The Potential Role of Sulbactam and Cephalosporins Plus Daptomycin Against Daptomycin-Nonsusceptible VISA and H-VISA Isolates: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates
2.2. Antibiotics and MIC Measurement
2.3. Determination of mecA
2.4. mprF, pgsA, and cls-2 Sequencing
2.5. Time-Killing Method
2.6. Daptomycin MIC Change
2.7. Checkerboard Method
3. Results
3.1. The Results of the MIC Tests
3.2. Molecular Characteristics
3.3. Changes in MIC Levels
3.4. Checkerboard Method
3.5. Time-killing Methods
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: Executive summary. Clin. Infect. Dis. 2011, 52, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Van Eperen, A.S.; Segreti, J. Empirical therapy in methicillin-resistant Staphylococcus aureus infections: An Up-To-Date approach. J. Infect. Chemother. 2016, 22, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Hiramatsu, K.; Hanaki, H.; Ino, T.; Yabuta, K.; Oguri, T.; Tenover, F.C. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J. Antimicrob. Chemother. 1997, 40, 135–136. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.N. Microbiological features of vancomycin in the 21st century: Minimum inhibitory concentration creep, bactericidal/static activity, and applied breakpoints to predict clinical outcomes or detect resistant strains. Clin. Infect. Dis. 2006, 42 (Suppl. 1), S13–S24. [Google Scholar] [CrossRef]
- Gomes, D.M.; Ward, K.E.; LaPlante, K.L. Clinical implications of vancomycin heteroresistant and intermediately susceptible Staphylococcus aureus. Pharmacotherapy 2015, 35, 424–432. [Google Scholar] [CrossRef]
- Da Costa, T.M.; Morgado, P.G.; Cavalcante, F.S.; Damasco, A.P.; Nouér, S.A.; Dos Santos, K.R. Clinical and microbiological characteristics of heteroresistant and vancomycin-intermediate Staphylococcus aureus from bloodstream infections in a Brazilian teaching hospital. PLoS ONE 2016, 11, e0160506. [Google Scholar] [CrossRef]
- Kelley, P.G.; Gao, W.; Ward, P.B.; Howden, B.P. Daptomycin non-susceptibility in vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous-VISA (hVISA): Implications for therapy after vancomycin treatment failure. J. Antimicrob. Chemother. 2011, 66, 1057–1060. [Google Scholar] [CrossRef]
- Lai, C.C.; Chen, C.C.; Chuang, Y.C.; Tang, H.J. Combination of cephalosporins with vancomycin or teicoplanin enhances antibacterial effect of glycopeptides against heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) and VISA. Sci. Rep. 2017, 7, 41758. [Google Scholar] [CrossRef]
- Dilworth, T.J.; Sliwinski, J.; Ryan, K.; Dodd, M.; Mercier, R.C. Evaluation of vancomycin in combination with piperacillin-tazobactam or oxacillin against clinical methicillin-resistant Staphylococcus aureus Isolates and vancomycin-intermediate, S. aureus isolates in vitro. Antimicrob. Agents Chemother. 2014, 58, 1028–1033. [Google Scholar] [CrossRef]
- Werth, B.J.; Vidaillac, C.; Murray, K.P.; Newton, K.L.; Sakoulas, G.; Nonejuie, P.; Pogliano, J.; Rybak, M.J. Novel combinations of vancomycin plus ceftaroline or oxacillin against methicillin-resistant vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous VISA. Antimicrob. Agents Chemother. 2013, 57, 2376–2379. [Google Scholar] [CrossRef]
- Kobayashi, S.; Arai, S.; Hayashi, S.; Sakaguchi, T. In vitro effects of beta-lactams combined with beta-lactamase inhibitors against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 1989, 33, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Sakoulas, G.; Rose, W.; Berti, A.; Olson, J.; Munguia, J.; Nonejuie, P.; Sakoulas, E.; Rybak, M.J.; Pogliano, J.; Nizet, V. Classical β-Lactamase Inhibitors Potentiate the Activity of Daptomycin against Methicillin-Resistant Staphylococcus aureus and Colistin against Acinetobacter baumannii. Antimicrob. Agents Chemother. 2017, 61, e01745-16. [Google Scholar] [CrossRef] [PubMed]
- Wootton, M.; Howe, R.A.; Hillman, R.; Walsh, T.R.; Bennett, P.M.; MacGowan, A.P. A modified population analysis profile (PAP) method to detect hetero-resistance to vancomycin in Staphylococcus aureus in a UK hospital. J. Antimicrob. Chemother. 2001, 47, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 9th ed.; CLSI Document M07-A9; CLSI: Wayne, PA, USA, 2012. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; 24th Informational Supplement; CLSI Document M100-S22; CLSI: Wayne, PA, USA, 2012. [Google Scholar]
- Tang, H.J.; Lai, C.C.; Chen, C.C.; Zhang, C.C.; Weng, T.C.; Yu, W.L.; Chen, H.J.; Chiu, Y.H.; Ko, W.C.; Chuang, Y.C. Cephalosporin-glycopeptide combinations for use against clinical methicillin-resistant Staphylococcus aureus isolates: Enhanced In vitro antibacterial activity. Front. Microbiol. 2017, 8, 884. [Google Scholar] [CrossRef] [PubMed]
- Vannuffel, P.; Gigi, J.; Ezzedine, H.; Vandercam, B.; Delmee, M.; Wauters, G.; Gala, J.L. Specific detection of methicillin-resistant Staphylococcus species by multiplex PCR. J. Clin. Microbiol. 1995, 33, 2864–2867. [Google Scholar] [PubMed]
- Kondo, Y.; Ito, T.; Ma, X.X.; Watanabe, S.; Kreiswirth, B.N.; Etienne, J.; Hiramatsu, K. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: Rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob. Agents Chemother. 2007, 51, 264–274. [Google Scholar] [CrossRef]
- Tenover, F.C.; Arbeit, R.D.; Goering, R.V.; Mickelsen, P.A.; Murray, B.E.; Persing, D.H.; Swaminathan, B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: Criteria for bacterial strain typing. J. Clin. Microbiol. 1995, 33, 2233–2239. [Google Scholar]
- Friedman, L.; Alder, J.D.; Silverman, J.A. Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob. Agents Chemother. 2006, 50, 2137–2145. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Methods for Determining Bactericidal Activity of Antimicrobial Agents; CLSI: Wayne, PA, USA, 1999. [Google Scholar]
- White, R.L.; Burgess, D.S.; Manduru, M.; Bosso, J.A. Comparison of three different in vitro methods of detecting synergy: Time-kill, checkerboard, and E test. Antimicrob. Agents Chemother. 1996, 40, 1914–1918. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; 28th Informational Supplement; CLSI Document M100-S28; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Lai, C.-C.; Chen, C.-C.; Huang, H.-L.; Chuang, Y.-C.; Tang, H.-J. The role of doxycycline in the therapy of multidrug-resistant, E. coli—An in vitro study. Sci. Rep. 2016, 6, 31964. [Google Scholar] [CrossRef]
- Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003, 52, 1. [Google Scholar] [CrossRef] [PubMed]
- Barber, K.E.; Werth, B.J.; Rybak, M.J. The combination of ceftaroline plus daptomycin allows for therapeutic de-escalation and daptomycin sparing against MRSA. J. Antimicrob. Chemother. 2015, 70, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Sakoulas, G.; Moise, P.A.; Casapao, A.M.; Nonejuie, P.; Olson, J.; Okumura, C.Y.; Rybak, M.J.; Kullar, R.; Dhand, A.; Rose, W.E.; et al. Antimicrobial salvage therapy for persistent staphylococcal bacteremia using daptomycin plus ceftaroline. Clin. Ther. 2014, 36, 1317–1333. [Google Scholar] [CrossRef] [PubMed]
- Ortwine, J.K.; Werth, B.J.; Sakoulas, G.; Rybak, M.J. Reduced glycopeptide and lipopeptide susceptibility in Staphylococcus aureus and the “seesaw effect”: Taking advantage of the back door left open? Drug Resist. Updat. 2013, 16, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Rand, K.H.; Houck, H.J. Synergy of daptomycin with oxacillin and other beta-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2004, 48, 2871–2875. [Google Scholar] [CrossRef] [PubMed]
- Berti, A.D.; Sakoulas, G.; Nizet, V.; Tewhey, R.; Rose, W.E. β-Lactam antibiotics targeting PBP1 selectively enhance daptomycin activity against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2013, 57, 5005–5012. [Google Scholar] [CrossRef]
- Lee, J.Y.; Oh, W.S.; Ko, K.S.; Heo, S.T.; Moon, C.S.; Ki, H.K.; Kiem, S.; Peck, K.R.; Song, J.H. Synergy of arbekacin-based combinations against vancomycin hetero-intermediate Staphylococcus aureus. J. Korean Med. Sci. 2006, 21, 188–192. [Google Scholar] [CrossRef]
- Aeschlimann, J.R.; Hershberger, E.; Rybak, M.J. Activities of trovafloxacin and ampicillin-sulbactam alone or in combination versus three strains of vancomycin intermediate Staphylococcus aureus in an in vitro pharmacodynamic infection model. Antimicrob. Agents Chemother. 2000, 44, 1153–1158. [Google Scholar] [CrossRef]
- Backo, M.; Gaenger, E.; Burkart, A.; Chai, Y.L.; Bayer, A.S. Treatment of experimental staphylococcal endocarditis due to a strain with reduced susceptibility in vitro to vancomycin: Efficacy of ampicillin-sulbactam. Antimicrob. Agents Chemother. 1999, 43, 2565–2568. [Google Scholar] [CrossRef]
- Peleg, A.Y.; Miyakis, S.; Ward, D.V.; Earl, A.M.; Rubio, A.; Cameron, D.R.; Pillai, S.; Moellering, R.C., Jr.; Eliopoulos, G.M. Whole genome characterization of the mechanisms of daptomycin resistance in clinical and laboratory derived isolates of Staphylococcus aureus. PLoS ONE 2012, 7, e28316. [Google Scholar] [CrossRef]
- Mishra, N.N.; Bayer, A.S. Correlation of cell membrane lipid profiles with daptomycin resistance in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2013, 57, 1082–1085. [Google Scholar] [CrossRef] [PubMed]
Antibiotics | VISA | h-VISA | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V18 | V19 | V23 | V25 | V26 | V31 | HV4 | HV9 | HV44 | HV62 | HV74 | HV83 | HV85 | HV204 | HV355 | |
CFZ | 128 | 128 | 128 | 128 | 64 | 128 | 128 | 128 | 256 | 512 | 256 | 256 | 256 | 512 | 256 |
CMZ | 128 | 128 | 64 | 64 | 64 | 64 | 64 | 128 | 64 | 256 | 64 | 64 | 64 | 128 | 128 |
CTX | 1024 | 1024 | 1024 | 1024 | 1024 | 512 | 512 | 512 | 1024 | >1024 | 512 | 512 | 512 | >1024 | 1024 |
CPM | 128 | 128 | 128 | 128 | 128 | 128 | 64 | 128 | 512 | 512 | 512 | 256 | 512 | 512 | 512 |
VA | 4 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 |
SUL | >1024 | >1024 | >1024 | >1024 | >1024 | >1024 | >1024 | >1024 | >1024 | >1024 | >1024 | >1024 | >1024 | >1024 | >1024 |
DAP | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Isolates | DAP + CFZ | DAP + CMZ | DAP + CTX | DAP + CPM | ||||
---|---|---|---|---|---|---|---|---|
- | +SUL | - | +SUL | - | +SUL | - | +SUL | |
V18 | 1 | 0.5 | 1 | 0.83 | 1 | 1 | 1.33 | 0.67 |
V19 | 0.5 | 0.5 | 0.5 | 0.5 | 1 | 0.5 | 0.5 | 0.5 |
V23 | 0.5 | 0.5 | 0.5 | 0.5 | 1 | 0.83 | 0.83 | 0.5 |
V25 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
V26 | 1 | 0.5 | 0.5 | 0.25 | 1 | 1 | 1 | 0.5 |
V31 | 0.5 | 0.5 | 0.25 | 0.25 | 0.5 | 0.5 | 0.5 | 0.5 |
HV85 | 0.25 | 0.25 | 0.25 | 0.21 | 0.25 | 0.25 | 0.5 | 0.42 |
HV74 | 0.5 | 0.25 | 0.25 | 0.25 | 0.5 | 0.25 | 0.5 | 0.5 |
HV83 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
HV4 | 0.5 | 0.25 | 0.5 | 0.25 | 0.5 | 0.25 | 0.5 | 0.42 |
HV9 | 0.42 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
HV44 | 1 | 0.5 | 1 | 0.5 | 1 | 0.5 | 1 | 1 |
HV62 | 1 | 1 | 1 | 1 | 1.67 | 1 | 1 | 1 |
HV204 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
HV355 | 1 | 1 | 1 | 0.83 | 1 | 1 | 1.67 | 1 |
Mean ± SD | 0.66 ± 0.30 | 0.52 ± 0.27 | 0.58 ± 0.32 | 0.49 ± 0.29 | 0.76 ± 0.40 | 0.61 ± 0.33 | 0.76 ± 0.41 | 0.60 ± 0.27 |
Isolates | DAP + CFZ | DAP + CMZ | DAP + CTX | DAP + CPM | ||||
---|---|---|---|---|---|---|---|---|
- | + SUL | - | + SUL | - | + SUL | - | + SUL | |
V18 | 0.313 | 0.126 | 0.500 | 0.254 | 0.266 | 0.254 | 0.156 | 0.126 |
V19 | 0.250 | 0.129 | 0.375 | 0.250 | 0.258 | 0.250 | 0.375 | 0.252 |
V23 | 0.281 | 0.252 | 0.500 | 0.184 | 0.281 | 0.251 | 0.281 | 0.125 |
V25 | 0.313 | 0.252 | 0.750 | 0.250 | 0.250 | 0.250 | 0.625 | 0.563 |
V26 | 0.133 | 0.127 | 0.281 | 0.141 | 0.156 | 0.126 | 0.133 | 0.127 |
V31 | 0.252 | 0.129 | 0.313 | 0.188 | 0.250 | 0.251 | 0.258 | 0.252 |
HV4 | 0.141 | 0.129 | 0.188 | 0.141 | 0.156 | 0.127 | 0.252 | 0.252 |
HV9 | 0.129 | 0.125 | 0.141 | 0.133 | 0.251 | 0.251 | 0.250 | 0.251 |
HV44 | 0.258 | 0.254 | 0.516 | 0.313 | 0.375 | 0.188 | 0.500 | 0.188 |
HV62 | 0.258 | 0.252 | 0.281 | 0.254 | 0.266 | 0.254 | 0.531 | 0.252 |
HV74 | 0.141 | 0.127 | 0.141 | 0.133 | 0.250 | 0.126 | 0.127 | 0.127 |
HV83 | 0.141 | 0.129 | 0.281 | 0.250 | 0.127 | 0.064 | 0.129 | 0.127 |
HV85 | 0.188 | 0.133 | 0.141 | 0.141 | 0.127 | 0.126 | 0.133 | 0.127 |
HV204 | 0.266 | 0.252 | 0.266 | 0.258 | 0.254 | 0.252 | 0.266 | 0.266 |
HV355 | 0.266 | 0.251 | 0.254 | 0.254 | 0.500 | 0.251 | 0.563 | 0.252 |
Range | 0.129~0.313 | 0.126~0.251 | 0.141~0.750 | 0.133~0.313 | 0.127~0.500 | 0.064~0.254 | 0.127~0.625 | 0.125~0.563 |
Mean ± SD | 0.222 ± 0.068 | 0.178 ± 0.063 | 0.329 ± 0.172 | 0.210 ± 0.060 | 0.251 ± 0.096 | 0.201 ± 0.068 | 0.305 ± 0.173 | 0.219 ± 0.113 |
Changes in Colony Count in Response to the Most Active Single Drug, log10 CFU/mL | |||||||||
---|---|---|---|---|---|---|---|---|---|
Isolates | DAP+ CFZ | DAP+ CFZ | DAP+ CMZ | DAP+ CFZ | DAP+ CTX | DAP+ CTX | DAP+ CPM | DAP+ CPM | DAP+ SUL |
+SUL | +SUL | +SUL | +SUL | ||||||
V18 | −2.70a | −4.34b | −2.79a | −4.34b | −3.14b | −2.81a | −2.84a | −2.79a | 0.00 |
V19 | −2.49a | −3.90b | −3.90b | −3.90b | −2.24a | −2.30a | −2.60a | −3.90b | −1.40 |
V23 | −1.55 | −2.92a | −2.70a | −4.00b | −2.80a | −2.70a | −3.40b | −4.00b | −1.42 |
V25 | −4.53b | −4.53b | −4.53b | −4.53b | −4.53b | −4.53b | −4.53b | −4.53b | −2.00 |
V26 | −2.09a | −2.49a | −2.41a | −2.45a | −2.41a | −2.45a | −2.41a | −2.45a | 0.33 |
V31 | −2.85a | −4.32b | −2.90a | −2.90a | −2.90a | −3.76b | −3.85b | −3.92b | −1.38 |
HV4 | −4.07 | −5.10b | −3.36 | −3.74 | −3.62 | −4.06 | −2.10 | −3.10 | 0.00 |
HV9 | −4.52b | −5.66b | −5.40b | −5.42b | −5.70b | −6.22b | −5.14b | −7.00b | −0.24 |
HV44 | −6.00b | −5.80b | −7.00b | −6.40b | −5.92b | −7.00b | −6.10b | −6.70b | −0.63 |
HV62 | −5.12b | −4.42b | −7.00b | −5.38b | −7.00b | −5.38b | −5.80b | −5.80b | −1.52 |
HV74 | −4.59b | −6.10b | −5.85b | −6.00b | −4.70b | −6.70b | −4.52b | −6.22b | −1.25 |
HV83 | −3.40 | −4.25 | −4.27 | −5.30b | −4.59 | −5.47b | −4.00 | −5.15b | 0.00 |
HV85 | −4.17b | −5.70b | −6.10b | −7.00b | −6.22b | −7.00b | −5.85b | −7.00b | −0.20 |
HV204 | −4.55 | −5.18b | −5.06 | −4.70b | −2.52 | −3.27 | −4.18 | −4.22 | −0.02 |
HV355 | −2.47 | −3.25 | −3.40 | −4.38 | −1.22 | −2.80 | −0.49 | −3.22 | −2.00 |
Mean | −3.67 | −4.53 | −4.44 | −4.70 | −3.97 | −4.43 | −3.85 | −4.67 | −0.78 |
SD | 1.27 | 1.08 | 1.56 | 1.25 | 1.70 | 1.74 | 1.58 | 1.55 | 0.81 |
Bacteriostatic | 4 | 2 | 4 | 2 | 4 | 4 | 3 | 2 | 0 |
Bactericidal | 6 | 11 | 7 | 11 | 7 | 8 | 8 | 10 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, C.-C.; Chen, C.-C.; Lu, Y.-C.; Lin, T.-P.; Chen, H.-J.; Su, B.-A.; Chao, C.-M.; Chuang, Y.-C.; Tang, H.-J. The Potential Role of Sulbactam and Cephalosporins Plus Daptomycin Against Daptomycin-Nonsusceptible VISA and H-VISA Isolates: An In Vitro Study. Antibiotics 2019, 8, 184. https://doi.org/10.3390/antibiotics8040184
Lai C-C, Chen C-C, Lu Y-C, Lin T-P, Chen H-J, Su B-A, Chao C-M, Chuang Y-C, Tang H-J. The Potential Role of Sulbactam and Cephalosporins Plus Daptomycin Against Daptomycin-Nonsusceptible VISA and H-VISA Isolates: An In Vitro Study. Antibiotics. 2019; 8(4):184. https://doi.org/10.3390/antibiotics8040184
Chicago/Turabian StyleLai, Chih-Cheng, Chi-Chung Chen, Ying-Chen Lu, Tsuey-Pin Lin, Hung-Jui Chen, Bo-An Su, Chien-Ming Chao, Yin-Ching Chuang, and Hung-Jen Tang. 2019. "The Potential Role of Sulbactam and Cephalosporins Plus Daptomycin Against Daptomycin-Nonsusceptible VISA and H-VISA Isolates: An In Vitro Study" Antibiotics 8, no. 4: 184. https://doi.org/10.3390/antibiotics8040184
APA StyleLai, C. -C., Chen, C. -C., Lu, Y. -C., Lin, T. -P., Chen, H. -J., Su, B. -A., Chao, C. -M., Chuang, Y. -C., & Tang, H. -J. (2019). The Potential Role of Sulbactam and Cephalosporins Plus Daptomycin Against Daptomycin-Nonsusceptible VISA and H-VISA Isolates: An In Vitro Study. Antibiotics, 8(4), 184. https://doi.org/10.3390/antibiotics8040184