A Pilot Study in Sweden on Efficacy of Benzylpenicillin, Oxytetracycline, and Florfenicol in Treatment of Acute Undifferentiated Respiratory Disease in Calves
Abstract
:1. Introduction
2. Results
2.1. Descriptive Data
2.2. Efficacy Parameters
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Farms and Animals
4.3. Inclusion Criteria
4.4. Treatment Regimens
4.5. Data Registered on Farm
4.6. Data Registered at Slaughter
4.7. Efficacy Parameters
- TEMP (temperature): A positive reaction was a rectal temperature ≤39.5 °C and/or a drop by ≥1 °C 48 h after first treatment.
- RESP (response to treatment): A positive RESP was a positive reaction for the TEMP parameter (see above), no change of initial treatment and no relapse or fatality within 30 days (RESP30), 60 days (RESP60), or until slaughter (RESPtot).
- PTE (perceived treatment effect): Scored by farm personnel five days after first treatment as “Good” for a calf with noticeable improvements regarding clinical signs and general attitude, or “Poor” for a calf without noticeable improvements.
- ADG (average daily live weight gain from birth to slaughter).
4.8. Statistical Analyses
4.9. Ethics Approval
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gay, E.; Barnouin, J. A nation-wide epidemiological study of acute bovine respiratory disease in France. Prev. Vet. Med. 2009, 89, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Griffin, D. Bovine pasteurellosis and other bacterial infections of the respiratory tract. Vet Clin North Am Food Anim. Pract. 2010, 26, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Hay, K.E.; Morton, J.M.; Mahony, T.J.; Clements, A.C.; Barnes, T.S. Associations between animal characteristic and environmental risk factors and bovine respiratory disease in Australian feedlot cattle. Prev. Vet. Med. 2016, 125, 66–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, G.M.; O’Neill, R.G.; More, S.J.; McElroy, M.C.; Earley, B.; Cassidy, J.P. Evolving views on bovine respiratory disease: An appraisal of selected key pathogens—Part 1. Vet. J. 2016, 217, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Delabouglise, A.; James, A.; Valarcher, J.F.; Hagglund, S.; Raboisson, D.; Rushton, J. Linking disease epidemiology and livestock productivity: The case of bovine respiratory disease in France. PLoS ONE 2017, 12, e0189090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, T.A. Control methods for bovine respiratory disease for feedlot cattle. Vet. Clin. North. Am. Food Anim. Pract. 2010, 26, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Caswell, J.L. Failure of respiratory defenses in the pathogenesis of bacterial pneumonia of cattle. Vet. Pathol. 2014, 51, 393–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, J.D.; Fulton, R.W.; Lehenbauer, T.W.; Step, D.L.; Confer, A.W. The epidemiology of bovine respiratory disease: What is the evidence for predisposing factors? Can. Vet. J. 2010, 51, 1095–1102. [Google Scholar]
- Baptiste, K.E.; Kyvsgaard, N.C. Do antimicrobial mass medications work? A systematic review and meta-analysis of randomised clinical trials investigating antimicrobial prophylaxis or metaphylaxis against naturally occurring bovine respiratory disease. Pathog. Dis. 2017, 75, ftx083. [Google Scholar] [CrossRef]
- Bateman, K.G.; Martin, S.W.; Shewen, P.E.; Menzies, P.I. An evaluation of antimicrobial therapy for undifferentiated bovine respiratory disease. Can. Vet. J. 1990, 31, 689–696. [Google Scholar]
- Barrett, D.C. Cost-effective antimicrobial drug selection for the management and control of respiratory disease in European cattle. Vet. Rec. 2000, 146, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Abell, K.M.; Theurer, M.E.; Larson, R.L.; White, B.J.; Apley, M. A mixed treatment comparison meta-analysis of metaphylaxis treatments for bovine respiratory disease in beef cattle. J. Anim. Sci. 2017, 95, 626–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagel, S.W.; Gautier, P. Use of antimicrobial agents in livestock. Rev. Sci. Tech. 2012, 31, 145–188. [Google Scholar] [CrossRef] [PubMed]
- Murray, G.M.; O’Neill, R.G.; More, S.J.; McElroy, M.C.; Earley, B.; Cassidy, J.P. Evolving views on bovine respiratory disease: An appraisal of selected control measures—Part 2. Vet. J. 2016, 217, 78–82. [Google Scholar] [CrossRef]
- WHO. Critically Important Antimicrobials for Human Medicine, 5th Revision; World Health Organisation: Geneva, Switzerland, 2016. [Google Scholar]
- WHO. WHO Guidelines on Use of Medically Important Antimicrobials in Food-Producing Animals; World Health Organization: Geneva, Switzerland, 2017; Licence: CC BY-NC-SA 3.0 IGO. [Google Scholar]
- Bush, K.; Courvalin, P.; Dantas, G.; Davies, J.; Eisenstein, B.; Huovinen, P.; Jacoby, G.A.; Kishony, R.; Kreiswirth, B.N.; Kutter, E.; et al. Tackling antibiotic resistance. Nat. Rev. Microbiol. 2011, 9, 894–896. [Google Scholar] [CrossRef]
- Swedish Veterinary Association. Guidelines for the Use of Antibiotics in Production Animals—Cattle, Pigs, Sheep and Goats; Swedish Veterinary Association: Stockholm, Sweden, 2017; pp. 1–55. [Google Scholar]
- Medical Products Agency. Information från Läkemedelsverket: Dosering av antibiotika till nötkreatur och får—ny rekommendation; Medical Products Agency: Uppsala, Sweden, 2013; Volume 24, pp. 1–50.
- Swedres-Svarm. Consumption of Antibiotics and Occurrence of Resistance in Sweden; Public Health Agency of Sweden: Solna, Sweden; National Veterinary Institute: Uppsala, Sweden, 2018; ISSN 1650-6332.
- Ericsson Unnerstad, H.; Fungbrant, K.; Persson Waller, K.; Persson, Y. Mycoplasma bovis hos kor och kalvar i Sverige. Svensk veterinärtidning 2012, 13, 17–20. [Google Scholar]
- Mechor, G.D.; Jim, G.K.; Janzen, E.D. Comparison of penicillin, oxytetracycline, and trimethoprim-sulfadoxine in the treatment of acute undifferentiated bovine respiratory disease. Can. Vet. J. 1988, 29, 438–443. [Google Scholar] [PubMed]
- Apley, M. Antimicrobial therapy of bovine respiratory disease. Vet. Clin. North. Am. Food Anim. Pract. 1997, 13, 549–574. [Google Scholar] [CrossRef]
- Robb, E.J.; Tucker, C.M.; Corley, L.; Bryson, W.L.; Rogers, K.C.; Sturgess, K.; Bade, D.J.; Brodersen, B. Efficacy of tulathromycin or enrofloxacin for initial treatment of naturally occurring bovine respiratory disease in feeder calves. Vet. Ther. 2007, 8, 127–135. [Google Scholar]
- Hoar, B.R.; Jelinski, M.D.; Ribble, C.S.; Janzen, E.D.; Johnson, J.C. A comparison of the clinical field efficacy and safety of florfenicol and tilmicosin for the treatment of undifferentiated bovine respiratory disease of cattle in western Canada. Can. Vet. J. 1998, 39, 161–166. [Google Scholar]
- Nutsch, R.G.; Skogerboe, T.L.; Rooney, K.A.; Weigel, D.J.; Gajewski, K.; Lechtenberg, K.F. Comparative efficacy of tulathromycin, tilmicosin, and florfenicol in the treatment of bovine respiratory disease in stocker cattle. Vet. Ther. 2005, 6, 167–179. [Google Scholar] [PubMed]
- Skogerboe, T.L.; Rooney, K.A.; Nutsch, R.G.; Weigel, D.J.; Gajewski, K.; Kilgore, W.R. Comparative efficacy of tulathromycin versus florfenicol and tilmicosin against undifferentiated bovine respiratory disease in feedlot cattle. Vet. Ther. 2005, 6, 180–196. [Google Scholar] [PubMed]
- Jim, G.K.; Booker, C.W.; Guichon, P.T. A comparison of trimethoprim-sulfadoxine and ceftiofur sodium for the treatment of respiratory disease in feedlot calves. Can. Vet. J. 1992, 33, 245–250. [Google Scholar] [PubMed]
- DeDonder, K.D.; Apley, M.D. A review of the expected effects of antimicrobials in bovine respiratory disease treatment and control using outcomes from published randomized clinical trials with negative controls. Vet. Clin. North. Am. Food Anim. Pract. 2015, 31, 97–111. [Google Scholar] [CrossRef]
- O’Connor, A.M.; Yuan, C.; Cullen, J.N.; Coetzee, J.F.; da Silva, N.; Wang, C. A mixed treatment meta-analysis of antibiotic treatment options for bovine respiratory disease—An update. Prev. Vet. Med. 2016, 132, 130–139. [Google Scholar] [CrossRef]
- Hendrick, S.H.; Bateman, K.G.; Rosengren, L.B. The effect of antimicrobial treatment and preventive strategies on bovine respiratory disease and genetic relatedness and antimicrobial resistance of Mycoplasma bovis isolates in a western Canadian feedlot. Can. Vet. J. 2013, 54, 1146–1156. [Google Scholar]
- National Veterinary Institute. Surveillance of Infectious Diseases in Animals and Humans in Sweden 2017; National Veterinary Institute: Uppsala, Sweden, 2018.
- Medical Products Agency. Information från Läkemedelsverket: Behandling med NSAID till Nötkreatur, får, get och Gris—Ny Rekommendation; Medical Products Agency: Uppsala, Sweden, 2009; Volume 20, pp. 1–40.
- Francoz, D.; Buczinski, S.; Apley, M. Evidence related to the use of ancillary drugs in bovine respiratory disease (anti-inflammatory and others): Are they justified or not? Vet. Clin. North Am. Food Anim. Pract. 2012, 28, 23–38. [Google Scholar] [CrossRef]
- Griffin, D. The monster we don’t see: Subclinical BRD in beef cattle. Anim Health Res. Rev. 2014, 15, 138–141. [Google Scholar] [CrossRef]
- Växa Statistik KAP Kokontroll 2004–2018. 2019. Available online: www.vxa.se (accessed on 25 August 2020).
PEN | OTC | FLO | PEN & OTC & FLO | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Farm | S | H | S & H | S | H | S & H | S | H | S & H | S | H | S & H | |
No. of calves | 20 | 21 | 41 | 21 | 19 | 40 | 18 | 18 | 36 | 59 | 58 | 117 | |
Age when treated (days) a | Mean (range) | 42.6 (16–81) | 51.2 (29–121) | 47.2 (16–121) | 43.5 (10–88) | 55.6 (25–107) | 49.6 (10–107) | 40.7 (9–77) | 53.6 (29–121) | 47.9 (9–121) | 42.4 ** (9–88) | 53.4 ** (25–121) | 48.2 (9–121) |
Rectal temp. 0 h (°C) | Mean (range) | 39.8 (38.4–41.5) | 39.8 (38.4–41.3) | 39.8 (38.4–41.3) | 40.1 (38.8–41.4) | 39.6 (38.1–41.1) | 39.9 (38.1–41.4) | 39.9 (37.1–41.3) | 39.6 (37.5–41.0) | 39.8 (37.1–41.3) | 39.9 (37.1–41.5) | 39.7 (37.5–41.3) | 39.8 (37.1–41.5) |
Rectal temp. 48 h (°C) | Mean (range) | 38.4 (37.4–40.1) | 38.4 (37.7–39.1) | 38.4 (37.4–40.1) | 38.3 (36.3–40.4) | 38.6 (37.5–39.9) | 38.4 (36.3–40.4) | 38.2 (37.0–39.1) | 38.3 (37.2–40.0) | 38.3 (37.0–40.0) | 38.3 (36.3–40.4) | 38.5 (37.2–40.0) | 38.4 (36.3–40.4) |
Retreatment: | |||||||||||||
<30 days | No. | 0 | 2 | 2 | 2 c | 0 | 2 | 5 d | 0 | 5 | 7 | 2 | 9 |
30–60 days | No. | 1 | 0 | 1 | 2 | 0 | 2 | 1 e | 0 | 1 | 4 | 0 | 4 |
>60 days | No. | 3 | 0 | 3 | 1 | 0 | 1 | 2 | 0 | 2 | 6 | 0 | 6 |
Total | No. | 4 | 2 | 6 | 4 | 0 | 5 | 6 | 0 | 8 | 17 ** | 2 ** | 19 |
Case fatality: | |||||||||||||
<30 days | No. | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 |
30–60 days | No. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
>60 days | No. | 1 (day 90) | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
Total Case fatality | No | 2 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 3 |
Age at slaughter (days) b | Mean (range) | 540 (450–597) | 533 (482–574) | 536 (450–597) | 544 (453–612) | 526 (476–569 | 535 (453–612) | 552 (474–648) | 539 (479–588) | 545 (474–648) | 545 (450–648) | 532 (476–588) | 539 (450–648) |
Carcass weight (kg) | Mean (range) | 311.8 (230–369) | 326.8 (286–358) | 319.3 (230–369) | 320.7 (260–364) | 317.7 (287–356) | 319.2 (260–364) | 315.0 (276–341) | 318.1 (257–384) | 316.5 (257–384) | 316.0 (230–369) | 321.0 (257–384) | 318.4 (230–384) |
Farm | PEN | OTC | FLO | PEN & OTC & FLO | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | H | S & H | S | H | S & H | S | H | S & H | S | H | S & H | |||
No. of calves | 20 | 21 | 41 | 21 | 19 | 40 | 18 | 18 | 36 | 59 | 58 | 117 | ||
TEMP | % (no./total) | 100 (20/20) | 100 (21/21) | 100 (41/41) | 90.5 (19/21) | 100 (19/19) | 95.0 (38/40) | 100 (18/18) | 100 (18/18) | 100 (36/36) | 96.6 (57/59) | 100 (58/58) | 98.3 (115/117) | |
RESP30 (n = 117) | % (no./total) | 95.0 (19/20) | 85.7 (18/21) | 90.2 (37/41) | 81.0 (17/21) | 100 (19/19) | 90.0 (36/40) | 72.2 (13/18) | 100 (18/18) | 86.1 (31/36) | 83.1 (49/59) | 94.8 (55/58) | 88.9 (104/117) | |
RESP60 (n = 117) | % (no./total) | 90.0 (18/20) | 85.7 (18/21) | 87.8 (36/41) | 71.4 (15/21) | 100 (19/19) | 85.0 (34/40) | 66.7 (12/18) | 100 (18/18) | 83.3 (30/36) | 76.3 ** (45/59) | 94.8 ** (55/58) | 85.5 (100/117) | |
RESPtot (n = 117) | % (no./total) | 75.0 (15/20) | 85.7 (18/21) | 80.5 (33/41) | 71.4 (15/21) | 100 (19/19) | 85.0 (34/40) | 55.6 (10/18) | 100 (18/18) | 77.8 (28/36) | 67.8 *** (40/59) | 94.8 *** (55/58) | 81.2 (95/117) | |
PTE (n = 113) a | Poor | % (no./total) | 11.1 (2/18) | 10.0 (2/20) | 10.5 (4/38) | 5.0 (1/20) | 5.3 (1/19) | 5.3 (2/39) | 5.5 (1/18) | 16.7 (3/18) | 11.1 (4/36) | 7.1 (4/56) | 10.5 (6/57) | 8.8 (10/113) |
Good | % (no./total) | 88.8 (16/18) | 90.0 (18/20) | 89.5 (34/38) | 95.0 (19/20) | 94.7 (18/19) | 94.9 (37/39) | 94.4 (17/18) | 83.3 (15/18) | 88.9 (32/36) | 92.9 (52/56) | 89.5 (51/57) | 91.2 (103/113) | |
ADG (n = 99) b | grams/day (range) | 1039 (835–1266) | 1104 (925–1204) | 1072 (835–1266) | 1063 (887–1243) | 1185 (936–1239) | 1074 (887–1243) | 1033 (784–1210) | 1063 (804–1189) | 1048 (784–1210) | 1046 (784–1266) | 1086 (804–1239) | 1066 (784–1266) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Welling, V.; Lundeheim, N.; Bengtsson, B. A Pilot Study in Sweden on Efficacy of Benzylpenicillin, Oxytetracycline, and Florfenicol in Treatment of Acute Undifferentiated Respiratory Disease in Calves. Antibiotics 2020, 9, 736. https://doi.org/10.3390/antibiotics9110736
Welling V, Lundeheim N, Bengtsson B. A Pilot Study in Sweden on Efficacy of Benzylpenicillin, Oxytetracycline, and Florfenicol in Treatment of Acute Undifferentiated Respiratory Disease in Calves. Antibiotics. 2020; 9(11):736. https://doi.org/10.3390/antibiotics9110736
Chicago/Turabian StyleWelling, Virpi, Nils Lundeheim, and Björn Bengtsson. 2020. "A Pilot Study in Sweden on Efficacy of Benzylpenicillin, Oxytetracycline, and Florfenicol in Treatment of Acute Undifferentiated Respiratory Disease in Calves" Antibiotics 9, no. 11: 736. https://doi.org/10.3390/antibiotics9110736
APA StyleWelling, V., Lundeheim, N., & Bengtsson, B. (2020). A Pilot Study in Sweden on Efficacy of Benzylpenicillin, Oxytetracycline, and Florfenicol in Treatment of Acute Undifferentiated Respiratory Disease in Calves. Antibiotics, 9(11), 736. https://doi.org/10.3390/antibiotics9110736