Google Scholar] [CrossRef]
- Wertz, P. Epidermal lamellar granules. Skin Pharmacol. Physiol. 2018, 31, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Madison, K.C.; Sando, G.N.; Howard, E.J.; True, C.A.; Gilbert, D.; Swartzendruber, D.C.; Wertz, P.W. Lamellar granule biogenesis: A role for ceramide glucosyltransferase, lysosomal enzyme transport, and the Golgi. J. Investig. Dermatol. Symp. Proc. 1998, 3, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Dale, B.A.; Presland, R.B.; Fleckman, P.; Kam, E.; Resing, K.A. Phenotypic expression and processing of filaggrin in epidermal differentiation. In Molecular Biology of the Skin; Darmon, M., Blumenberg, M., Eds.; San Diego Academic Press: San Diego, CA, USA, 1993; pp. 323–350. [Google Scholar]
- Kalinin, A.E.; Kajava, A.V.; Steinert, P.M. Epithelial barrier function: Assembly and structural features of the cornified cell envelope. Bioessays 2002, 24, 789–800. [Google Scholar] [CrossRef] [PubMed]
- Wertz, P.W.; Downing, D.T. Covalently bound omega-hydroxyacylsphingosine in the stratum corneum. Biochim. Biophys. Acta 1987, 917, 108–111. [Google Scholar] [CrossRef]
- Swartzendruber, D.C.; Wertz, P.W.; Madison, K.C.; Downing, D.T. Evidence that the corneocyte has a chemically bound lipid envelope. J. Investig. Dermatol. 1987, 88, 709–713. [Google Scholar] [CrossRef]
- Long, S.A.; Wertz, P.W.; Strauss, J.S.; Downing, D.T. Human stratum corneum polar lipids and; desquamation. Arch. Dermatol. Res. 1986, 277, 284–287. [Google Scholar] [CrossRef]
- Brysk, M.M.; Rajaranan, S. Cohesion and desquamation of epidermal stratum corneum. Prog. Histochem. Cytochem. 1992, 25, 1–53. [Google Scholar] [CrossRef]
- Sato, J.; Denda, M.; Nakanishi, J.; Nomura, J.; Koyama, J. Cholesterol sulfate inhibits proteases that are involved in desquamation of stratum corneum. J. Investig. Dermatol. 1998, 111, 189–193. [Google Scholar] [CrossRef]
- Elias, P.M.; Williams, M.L.; Choi, E.H.; Feingold, K.R. Role of cholesterol sulfate in epidermal structure and function: Lessons from X-linked ichthyosis. Biochim. Biophys. Acta 2014, 184, 353–361. [Google Scholar] [CrossRef]
- Squier, C.A.; Kremer, M.J. Biology of oral mucosa and esophagus. J. Natl. Cancer Inst. Monogr. 2001, 29, 7–15. [Google Scholar] [CrossRef]
- Squier, C.A.; Cox, P.S.; Wertz, P.W.; Downing, D.T. The lipid composition of porcine epidermis and oral epithelium. Arch. Oral Biol. 1986, 31, 741–747. [Google Scholar] [CrossRef]
- Wertz, P.W.; Cox, P.S.; Squier, C.A.; Downing, D.T. Lipids of epidermis and keratinizing and non-keratinizing oral epithelia. Comp. Biochem. Physiol. B 1986, 83, 529–531. [Google Scholar] [CrossRef]
- Chang, F.; Swartzendruber, D.C.; Wertz, P.W.; Squier, C.A. Covalently bound lipids in keratinizing epithelia. Biochim. Biophys. Acta 1993, 1150, 98–102. [Google Scholar] [CrossRef]
- Wertz, P.W.; Squier, C.A. Cellular and molecular basis of barrier function in oral epithelium. Crit. Rev. Ther. Drug Carr. Syst. 1991, 8, 237–269. [Google Scholar]
- Squier, C.A.; Hoops, R.M. A study of the permeability barrier in epidermis and oral epithelium using horseradish peroxidase as a tracer in vitro. Br. J. Dermatol. 1976, 95, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Squier, C.A. Membrane coating granules in nonkeratinizing oral epithelium. J. Ultrastruct. Res. 1977, 60, 212–220. [Google Scholar] [CrossRef]
- Law, S.; Wertz, P.W.; Swartzendruber, D.C.; Squier, C.A. Regional variation in content, composition and organization of porcine epithelial barrier lipids revealed by thin-layer chromatography and transmission electron microscopy. Arch. Oral Biol. 1991, 40, 1085–1091. [Google Scholar] [CrossRef]
- Takahashi, M.; Machida, Y.; Marks, R. Measurement of turnover time of stratum corneum using dansyl chloride fluorescence. J. Soc. Cosmet. Chem. 1987, 38, 321–331. [Google Scholar]
- Baker, H.; Kligman, A. Technique for estimating turnover time of human stratum corneum. Arch. Dermatol. 1967, 95, 408–411. [Google Scholar] [CrossRef]
- Lambers, H.; Piessens, S.; Bloem, A.; Pronk, H.; Finkel, P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int. J. Cosmet. Sci. 2006, 28, 359–370. [Google Scholar] [CrossRef]
- Umbreit, W.W. The climate of growth. In Modern Microbiology; Umbreit, W.W., Ed.; W.H. Freeman and Company: San Francisco, CA, USA, 1962; p. 129. [Google Scholar]
- Elias, P.M. Stratum corneum acidification: How and why? Exp. Dermatol. 2015, 24, 179–180. [Google Scholar] [CrossRef]
- Proksch, E. pH in nature, humans and skin. J. Dermatol. 2018, 45, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Freinkel, R.K. Metabolism of glucose-C-14 by human skin in vitro. J. Investig. Dermatol. 1960, 34, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Schurer, N. pH and acne. Curr. Pobl. Dermatol. 2018, 54, 115–122. [Google Scholar]
- Yazdanparast, T.; Yazdani, K.; Humbert, P.; Khatami, A.; Ahmad Nasroliahi, S.; Hassanzadeh, H.; Ehsani, A.H.; Izadi Firouzabadi, L.; Firooz, A. Comparison of biophysical, biomechanical and ultrasonographic properties of skin in chronic dermatitis, psoriasis and lichen planus. Med. J. Repub. Iran. 2018. [Google Scholar] [CrossRef]
- Yazdanparast, T.; Yazdani, K.; Humbert, P.; Khatami, A.; Ahmad Nasroliahi, S.; Hassanzadeh, H.; Firouzabadi, L.; Firooz, A. Biophysical measurements and ultrasonographic findings in chronic dermatitis in comparison with uninvolved skin. Indian J. Dermatol. 2019, 64, 90–96. [Google Scholar]
- Baliga, S.; Muglikar, S.; Kale, R. Salivary pH: A diagnostic biomarker. J. Indian Soc. Periodontol. 2013, 17, 461–465. [Google Scholar] [CrossRef]
- Van’t Hof, W.; Veerman, E.C.I.; Nieuw Amerongen, A.V.; Ligtenberg, A.J.M. Antimicrobial defense systems in saliva. Monogr. Oral Sci. 2014, 24, 40–51. [Google Scholar]
- U.S. Department of Health and Human Services, Oral Health in America: A Report of the Surgeon General; U.S. Department of Health and Human Services, National Institute of Dental and Craniofacial Research, National Institutes of Health: Rockville, MD, USA, 2000.
- Marshall, T.A. Dietary implications for dental caries: A practical approach on dietary counseling. Dent. Clin. N. Am. 2019, 63, 595–605. [Google Scholar] [CrossRef]
- Angelova-Fischer, I.; Fischer, T.; Abels, C.; Zillikens, D. Accelerated barrier recovery and enhancement of the integrity and properties by a topical application of a pH 4 vs a pH 5.8 water in oil emulsion in aged skin. Br. J. Dermatol. 2018, 179, 471–477. [Google Scholar] [CrossRef]
- Turner, R.; Biedermann, K.; Morgan, J.; Keswick, B.; Ertel, K.; Barker, M. Efficacy of organic acids in hand cleaners for prevention of rhinovirus infections. Antimicrob. Agents Chemother. 2004, 48, 2595–2598. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Forslind, B.; Lindberg, M.; Malmqvist, K.G.; Pallon, J.; Roomans, G.M.; Werner-Linde, Y. Human skin physiology studied by particle probe microanalysis. Scanning Microsc. 1995, 9, 1011–1025. [Google Scholar] [PubMed]
- Singh, P.K.; Parsek, M.R.; Greenberg, E.P.; Welsh, M.J. A component of innate immunity prevents; bacterial biofilm formation. Nature 2002, 417, 552–555. [Google Scholar] [CrossRef] [PubMed]
- Zasloff, M. Antimicrobial peptides in multicellular organisms. Nature 2002, 415, 389–395. [Google Scholar] [CrossRef]
- Zasloff, M. Antimicrobial peptides of multicellular organisms: My perspective. Adv. Exp. Med. Biol. 2019. [Google Scholar] [CrossRef]
- O’Sullivan, J.; Rea, M.; O’Connor, P.; Hill, C.; Ross, R. Human skin microbiota is a rich source of bacteriocin-producing staphylococci that kill human pathogens. FEMS Microbiol. Ecol. 2019. [Google Scholar] [CrossRef]
- Iwase, T.; Uehara Shinji, H.; Tajima, A.; Seo, H.; Takada, K.; Agata, T.; Mizunoe, Y. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 2010, 465, 346–349. [Google Scholar] [CrossRef]
- Nakatsuji, T.; Chen, T.H.; Narala, S.; Chun, K.A.; Two, A.M.; Yun, T.; Shafig, F.; Kotol, P.F.; Bouslimani, A.; Melnik, A.V.; et al. Antinicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci. Transl. Med. 2017. [Google Scholar] [CrossRef]
- Fleming, A. On a remarkable bacteriolytic element found in tissues and secretions. Proc. Royal Soc. B 1922, 93, 306–317. [Google Scholar]
- Ragland, S.A.; Criss, K.C. From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS Pathog. 2017. [Google Scholar] [CrossRef]
- Raymond, A.A.; Gonzales de Peredo, A.; Stella, A.; Ishida-Yamamoto, A.; Bouyssie, D.; Serre, G.; Monsarrat, B.; Simon, M. Lamellar bodies of human epidermis. Mol. Cell. Proteom. 2008, 7, 2151–2175. [Google Scholar] [CrossRef] [PubMed]
- Tsuge, K.; Kataoka, M.; Seto, Y. Cyanide and thiocyanate levels in blood and saliva of healthy ult volunteers. J. Health Sci. 2000, 46, 343–350. [Google Scholar] [CrossRef]
- Pruit, K.M.; Tenovuo, J.; Mansson-Rahemtulla, B.; Harrington, P.; Baldone, D.C. Is thiocyanate peroxidation at equilibrium in vivo? Biochim. Biophys. Acta 1986, 870, 385–391. [Google Scholar] [CrossRef]
- Magacz, M.; Kedziora, K.; Sapa, J.; Krzysciak, W. The significance of lactoperoxidase system in oral health: Application and efficacy in oral hygiene products. Int. J. Mol. Sci. 2019, 20, 1443. [Google Scholar] [CrossRef]
- Feller, L.; Altini, M.; Khammissa, R.A.; Chandran, R.; Bouckaert, M.; Lemmer, J. Oral mucosal immunity. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 116, 576–583. [Google Scholar] [CrossRef]
- Burtenshaw, J.M. The mechanism of self disinfection of the human skin and its appendages. J. Hyg. 1942, 42, 184–209. [Google Scholar] [CrossRef]
- Rothman, S.; Smiljanic, A.M.; Weitkamp, A.W. Mechanism of spontaneous cure in puberty of ringworm of the scalp. Science 1946, 104, 201–203. [Google Scholar] [CrossRef]
- Weitkamp, A.W.; Smiljanic, A.M.; Rothman, S. The free fatty acids of human hair fat. J. Am. Chem. Soc. 1947, 69, 1936–1939. [Google Scholar] [CrossRef]
- Bibel, D.J.; Shinefield, H.R. Antimicrobial activity of sphingosines. J. Investig. Dermatol. 1992, 98, 269–273. [Google Scholar] [CrossRef]
- Fischer, C.L.; Drake, D.R.; Dawson, D.V.; Blanchette, D.R.; Brogden, K.A.; Wertz, P.W. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria. Antimicrob. Agents Chemother. 2012, 56, 1157–1161. [Google Scholar] [CrossRef]
- Kabara, J.J.; Vrable, R. Antimicrobial lipids: Natural and synthetic fatty acids and monoglycerides. Lipids 1977, 12, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Brasser, A.J.; Barwacz, C.A.; Dawson, D.V.; Brogden, K.A.; Drake, D.R.; Wertz, P.W. Presence of wax esters and squalene in human saliva. Arch. Oral Biol. 2011, 56, 588–591. [Google Scholar] [CrossRef] [PubMed]
- Brasser, A.; Barwacz, C.; Bratt, C.L.; Dawson, D.; Brogden, K.A.; Drake, D.; Wertz, P. Free sphingosine in human saliva. J. Dent. Res. 2011, 90A, 3465. [Google Scholar]
- Wu, C.-M.; Wei, P.-J.; Shen, Y.-T.; Chang, H.-L.; Tsai, Y.-M.; Pan, H.-F.; Chang, Y.-C.; Wei, Y.-C.; Yang, C.-J. Female Asthmatic Patients Have Higher Risk to Develop Gemifloxicin-Associated Skin Rash, Highlighting Unique Delayed Onset Characteristics. Antibiotics 2019, 8, 134. [Google Scholar] [CrossRef] [PubMed]
- Gomez Hernandez, M.P.; Bates, A.M.; Lanzel, E.A.; Comnick, C.; Xie, X.J.; Brogden, K.A. HBD3 Induces PD-L1 Expression on Head and Neck Squamous Cell Carcinoma Cell lines. Antibiotics 2019, 8, 161. [Google Scholar] [CrossRef]
- Fischer, C.L. Antimicrobial activity of host-derived lipids. Antibiotics 2020. [Google Scholar] [CrossRef]
- Bruning, E.; Chen, Y.; McCue, K.A.; Rubino, J.R.; Wilkinson, J.E.; Brown, A.D.G. A 28 Day Assessment of a Lactic Acid-containing Antimicrobial Intimate Gel Wash Formulation on Skin Tolerance and Impact on the Vulvar Microbiome. Antibiotics 2020. [Google Scholar] [CrossRef]
- Nakagawa, S.; Hillebrand, G.G.; Nunez, G. Rosemarinus officinalis L. (Rosemary) Extracts Containing Carnosic Acid and Carnosol are Potent Inhibitors of Staphylococcus aureus Virulence. Antibiotics 2020. [Google Scholar] [CrossRef]
- Smith, R.; Russo, J.; Fiegel, J.; Brogden, N. Antibiotic Delivery Strategies to Treat Skin Infections When Innate Antimicrobial Defense Fails. Antibiotics 2020. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wertz, P.W.; de Szalay, S. Innate Antimicrobial Defense of Skin and Oral Mucosa. Antibiotics 2020, 9, 159. https://doi.org/10.3390/antibiotics9040159
Wertz PW, de Szalay S. Innate Antimicrobial Defense of Skin and Oral Mucosa. Antibiotics. 2020; 9(4):159. https://doi.org/10.3390/antibiotics9040159
Chicago/Turabian StyleWertz, Philip W., and Sarah de Szalay. 2020. "Innate Antimicrobial Defense of Skin and Oral Mucosa" Antibiotics 9, no. 4: 159. https://doi.org/10.3390/antibiotics9040159
APA StyleWertz, P. W., & de Szalay, S. (2020). Innate Antimicrobial Defense of Skin and Oral Mucosa. Antibiotics, 9(4), 159. https://doi.org/10.3390/antibiotics9040159