Carveoylphenols and Their Antifungal Potential against Pathogenic Yeasts
Abstract
:1. Introduction
2. Results
2.1. Synthesis of Carveoylphenols
2.2. Antifungal Activity
3. Materials and Methods
3.1. Chemical
3.2. Synthesis
3.3. Microorganims
3.4. Antifungal Assays
3.5. Computational Details
Modeling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arendrup, M.C. Epidemiology of invasive candidiasis. Curr. Opin. Crit. Care 2010, 16, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, J.A.; Sobel, J.D. Candidiasis. In Essentials of Clinical Mycology, 2nd ed.; Kauffman, C., Pappas, P., Sobel, J., Dismukes, W., Eds.; Springer-Verlag: New York, NY, USA, 2001; Part III; pp. 167–206. ISBN 978-1-4419-6639-1. [Google Scholar]
- Murray, P.R.; Rosenthal, K.S.; Pfaller, M.A. Microbiología Médica, 5th ed.; Elsevier: Madrid, Spain, 2006; pp. 707–817. ISBN 978-84-8174-927-4. [Google Scholar]
- Pfaller, M.A.; Andes, D.R.; Diekema, D.J.; Horn, D.L.; Reboli, A.C.; Rotstein, C.; Franks, B.; Azie, N.E. Epidemiology and outcomes of invasive candidiasis due to non-albicans species of Candida in 2496 patients: Data from the Prospective Antifungal Therapy (PATH) registry 2004–2008. PLoS ONE 2014, 9, e101510. [Google Scholar] [CrossRef] [PubMed]
- Wawrysiuk, S.; Rechberger, T.; Futyma, K.; Miotła, P. Candida lusitaniae–a case report of an intraperitoneal infection. Menop. Rev. 2018, 17, 94–96. [Google Scholar] [CrossRef]
- Zuluaga, A.; de Bedout, C.; Agudelo, C.A.; Hurtado, H.; Arango, M.; Restrepo, A.; González, A. Sensibilidad a fluconazol y voriconazol de species de Candida aisladas de pacientes provenientes de unidades de cuidados intensivos en Medellín, Colombia (2001–2007). Rev. Iberoam. Micol. 2010, 27, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Niimi, M.; Nagai, Y.; Niimi, K.; Wada, S.; Canoon, R.D.; Monk, B.C. Identification of two proteins induced by exposure of the pathogenic fungus Candida glabrata to fluconazole. J. Chromatogr. B 2002, 782, 245–252. [Google Scholar] [CrossRef]
- Reboutier, D.; Boisnard, S.; Conti, A.; Chevalier, V.; Florent, M.; da Silva, B.; Chastin, C.; Fallague, K.; Favel, A.; Noël, T.; et al. Combination of different molecular mechanisms leading to fluconazole resistance in a Candida lusitaniae clinical isolate. Diagn. Microbiol. Infect. Dis. 2009, 63, 188–193. [Google Scholar] [CrossRef]
- Fukuoka, T.; Johnston, D.A.; Winslow, C.A.; de Groot, M.J.; Burt, C.; Filler, S.G. Genetic basis for differential activities of fluconazole and voriconazole against Candida krusei. Antimicrob. Agents Chemother. 2003, 4, 1213–1219. [Google Scholar] [CrossRef]
- Cowen, L.E.; Sanglard, D.; Howard, S.J.; Rogers, P.D.; Perlin, D.S. Mechanisms of antifungal drug resistance. Cold Spring Harb. Perspect. Med. 2014, 5, a019752. [Google Scholar] [CrossRef]
- Sanglard, D. Emerging threats in antifungal resistant fungal pathogens. Front. Med. 2016, 3, 11. [Google Scholar] [CrossRef]
- Berkow, E.L.; Lockhart, S.R. Fluconazole resistance in Candida species: A current perspective. Infect. Drug Resist. 2017, 10, 237–245. [Google Scholar] [CrossRef]
- Kabir, M.A.; Ahmad, Z. Candida infections and their prevention. ISRN Prev. Med. 2013, 4, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mazu, T.K.; Bricker, B.A.; Flores-Rozas, H.; Ablordeppey, S.Y. The mechanistic targets of antifungal agents: An overview. Mini-Rev. Med. Chem. 2016, 16, 555–578. [Google Scholar] [CrossRef] [PubMed]
- Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 2003, 67, 593–656. [Google Scholar] [CrossRef] [PubMed]
- Nyirjesy, P. Vulvovaginal candidiasis and bacterial vaginosis. Infect. Dis. Clin. N. Am. 2008, 22, 637–652. [Google Scholar] [CrossRef]
- Fuentes, M.; Hermosilla, G.; Alburquenque, C.; Falconer, M.A.; Amaro, J.; Tapia, C. Characterization of azole resistance mechanisms in Chilean clinical isolates of Candida albicans. Rev. Chil. Infectol. 2014, 31, 511–517. [Google Scholar] [CrossRef]
- Bondaryk, M.; Kurzątkowski, W.; Staniszewska, M. Antifungal agents commonly used in the superficial and mucosal candidiasis treatment: Mode of action and resistance dev99999elopment. Postepy Dermatol. Alergol. 2013, 5, 293–301. [Google Scholar] [CrossRef]
- Tsao, S.; Rahkhoodaee, F.; Raymond, M. Relative contributions of the Candida albicans ABC transporters Cdr1p and Cdr2p to clinical azole resistance. Antimicrob. Agents Chemother. 2009, 53, 1344–1352. [Google Scholar] [CrossRef]
- Palombo, E.A. Traditional medicinal plant extracts and natural products with activity against oral bacteria: Potential application in the prevention and treatment of oral diseases. Evid. Based Complement. Altern. Med. 2011, 2011, 680354. [Google Scholar] [CrossRef]
- Hosseinkhani, F.; Jabalameli, F.; Banar, M.; Abdellahi, N.; Taherikalani, M.; van Leeuwen, W.B.; Emaneini, M. Monoterpene isolated from the essential oil of Trachyspermum ammi is cytotoxic to multidrug-resistant Pseudomonas aeruginosa and Staphylococcus aureus strains. Rev. Soc. Bras. Med. Trop. 2016, 49, 172–176. [Google Scholar] [CrossRef]
- Method of Killing Yeast and Fungi with Carveol. 2018. Available online: https://patents.google.com/patent/US5308873A/en (accessed on 9 July 2018).
- Koroleva, A.A.; Chukicheva, I.Y.; Fedorova, I.V.; Kuchin, A.V. Alkylation of phenol by myrtenol. Chem. Nat. Compd. 2011, 47, 557–565. [Google Scholar] [CrossRef]
- Kuzakov, E.V.; Shmidt, E.N. Synthesis of terpenophenols via direct alkylation of phenols by terpenes. Chem. Nat. Compd. 2000, 36, 245–257. [Google Scholar] [CrossRef]
- Said, B.; Montenegro, I.; Valenzuela, M.; Olguín, Y.; Caro, N.; Werner, E.; Godoy, P.; Villena, J.; Madrid, A. Synthesis and antiproliferative activity of new cyclodiprenyl phenols against select cancer cell lines. Molecules 2018, 23, 2323. [Google Scholar] [CrossRef] [PubMed]
- Taborga, L.; Vergara, A.; Fernández, M.J.; Osorio, M.; Carvajal, M.; Madrid, A.; Marilaf, F.; Carrasco, H.; Espinoza-Catalán, L. Synthesis and NMR structure determination of new linear geranylphenols by direct geranylation of activated phenols. J. Chil. Chem. Soc. 2013, 58, 1790–1796. [Google Scholar] [CrossRef]
- Chávez, M.I.; Soto, M.; Taborga, L.; Díaz, K.; Olea, A.F.; Bay, C.; Peña-Cortés, H.; Espinoza, L. Synthesis and in Vitro antifungal activity against Botrytis cinerea of geranylated phenols and their phenyl acetate derivatives. Int. J. Mol. Sci. 2015, 16, 19130–19152. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institure. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-Third Edition; CLSI Document M27-A3; Clinical and Laboratory Standards Institure: Wayne, NJ, USA, 2008. [Google Scholar]
- Danelutte, A.P.; Lago, J.H.G.; Young, M.C.M.; Kato, M.J. Antifungal flavanones and prenylated hydroquinones from Piper crassinervium Kunth. Phytochemistry 2003, 64, 555–559. [Google Scholar] [CrossRef]
- Espinoza, L.; Taborga, L.; Díaz, K.; Olea, A.F.; Peña-Cortés, H. Synthesis of linear geranylphenols and their effect on mycelial growth of plant pathogen Botrytis cinerea. Molecules 2014, 19, 1512–1526. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Ahmad, A.; Khan, L.A.; Padoa, C.J.; van Vuuren, S.; Manzoor, N. Effect of two monoterpene phenols on antioxidant defense system in Candida albicans. Microb. Pathog. 2015, 80, 50–56. [Google Scholar] [CrossRef]
- Wang, B.; Truhlar, D.G. Partial atomic charges and screened charge models of the electrostatic potential. J. Chem. Theory Comput. 2012, 8, 1989–1998. [Google Scholar] [CrossRef]
- Stanton, D.T.; Dimitrov, S.; Grancharov, V.; Mekenyan, O.G. Charged partial surface area (CPSA) descriptors QSAR applications. SAR QSAR Environ. Res. 2002, 13, 341–351. [Google Scholar] [CrossRef]
- Schwöbel, J.; Ebert, R.U.; Kuhne, R.; Schüürmann, G. Prediction of the intrinsic hydrogen bond acceptor strength of organic compounds by local molecular parameters. J. Chem. Inf. Mod. 2009, 49, 956–962. [Google Scholar] [CrossRef]
- Lopez, J.M.; Ensuncho, A.; Robles, J.R. Global and local reactivity descriptors for the design of new anticancer drugs based on cis-platinum (II). Quim. Nova 2013, 36, 1308–1317. [Google Scholar] [CrossRef]
- Stachowicz, J.; Krajewska-Kułak, E.; Lukaszuk, C.; Niewiadomy, A. Relationship between antifungal activity against candida albicans and electron parameters of selected n-heterocyclic thioamides. Indian J. Pharm. Sci. 2014, 76, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Eliasi, M.; Raeisi, G.; Taeri, B. Wiener index of some graph operations. Discrete Appl. Math 2012, 160, 1333–1344. [Google Scholar] [CrossRef] [Green Version]
- Mueller, W.R.; Szymanski, K.; Knop, J.V.; Trinajstic, N. Molecular topological index. J. Chem. Inf. Comput. Sci. 1990, 30, 160–163. [Google Scholar] [CrossRef]
- Klein, D.J.; Mihalic, Z.; Plavsic, D.; Trinajstic, N. Molecular topological index: A relation with the Wiener index. J. Chem. Inf. Comput. Sci. 1992, 32, 304–305. [Google Scholar] [CrossRef]
- Baek, S.H.; Srebnik, M.; Mechoulam, R. Boron trifluoride etherate on alimina a modified Lewis acid reagent: An improved synthesis of cannabidiol. Tetrahedron Lett. 1985, 26, 1083–1086. [Google Scholar] [CrossRef]
- Madrid, A.; Espinoza, L.; Montenegro, I.; González, C.; Mellado, M.; Villena, J.; Santander, R.; Silva, V. Antifungal activity of the resinous exudate isolated from Psoralea glandulosa L. J. Ethnopharmacol. 2012, 144, 809–811. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A., Jr.; Vreven, T.; Kudin, K.N.; Burant, J.C.; et al. Gaussian 03, Revision, C.02; Gaussian, Inc.: Wallingford, CT, USA, 2004. [Google Scholar]
- Montenegro, I.; Muñoz, O.; Villena, J.; Werner, E.; Mellado, M.; Ramírez, I.; Caro, N.; Flores, S.; Madrid, A. Structure-activity relationship of dialkoxychalcones to combat fish pathogen Saprolegnia australis. Molecules 2018, 23, 1377. [Google Scholar] [CrossRef]
- Mellado, M.; Madrid, A.; Martínez, U.; Mella, J.; Salas, C.; Cuellar, M. Hansch’s analysis application to chalcone synthesis by Claisen-Schmidt reaction based in DFT methodology. Chem. Pap. 2018, 72, 703–709. [Google Scholar] [CrossRef]
- Mellado, M.; Madrid, A.; Reyna, M.; Weinstein-Oppenheimer, C.; Mella, J.; Salas, C.O.; Sánchez, E.; Cuellar, M. Synthesis of chalcones with antiproliferative activity on the SH-SY5Y neuroblastoma cell line: Quantitative Structure-Activity Relationship Models. Med. Chem. Res. 2018, 27, 2414–2425. [Google Scholar] [CrossRef]
Compounds | Microorganism | |||
---|---|---|---|---|
C. glabrata | C. lusitaniae | C. guilliermondii | C. albicans | |
1 | >16 | >16 | >16 | >16 |
2 | >16 | 0.50 | 0.5 | 1.0 |
3 | >16 | 0.125 | 0.5 | 0.25 |
4 | >16 | 0.125 | 1.0 | 1.0 |
5 | 2.0 | 0.50 | 1.0 | 0.5 |
6 | 0.5 | 0.25 | 0.5 | 0.5 |
7 | >16 | 0.25 | 1.0 | 0.5 |
8 | >16 | 1.0 | 1.25 | 1.25 |
9 | >16 | 0.25 | 1.25 | 4.0 |
Itraconazole | 16 | 2.0 | 4.0 | 1.0 |
Fluconazole | >16 | 1.0 | 1.0 | 1.0 |
DMSO | i | i | i | i |
Compounds | Microorganism | |||
---|---|---|---|---|
C. glabrata | C. lusitaniae | C. guilliermondii | C. albicans | |
1 | >16 | >16 | >16 | >16 |
2 | >16 | 0.50 | 1.0 | 2.0 |
3 | >16 | 0.50 | 0.5 | 0.5 |
4 | >16 | 0.25 | 1.25 | 1.0 |
5 | 4.0 | 0.50 | 1.25 | 1.0 |
6 | 1.0 | 0.50 | 1.0 | 1.0 |
7 | >16 | 0.50 | 1.0 | 2.0 |
8 | >16 | 1.0 | 1.50 | 2.0 |
9 | >16 | 0.50 | 2.0 | 8.0 |
Itraconazole | >16 | 4.0 | 8.0 | 2.0 |
Fluconazole | >16 | 1.25 | 1.25 | 1.25 |
DMSO | i | i | i | i |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montenegro, I.; Mellado, M.; Russo, A.; Said, B.; Besoain, X.; Godoy, P.; Werner, E.; Caro, N.; Madrid, A. Carveoylphenols and Their Antifungal Potential against Pathogenic Yeasts. Antibiotics 2019, 8, 185. https://doi.org/10.3390/antibiotics8040185
Montenegro I, Mellado M, Russo A, Said B, Besoain X, Godoy P, Werner E, Caro N, Madrid A. Carveoylphenols and Their Antifungal Potential against Pathogenic Yeasts. Antibiotics. 2019; 8(4):185. https://doi.org/10.3390/antibiotics8040185
Chicago/Turabian StyleMontenegro, Iván, Marco Mellado, Alessandra Russo, Bastian Said, Ximena Besoain, Patricio Godoy, Enrique Werner, Nelson Caro, and Alejandro Madrid. 2019. "Carveoylphenols and Their Antifungal Potential against Pathogenic Yeasts" Antibiotics 8, no. 4: 185. https://doi.org/10.3390/antibiotics8040185
APA StyleMontenegro, I., Mellado, M., Russo, A., Said, B., Besoain, X., Godoy, P., Werner, E., Caro, N., & Madrid, A. (2019). Carveoylphenols and Their Antifungal Potential against Pathogenic Yeasts. Antibiotics, 8(4), 185. https://doi.org/10.3390/antibiotics8040185