Antimicrobial Properties on Non-Antibiotic Drugs in the Era of Increased Bacterial Resistance
Abstract
:1. Introduction
2. NSAIDs
3. Local Anaesthetics
4. Opioids
5. Antipsychotics
6. Antidepressants
7. Antiplatelets Drugs
8. Antihistamines
9. Statins
Non Antibiotic Agent | Antimicrobial Spectrum | Suggested Mechanisms of Action | References |
---|---|---|---|
NSAIDs | |||
Acetysalicylic acid/salicylic acid | Staphylococcus aureus, Ps. aeruginosa, Campylobacter pylori, Helicobacter pylori, Epidermophyton floccosum, Microsporum spp., Trichophyton spp. Hepatitis C virus, influenza virus | Modulation of the expression of many genes, reduction of polysacharide capsule production, in S. aureus reduction of hemolysin production, in Ps. aeruginosa reduction of elastase, hemolysin, protease pyocyanin production, in H. pylori reduction in hemolysin production | [4] |
Ibuprofen, diclofenac, fulbiprofen | Escherichia coli, Staphylococcus aureus, Microsporum spp., and Trichophyton spp., E. faecalis | Inhibition of DNA synthesis. In E. coli: inhibition of the DNA polymerase III β subunit | [6] |
Local anaesthtetics: | |||
Lidocaine, bupivacaine | Escherichia coli, Ps. aeruginosa, Staphylococcus aureus, Candida albicans, Coagulase(-) Staphylococcus, MRSA, Klebsiella, Enterobacter, E. coli, E. Faecalis and Proteus species | Disruption of bacterial cell membrane, inhibition of cell wall synthesis, dysfunction of cellular respiration, alteration in DNA synthesis, lysis of protoplasts, alteration in permeability and leakage of intracellular components, ultrastructural changes, inhibition of membrane-bound enzymatic activities | [8,9] |
Opioids | |||
Tramandol, meperidine | Escherichia coli, S. aureus S. epidermidis, Ps. aeruginosa S. pneumoniae, S. pyogenes, MRSA | No data exist on possible mechanism | [11,13] |
Antipsychotics: | |||
Phenothiazines(chlorpromazine, thioridazine, fluphenazin) | Gram(+)cocci, Mycobacteria, Shigella spp., E. coli, Salmonella spp., Acinetobacter baumanii, Klebsiella pneumonia, Plasmodium falciparum, herpes simplex, HBV, measles influenza, SV40, HIV, human herpes virus, JC virus | Adherence reduction in the pathogens in the endothelial cells, efflux pumps inhibition. Inhibition of: the binding of virus to host cell membrane receptors, the calcium-dependent endocytosis of viruses and the viral DNA replicatiοn | [20,21] |
Antidepressants: | |||
Sertraline, fluoxetine, paroxetine | Staphylococcus spp, Enterococcus, Citrobacter spp, Ps. aeruginosa, Klebsiella pneumoniae and Morganella morganii, Haemophilus influenza, Moraxella catarrhalis, Campylobacter jejuni, Acinetobacter, Bacteroides fragilis, Clostridium perfringens and Clostridium difficile | Inhibition of efflux pumps, antiplasmid activity targeting the replicating plasmid DNA and the DNA gyrase enzyme. | [25,26] |
Amitriptyline hydrochloride | Aspergillus and Fusarim, Aspergillus spp, Candida parapsilosis, Plasmodium falciparum, Leishmania spp, Staphylococcus spp., Bacillus spp., Vibrio Cholerae, Micrococcus spp., Lactobacilus sporogenes, Citrobacter spp., Shigella, Salmonella, V. parahaemolyticus, E. coli, K. pneumonia, Pseudomonas spp | ||
Antiplatelets | |||
ticagrelor | MRSE, MSSA, MRSA, glycopeptide intermediate Staphylococcus aureus (GISA); Enterococcus faecalis; vancomycin-resistant E. faecalis (VRE); Streptococcus agalactiae | No data exist on possible mechanism of action | [32,33] |
Antihistamines | |||
Azelastine | Staphylococcus aureus, S. epidermidis, Enterococcus faecium, Escherichia coli, Klebsiella spp | Alteration of membrane permeability Absorption of the antihistamines onto the bacterial cell surface, expanding the hydrophobicity which, in turn, would increase the surface activity, so antimicrobial response could be due to surface action and due toincreased hydrophobic character Inhibition of efflux pumps, | [35,39,40] |
Ceritizine | Bacillus sp., Vibrio cholera, S. aureus, Escherichia coli and Shigella sp, S. aureus and S. typhi | ||
Terfenadine | MRSA, vancomycin intermediate (VISA), vancomycin-resistant S. aureus, Enterococcus faecium, Enterococcus faecalis, and M. tuberculosis | ||
Mepyramine | Escherichia coli, K. pneumoniae | ||
Statins: | |||
Atorvastatin, simvastatin, rosuvastatin | MSSA, MRSA, Εnterococci VSE, Enterococcus VRE, Acinetobacter baumannii, Staphylococcus epidermidis, Enterobacter aerogenes, Escherichia coli, Proteus mirabilis, Enterobacter cloacae | Inhibition of HMG-CoA reductase Cytotoxicity, cells growth suppression, apoptosis promotion | [45,46] |
Author Contributions
Funding
Conflicts of Interest
References
- Steven, M.O. Non-antibiotic treatments for bacterial diseases in an era of progressive antibiotic resistance. Crit. Care 2016, 20, 397. [Google Scholar]
- Silva, A.A.d.L.; Silva, P.M. Non-Antibiotic Compounds: The Activity of the NSAID Diclofenac on Bacteria—A review. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 340–351. [Google Scholar] [CrossRef]
- Sadik, K. Antimicrobial properties of various non-antibiotic drugs against microorganisms. J. Bioanal. Biomed. 2016, 8, 1120–1124. [Google Scholar]
- Zimmermann, P.; Curtis, N. Antimicrobial effects of antipyretics. Antimicrob. Agents Chemother. 2017, 61, e02268-16. [Google Scholar] [CrossRef] [Green Version]
- Dinarello, C.A. Anti-inflammatory agents: Present and future. Cell 2010, 140, 935–950. [Google Scholar] [CrossRef] [Green Version]
- Salem-Milani, A.; Balaei-Gajan, E.; Rahimi, S.; Moosavi, Z.; Abdollahi, A.; Zakeri-Milani, P.; Bolourian, M. Antibacterial effect of diclofenac sodium on enterococcus faecalis. J. Dent. 2013, 10, 16–22. [Google Scholar]
- Johnson, S.; Saint, J.B.; Dine, A. Local anesthetics as antimicrobial agents: A review. Surg. Infect. 2008, 9, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Razavi, B.; FazlyBazzaz, B. A review and new insights to antimicrobial action of local anesthetics. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 991–1002. [Google Scholar] [CrossRef]
- Sakuragi, T.; Ishino, H.; Dan, K. Bactericidal activity of 0.5% bupivacaine with preservatives on microorganisms in the human skin flora. Reg. Anesth. 1997, 22, 178–184. [Google Scholar]
- Rosenberg, P.; Renkonen, O.; Miller, R. Antimicrobial Activity of Bupivacaine and Morphine. Anesthesiology 1985, 62, 178–179. [Google Scholar] [CrossRef]
- Tamanai-Shacoori, Z.; Shacoori, V.; Jolivet-Gougeon, A.; Vo Van, J.; Repre, M.; Donnio, P.; Bonnaure-Mallet, M. The antibacterial activity of tramadol against bacteria associated with infectious complications after local or regional anesthesia. Anesth. Analgesia 2007, 105, 524–527. [Google Scholar] [CrossRef] [PubMed]
- Kose, A.A.; Karabaǧgli, Y.; Kiremitci, A.; Kocman, E.; Cetin, C. Do local anesthetics have antibacterial effect on staphylococcus aureus under in vivo conditions? An experimental study. Dermatol. Surg. 2010, 36, 848–852. [Google Scholar] [CrossRef] [PubMed]
- Rota, S.; Kaya, K.; Timliothlu, O. Do opioids have an antibacterial effect? Can. J. Anaesth. 2010, 44, 679–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimmond, T.; Brownridge, P. Antimicrobial activity of bupivacaine and pethidine. Anaesth. Intensive Care 1986, 14, 418–420. [Google Scholar] [CrossRef] [Green Version]
- Anderson, L.; Kaarney, T. Use of methadone. West J. Mad. 2000, 172, 43–46. [Google Scholar] [CrossRef]
- Sheagren, J.; Barsoum, I.; Lin, M. Methadone: Antimicrobial activity and interaction with antibiotics. Antimicrob. Agents Chemother. 1977, 12, 748–750. [Google Scholar] [CrossRef] [Green Version]
- Lei, B.; Wei, C.J.; Tu, S.C. Action mechanism of antitubercular isoniazid: Activation by mycobacterium tuberculosis KatG, isolation and characterization of inha inhibitor. J. Biol. Chem. 2000, 275, 2520–2526. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, E. Thioridazine potentiates the effect of a beta-lactam antibiotic against Staphylococcus aureus independently of mecA expression. Res. Microbiol. 2012, 164, 181–188. [Google Scholar] [CrossRef]
- Ayaz, M.; Subhan, F.; Ahmed, J.; Khan, A.; Ullah, F.; Ullah, I.; Ali, G.; Syed, N.-i.-H.; Hussain, S. Sertraline enhances the activity of antimicrobial agents against pathogens of clinical relevance. J. Biol. Res. 2015, 22, 4. [Google Scholar]
- Lass-Flörl, C.; Dierich, M.P.; Fuchs, D.; Semenitz, E.; Jenewein, I.; Ledochowski, M. Antifungal properties of selective serotonin reuptake inhibitors against aspergillus species in vitro. J. Antimicrob. Chemother. 2001, 48, 775–779. [Google Scholar] [CrossRef] [Green Version]
- Munoz-Bellido, J.L.; Munoz-Criado, S.; Garcia-Rodriguez, J.A. Antimicrobial activity of psychotropic drugs Selective serotonin reuptake inhibitors. Int. J. Antimicrob. Agents 2000, 14, 177–180. [Google Scholar] [CrossRef]
- Bohnert, J.A.; Szymaniak-Vits, M.; Schuster, S.; Kern, W.V. Efflux inhibition by selective serotonin reuptake inhibitors in Escherichia coli. J. Antimicrob. Chemother. 2011, 66, 2057–2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gjestad, C.; Westin, A.A.; Skogvoll, E.; Spigset, O. Effect of proton pump inhibitors on the serum concentrations of the selective serotonin reuptake inhibitors citalopram, escitalopram, and sertraline. Ther. Drug Monit. 2015, 37, 90–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandal, A.; Sinha, C.; Jena, A.K.; Ghosh, S.; Samanta, S. An investigation on in vitro and in vivo antimicrobial properties of the antidepressant: Amitriptyline hydrochloride. Braz. J. Microbiol. 2010, 41, 635–642. [Google Scholar] [CrossRef]
- Begec, Z.; Yucel, A.; Yakupogullari, Y.; Erdogan, M.A.; Duman, Y.; Durmus, M.; Ersoy, M.O. The antimicrobial effects of ketamine combined with propofol: An in vitro study. Braz. J. Anesth. 2013, 63, 461–465. [Google Scholar] [CrossRef] [Green Version]
- Kruszewska, H.; Zareba, T.; Tyski, S. Examination of antimicrobial activity of selected non-antibiotic medicinal preparations. Acta Pol. Pharm. 2012, 69, 1368–1371. [Google Scholar]
- Weinbach, E.C.; Levenbook, L.; Alling, D.W. Binding of tricyclic antidepressant drugs to trophozoites of Giardia lamblia. Comp. Biochem. Physiol. 1992, 102, 391–396. [Google Scholar] [CrossRef]
- Lass-Flörl, C.; Dierich, M.P.; Fuchs, D.; Semenitz, E.; Jenewein, I.; Ledochowski, M. Antifungal activity against candida species of the selective serotonin-reuptake inhibitor, sertraline. Clin. Infect. Dis. 2001, 33, e135–e136. [Google Scholar] [CrossRef] [Green Version]
- Zilberstein, D.; Dwyer, D.M. Antidepressants cause lethal disruption of membrane function in the human protozoan parasite leishmania. Science 1984, 226, 977–979. [Google Scholar] [CrossRef]
- Michał, J.K.; Mateusz, P.J. Ticagrelor—Toward more efficient platelet inhibition and beyond. Ther. Clin. Risk Manag. 2018, 14, 129–140. [Google Scholar]
- Coban, A.Y.; Tanriverdi, C.Y.; Keleş, U.S.; Durupinar, B. Investigation of antibacterial activity of sertralin. Mikrobiyoloji Bul. 2009, 43, 651–656. [Google Scholar] [PubMed]
- Laccellotti, P. Antibacterial activity of Ticagrelor in conventional antiplatelet dosages against antibiotic resistant gram positive bacteria. JAMA Cardiol. 2019, 4, 596–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jean, S.-S.; Hsueh, S.-C. Ticagrelor: A promising role in preventing multi-organ failure among patients with sepsis due to resistant gram-positive cocci. J. Microbiol. Immunol. Infect. 2019, 52, 513–515. [Google Scholar] [CrossRef] [PubMed]
- Sexton, T.R.; Zhang, G. Ticagrelor reduces thromboinflammatory markers in patients with pneumonia. JACC Basic Transl. Sci. 2018, 3, 435–449. [Google Scholar] [CrossRef] [PubMed]
- El-Nakeeb, M.; Abou-Shleib, H.; Khalil, A.; Omar, H.; El-Halfawy, O. In vitro antibacterial activity of some antihistaminics belonging to different groups against multi-drug resistant clinical isolates. Braz. J. Microbiol. 2011, 42, 980–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maji, H.; Maji, S.; Bhattacharya, M. An exploratory study on the antimicrobial activity of cetirizine dihydrochloride. Indian J. Pharm. Sci. 2017, 79, 751–757. [Google Scholar] [CrossRef]
- Perlmutter, J.; Forbes, L.; Krysan, D.; Ebsworth-Mojica, K.; Colquhoun, J.; Wang, J.; Dunman, P.; Flaherty, D. Repurposing the antihistamine terfenadine for antimicrobial activity against Staphylococcus aureus. J. Med. Chem. 2014, 57, 8540–8562. [Google Scholar] [CrossRef]
- Bruer, G.; Hagedorn, P.; Kietzmann, M.; Tohamy, A.; Filor, V.; Schultz, E.; Mielke-Kuschow, S.; Meissner, J. Histamine H1 receptor antagonists enhance the efficacy of antibacterials against Escherichia coli. BMC Vet. Res. 2019, 15, 55. [Google Scholar] [CrossRef] [Green Version]
- El Banna, T.; Ibrahim Sonbol, F. Modulation of antibiotic efficacy against klebsiella pneumoniae by antihistaminic drugs. J. Med. Microbiol. Diagnosis 2016, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Shibl, A.; Hammouda, Y.; Al-Sowaygh, I. Comparative effects of selected phenothiazine tranquilizers and antihistaminics on bacterial cells and possible interactions with antibiotics. J. Pharm. Sci. 1984, 73, 841–843. [Google Scholar] [CrossRef]
- Attwood, D.; Florence, A.T. Surfactant Systems: Their Chemistry, Pharmacy and Biology; Chapman and Hall: London, UK, 1983; pp. 124–228, 388–468, 607–610. [Google Scholar]
- El-Nakeeb, M.; Abou-Shleib, H.; Khalil, A.; Omar, H.; El-Halfawy, O. Membrane permeability alteration of some bacterial clinical isolates by selected antihistaminics. Braz. J. Microbiol. 2011, 42, 992–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakker, R.A.; Schoonus, S.B.; Smit, M.J.; Timmerman, H.; Leurs, R. Histamine H1-receptor activation of nuclear factor-kappa B: Roles for G beta gamma- and G alpha(q/11)-subunits in constitutive and agonist-mediated signaling. Mol. Pharmacol. 2001, 60, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Graziano, T.S.; Cuzzullin, M.C. Statins and antimicrobial effects: Simvastatin as a potential drug against staphylococcus aureus biofilm. PLoS ONE 2015, 10, e0128098. [Google Scholar] [CrossRef] [PubMed]
- Masadeh, M. Antibacterial activity of statins: A comparative study of Atorvastatin, Simvastatin, and Rosuvastatin. Ann. Clin. Microbiol. Antimicrob. 2012, 11, 13. [Google Scholar] [CrossRef] [Green Version]
- Jerwood, S. Unexpected antimicrobial effect of statins. J. Antimicrob. Chemother. 2008, 61, 362–364. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lagadinou, M.; Onisor, M.O.; Rigas, A.; Musetescu, D.-V.; Gkentzi, D.; Assimakopoulos, S.F.; Panos, G.; Marangos, M. Antimicrobial Properties on Non-Antibiotic Drugs in the Era of Increased Bacterial Resistance. Antibiotics 2020, 9, 107. https://doi.org/10.3390/antibiotics9030107
Lagadinou M, Onisor MO, Rigas A, Musetescu D-V, Gkentzi D, Assimakopoulos SF, Panos G, Marangos M. Antimicrobial Properties on Non-Antibiotic Drugs in the Era of Increased Bacterial Resistance. Antibiotics. 2020; 9(3):107. https://doi.org/10.3390/antibiotics9030107
Chicago/Turabian StyleLagadinou, Maria, Maria Octavia Onisor, Athanasios Rigas, Daniel-Vasile Musetescu, Despoina Gkentzi, Stelios F. Assimakopoulos, George Panos, and Markos Marangos. 2020. "Antimicrobial Properties on Non-Antibiotic Drugs in the Era of Increased Bacterial Resistance" Antibiotics 9, no. 3: 107. https://doi.org/10.3390/antibiotics9030107
APA StyleLagadinou, M., Onisor, M. O., Rigas, A., Musetescu, D. -V., Gkentzi, D., Assimakopoulos, S. F., Panos, G., & Marangos, M. (2020). Antimicrobial Properties on Non-Antibiotic Drugs in the Era of Increased Bacterial Resistance. Antibiotics, 9(3), 107. https://doi.org/10.3390/antibiotics9030107