Neonatology: First Exposure to Antibiotics from the Ethical Perspective of Parents, Physicians, and Regulators
Abstract
1. Introduction
2. Diagnostic Tools for Initiation, Duration, and Termination of Antibiotic Treatment
3. The Benefits of Antibiotics
4. The Consequence of “Treat One, Damage All”
5. Medical Professionals’ Attitudes Toward Antibiotic Use in VPIs
“When VPI is admitted to the NICU, it is intubated, receives central and peripheral lines, and requires umbilical cord nutrition. Daily monitoring involves drawing 1 mL of blood while simultaneously observing its delicate weight fluctuations. In these critical moments, infection risk dominates my clinical concerns—even with negative lab results, I feel compelled to treat. The immediate reality of a distraught mother outside the unit makes abstract considerations about decade-later antibiotic consequences feel secondary. Concerns like asthma and obesity will not even matter if a child doesn’t survive the NICU. While we absolutely recognize the importance of antimicrobial resistance (AMR) as a global health priority, our immediate focus must remain on two fronts: preventing preterm births and maintaining impeccable NICU hygiene to reduce hospital-acquired infections. Please know that every medication decision, including antibiotics, follows rigorous clinical assessment and is never made lightly.”
6. Parents’ Attitude Towards Decision-Making Regarding Antibiotic Treatment
7. The Attitude of Regulatory Authorities
8. The Role of the Pharmaceutical Industry
- Parents prioritize immediate neonatal survival over long-term pharmacologic outcomes.
- Clinicians focus on acute clinical management within existing therapeutic paradigms.
- Pharmaceutical companies maintain current developmental pipelines based on market incentives.
- Regulatory agencies continue post-marketing surveillance and data aggregation.
9. The Interdependent Systems of Neonatal Intensive Care
10. Conclusions
10.1. Ethical Framework for Decision-Making in NICUs
10.2. Antimicrobial Stewardship
10.3. Systemic Solutions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ADRs | Adverse Drug Reactions |
AMR | Antimicrobial Resistance |
ASPs | Antimicrobial Stewardship Programs |
AWaRe | Access, Watch, and Reserve classification of antibiotics |
CDC | Centers for Disease Control and Prevention |
cGA | Corrected Gestational Age |
CoNS | Coagulase-Negative Staphylococci |
CRE | Carbapenem-Resistant Enterobacteriaceae |
CRP | C-Reactive Protein |
EBM | Evidence-Based Medicine |
EOS | Early-Onset Sepsis |
EPIs | Extreme Preterm Infants |
ESBL | Extended-Spectrum Beta-Lactamase Producers |
GA | Gestational Age |
GBS | Group B Streptococcus |
HAIs | Hospital-Acquired Infections |
ID | Infectious Disease |
IL-6 | Interleukin-6 |
I/T ratio | Immature-to-Total Neutrophil Ratio |
MRSA | Methicillin-Resistant Staphylococcus aureus |
MSSA | Methicillin-Susceptible Staphylococcus aureus |
NEC | Necrotizing Enterocolitis |
NICU | Neonatal Intensive Care Unit |
OECD | Organization for Economic Co-operation and Development |
PAN-SPs | Pregnancy–Antibiotic–Neonate Stewardship Programs |
PCT | Procalcitonin |
PICC | Percutaneously Inserted Central Catheter |
RPR | Red Cell Distribution Width to Platelet Ratio |
PTB | Preterm Birth |
VPIs | Very Preterm Infants |
VLBW | Very Low Birth Weight |
VRE | Vancomycin-Resistant Enterococci |
WHO | World Health Organization |
References
- Merialdi, M.; Murray, J.C. The changing face of preterm birth. Pediatrics 2007, 120, 1133–1134. [Google Scholar] [CrossRef] [PubMed]
- Blencowe, H.; Cousens, S.; Chou, D.; Oestergaard, M.; Say, L.; Moller, A.-B.; Kinney, M.; Lawn, J.; the Born Too Soon Preterm Birth Action Group. Born too soon: The global epidemiology of 15 million preterm births. Reprod. Health 2013, 10, S2. [Google Scholar] [CrossRef] [PubMed]
- WHO PTB. World Health Organization. Preterm Birth Rate (per 100 Live Births). Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/preterm-birth-rate-per-100-live-births (accessed on 25 June 2025).
- Kvalvik, L.G.; Wilcox, A.J.; Skjærven, R.; Østbye, T.; Harmon, Q.E. Term complications and subsequent risk of preterm birth: Registry based study. BMJ 2020, 369, m1007. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Lyu, Y.; Li, J.; Li, Y.; Chi, C. Global, regional, and national burden of preterm birth, 1990–2021: A systematic analysis from the global burden of disease study 2021. Eclinicalmedicine 2024, 76, 102840. [Google Scholar] [CrossRef]
- Zingg, W.; Hopkins, S.; Gayet-Ageron, A.; Holmes, A.; Sharland, M.; Suetens, C.; Almeida, M.; Asembergiene, J.; Borg, M.A.; Budimir, A. Health-care-associated infections in neonates, children, and adolescents: An analysis of paediatric data from the European Centre for Disease Prevention and Control point-prevalence survey. Lancet Infect. Dis. 2017, 17, 381–389. [Google Scholar] [CrossRef]
- Giannoni, E.; Dimopoulou, V.; Klingenberg, C.; Navér, L.; Nordberg, V.; Berardi, A.; El Helou, S.; Fusch, G.; Bliss, J.M.; Lehnick, D. Analysis of antibiotic exposure and early-onset neonatal sepsis in Europe, North America, and Australia. JAMA Netw. Open 2022, 5, e2243691. [Google Scholar] [CrossRef]
- Kuzniewicz, M.W.; Puopolo, K.M.; Fischer, A.; Walsh, E.M.; Li, S.; Newman, T.B.; Kipnis, P.; Escobar, G.J. A quantitative, risk-based approach to the management of neonatal early-onset sepsis. JAMA Pediatr. 2017, 171, 365–371. [Google Scholar] [CrossRef]
- Tzialla, C. Microbial infections and antimicrobial use in neonates and infants. Trop. Med. Infect. Dis. 2025, 10, 80. [Google Scholar] [CrossRef]
- Gouyon, B.; Martin-Mons, S.; Iacobelli, S.; Razafimahefa, H.; Kermorvant-Duchemin, E.; Brat, R.; Caeymaex, L.; Couringa, Y.; Alexandre, C.; Lafon, C. Characteristics of prescription in 29 Level 3 Neonatal Wards over a 2-year period (2017–2018). An inventory for future research. PLoS ONE 2019, 14, e0222667. [Google Scholar] [CrossRef]
- Girardi, A.; Galletti, S.; Raschi, E.; Koci, A.; Poluzzi, E.; Faldella, G.; De Ponti, F. Pattern of drug use among preterm neonates: Results from an Italian neonatal intensive care unit. Ital. J. Pediatr. 2017, 43, 37. [Google Scholar] [CrossRef]
- Al-Turkait, A.; Szatkowski, L.; Choonara, I.; Ojha, S. Drug utilisation in neonatal units in England and Wales: A national cohort study. Eur. J. Clin. Pharmacol. 2022, 78, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Al-Turkait, A.; Szatkowski, L.; Choonara, I.; Ojha, S. Review of drug utilization studies in neonatal units: A global perspective. Int. J. Environ. Res. Public Health 2020, 17, 5669. [Google Scholar] [CrossRef] [PubMed]
- Spencer, H.J.; Dantuluri, K.L.; Thurm, C.; Griffith, H.; Grijalva, C.G.; Banerjee, R.; Howard, L.M. Variation in antibiotic use among neonatal intensive care units in the United States. Infect. Control Hosp. Epidemiol. 2022, 43, 1945–1947. [Google Scholar] [CrossRef]
- Coggins, S.A.; Greenberg, R.G. Pharmacokinetic-pharmacodynamic approaches to optimize antibiotic use in neonates. Clin. Perinatol. 2025, 52, 67–86. [Google Scholar] [CrossRef]
- Laine, N.; Kaukonen, A.M.; Hoppu, K.; Airaksinen, M.; Saxen, H. Off-label use of antimicrobials in neonates in a tertiary children’s hospital. Eur. J. Clin. Pharmacol. 2017, 73, 609–614. [Google Scholar] [CrossRef]
- Vieira, V.C.; Costa, R.S.; Lima, R.C.G.; Queiroz, D.B.; Medeiros, D.S.d. Prescription of off-label and unlicensed drugs for preterm infants in a neonatal intensive care unit. Rev. Bras. Ter. Intensiv. 2021, 33, 266–275. [Google Scholar] [CrossRef]
- de Souza, A.S.; Dos Santos, D.B.; Rey, L.C.; Medeiros, M.G.; Vieira, M.G.; Coelho, H.L.L. Off-label use and harmful potential of drugs in a NICU in Brazil: A descriptive study. BMC Pediatr. 2016, 16, 13. [Google Scholar] [CrossRef]
- Reis, F.; Pissarra, R.; Soares, H.; Soares, P.; Guimarães, H. Off-label and unlicensed drug treatments in Neonatal Intensive Care Units: A systematic review. J. Pediatr. Neonatal Individ. Med. (JPNIM) 2021, 10, e100213. [Google Scholar]
- Casañ, V.A.; Escribano, B.C.; Garrido-Corro, B.; De la Cruz Murie, P.; Álvarez, M.J.B.; de la Rubia Nieto, M.A. Off-label and unlicensed drug use in a Spanish Neonatal Intensive Care Unit. Farm. Hosp. 2017, 41, 371–381. [Google Scholar]
- Kontou, A.; Kourti, M.; Iosifidis, E.; Sarafidis, K.; Roilides, E. Use of newer and repurposed antibiotics against gram-negative bacteria in neonates. Antibiotics 2023, 12, 1072. [Google Scholar] [CrossRef]
- Shaikh, H.; Lyle, A.N.; Oslin, E.; Gray, M.M.; Weiss, E.M. Eligible Infants Included in Neonatal Clinical Trials and Reasons for Noninclusion: A Systematic Review. JAMA Netw. Open 2024, 7, e2441372. [Google Scholar] [CrossRef]
- Weiss, E.M.; Porter, K.M.; Oslin, E.; Puia-Dumitrescu, M.; Donohue, P.K.; Merhar, S.L.; Stephens, E.; Mercer, A.; Wilfond, B.S. Experiences and preferences for learning about neonatal research: Insights from parent interviews. J. Perinatol. 2024, 44, 404–414. [Google Scholar] [CrossRef]
- Sivakumar, N.; Srinivasan, L.; Grundmeier, R.W.; Harris, M.C. Demystifying Prolonged Antibiotic Use for Blood Culture-negative Sepsis Evaluations in the Neonatal Intensive Care Unit. Pediatr. Infect. Dis. J. 2025, 44, 901–906. [Google Scholar] [CrossRef]
- Cheng, P.; Qian, A.; Zhang, H.; Wang, Y.; Li, S.; Sun, M.; Yang, J.; Zhou, J.; Hu, L.; Lei, X. Epidemiology, microbiology and antibiotic treatment of bacterial and fungal meningitis among very preterm infants in China: A cross-sectional study. Arch. Dis. Child.-Fetal Neonatal Ed. 2025, 110, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Alsaleem, M.; Gray, C.P. Neonatal Sepsis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Keshet, A.; Hochwald, O.; Lavon, A.; Borenstein-Levin, L.; Shoer, S.; Godneva, A.; Glantz-Gashai, Y.; Cohen-Dolev, N.; Timstut, F.; Lotan-Pompan, M. Development of antibiotic resistome in premature infants. Cell Rep. 2025, 44, 115515. [Google Scholar] [CrossRef]
- Gasparrini, A.J.; Wang, B.; Sun, X.; Kennedy, E.A.; Hernandez-Leyva, A.; Ndao, I.M.; Tarr, P.I.; Warner, B.B.; Dantas, G. Persistent metagenomic signatures of early-life hospitalization and antibiotic treatment in the infant gut microbiota and resistome. Nat. Microbiol. 2019, 4, 2285–2297. [Google Scholar] [CrossRef]
- Lebeaux, R.M.; Karalis, D.B.; Lee, J.; Whitehouse, H.C.; Madan, J.C.; Karagas, M.R.; Hoen, A.G. The association between early life antibiotic exposure and the gut resistome of young children: A systematic review. Gut Microbes 2022, 14, 2120743. [Google Scholar] [CrossRef]
- Moles, L.; Gómez, M.; Jiménez, E.; Fernández, L.; Bustos, G.; Chaves, F.; Cantón, R.; Rodríguez, J.; Del Campo, R. Preterm infant gut colonization in the neonatal ICU and complete restoration 2 years later. Clin. Microbiol. Infect. 2015, 21, 936.e1–936.e10. [Google Scholar] [CrossRef] [PubMed]
- Toubon, G.; Patin, C.; Delannoy, J.; Rozé, J.-C.; Barbut, F.; Ancel, P.-Y.; Charles, M.-A.; Butel, M.-J.; Lepage, P.; Aires, J. Very preterm gut microbiota development from the first week of life to 3.5 years of age: A prospective longitudinal multicenter study. Microbiol. Spectr. 2025, 13, e01636-24. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, T.; Childress, J. Principles of Biomedical Ethics: Marking Its Fortieth Anniversary. Am. J. Bioeth. 2019, 19, 9–12. [Google Scholar] [CrossRef]
- Neonatal Infection: Antibiotics for Prevention and Treatment; NICE Guideline, No. 195; National Institute for Health and Care Excellence (NICE): London, UK, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK571222/ (accessed on 15 June 2025).
- Mukhopadhyay, S. Antibiotic stewardship in neonates and in neonatal intensive care units. Semin. Perinatol. 2020, 44, 151321. [Google Scholar] [CrossRef]
- WHO AWaRe Classification of Antibiotics for Evaluation and Monitoring of Use, 2023. WHO/MHP/HPS/EML/2023.04. Available online: https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2023.04 (accessed on 15 June 2025).
- Schulman, J.; Profit, J.; Lee, H.C.; Dueñas, G.; Bennett, M.V.; Parucha, J.; Jocson, M.A.; Gould, J.B. Variations in neonatal antibiotic use. Pediatrics 2018, 142, e20180115. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.; Buus-Frank, M.E.; Edwards, E.M.; Morrow, K.A.; Ferrelli, K.; Srinivasan, A.; Pollock, D.A.; Dukhovny, D.; Zupancic, J.A.; Pursley, D.M. Adherence of newborn-specific antibiotic stewardship programs to CDC recommendations. Pediatrics 2018, 142, e20174322. [Google Scholar] [CrossRef] [PubMed]
- Mussap, M.; Noto, A.; Cibecchini, F.; Fanos, V. The importance of biomarkers in neonatology. Semin. Fetal Neonatal Med. 2013, 18, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Guerti, K.; Devos, H.; Ieven, M.M.; Mahieu, L.M. Time to positivity of neonatal blood cultures: Fast and furious? J. Med. Microbiol. 2011, 60, 446–453. [Google Scholar] [CrossRef]
- Saboohi, E.; Saeed, F.; Khan, R.N.; Khan, M.A. Immature to total neutrophil ratio as an early indicator of early neonatal sepsis. Pak. J. Med. Sci. 2019, 35, 241. [Google Scholar] [CrossRef]
- Karabulut, B.; Arcagok, B.C. New diagnostic possibilities for early onset neonatal sepsis: Red cell distribution width to platelet ratio. Fetal Pediatr. Pathol. 2020, 39, 297–306. [Google Scholar] [CrossRef]
- Celik, I.H.; Hanna, M.; Canpolat, F.E.; Pammi, M. Diagnosis of neonatal sepsis: The past, present and future. Pediatr. Res. 2022, 91, 337–350. [Google Scholar] [CrossRef]
- Boscarino, G.; Migliorino, R.; Carbone, G.; Davino, G.; Dell’Orto, V.G.; Perrone, S.; Principi, N.; Esposito, S. Biomarkers of Neonatal Sepsis: Where We Are and Where We Are Going. Antibiotics 2023, 12, 1233. [Google Scholar] [CrossRef]
- Stocker, M.; van Herk, W.; El Helou, S.; Dutta, S.; Fontana, M.S.; Schuerman, F.A.B.A.; van den Tooren-de Groot, R.K.; Wieringa, J.W.; Janota, J.; van der Meer-Kappelle, L.H.; et al. Procalcitonin-guided decision making for duration of antibiotic therapy in neonates with suspected early-onset sepsis: A multicentre, randomised controlled trial (NeoPIns). Lancet 2017, 390, 871–881. [Google Scholar] [CrossRef]
- Go, H.; Nagano, N.; Sato, Y.; Katayama, D.; Hara, K.; Akimoto, T.; Imaizumi, T.; Aoki, R.; Hijikata, M.; Seimiya, A.; et al. Procalcitonin-Based Antibiotic Use for Neonatal Early-Onset Bacterial Infections: Pre- and Post-Intervention Clinical Study. Antibiotics 2023, 12, 1426. [Google Scholar] [CrossRef] [PubMed]
- Stocker, M.; van Herk, W.; El Helou, S.; Dutta, S.; Schuerman, F.A.B.A.; van den Tooren-de Groot, R.K.; Wieringa, J.W.; Janota, J.; van der Meer-Kappelle, L.H.; Moonen, R.; et al. C-Reactive Protein, Procalcitonin, and White Blood Count to Rule Out Neonatal Early-onset Sepsis Within 36 Hours: A Secondary Analysis of the Neonatal Procalcitonin Intervention Study. Clin. Infect. Dis. 2020, 73, e383–e390. [Google Scholar] [CrossRef]
- Cao, I.; Lippmann, N.; Thome, U.H. The Value of Perinatal Factors, Blood Biomarkers and Microbiological Colonization Screening in Predicting Neonatal Sepsis. J. Clin. Med. 2022, 11, 5837. [Google Scholar] [CrossRef]
- Gatseva, P.; Blazhev, A.; Yordanov, Z.; Atanasova, V. Early Diagnostic Markers of Late-Onset Neonatal Sepsis. Pediatr. Rep. 2023, 15, 548–559. [Google Scholar] [CrossRef]
- Eichberger, J.; Resch, B. Reliability of Interleukin-6 Alone and in Combination for Diagnosis of Early Onset Neonatal Sepsis: Systematic Review. Front. Pediatr. 2022, 10, 840778. [Google Scholar] [CrossRef]
- Nur Ergor, S.; Yalaz, M.; Altun Koroglu, O.; Sozmen, E.; Akisu, M.; Kultursay, N. Reference ranges of presepsin (soluble CD14 subtype) in term and preterm neonates without infection, in relation to gestational and postnatal age, in the first 28 days of life. Clin. Biochem. 2020, 77, 7–13. [Google Scholar] [CrossRef]
- Poggi, C.; Lucenteforte, E.; Petri, D.; De Masi, S.; Dani, C. Presepsin for the Diagnosis of Neonatal Early-Onset Sepsis: A Systematic Review and Meta-analysis. JAMA Pediatr. 2022, 176, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Dierikx, T.H.; van Laerhoven, H.; van der Schoor, S.R.D.; Nusman, C.M.; Lutterman, C.A.M.; Vliegenthart, R.J.S.; de Meij, T.G.J.; Benninga, M.A.; Onland, W.; van Kaam, A.H.; et al. Can Presepsin Be Valuable in Reducing Unnecessary Antibiotic Exposure after Birth? Antibiotics 2023, 12, 695. [Google Scholar] [CrossRef] [PubMed]
- Pugni, L.; Pietrasanta, C.; Milani, S.; Vener, C.; Ronchi, A.; Falbo, M.; Arghittu, M.; Mosca, F. Presepsin (Soluble CD14 Subtype): Reference Ranges of a New Sepsis Marker in Term and Preterm Neonates. PLoS ONE 2016, 10, e0146020. [Google Scholar] [CrossRef]
- Rao, L.; Song, Z.; Yu, X.; Tu, Q.; He, Y.; Luo, Y.; Yin, Y.; Chen, D. Progranulin as a novel biomarker in diagnosis of early-onset neonatal sepsis. Cytokine 2020, 128, 155000. [Google Scholar] [CrossRef]
- De Rose, D.U.; Ronchetti, M.P.; Santisi, A.; Bernaschi, P.; Martini, L.; Porzio, O.; Dotta, A.; Auriti, C. Stop in Time: How to Reduce Unnecessary Antibiotics in Newborns with Late-Onset Sepsis in Neonatal Intensive Care. Trop. Med. Infect. Dis. 2024, 9, 63. [Google Scholar] [CrossRef]
- Huggard, D.; Powell, J.; Kirkham, C.; Power, L.; O’Connell, N.H.; Philip, R.K. Time to positivity (TTP) of neonatal blood cultures: A trend analysis over a decade from Ireland. J. Matern.-Fetal Neonatal Med. 2021, 34, 780–786. [Google Scholar] [CrossRef]
- Rohsiswatmo, R.; Hikmahrachim, H.G.; Nadobudskaya, D.U.; Anjani, S.M.; You, A. Sepsis calculator to support antibiotic stewardship in early-onset neonatal sepsis: A meta-analysis. Paediatr. Indones. 2018, 58, 286–297. [Google Scholar] [CrossRef]
- Stocker, M.; Klingenberg, C.; Navér, L.; Nordberg, V.; Berardi, A.; el Helou, S.; Fusch, G.; Bliss, J.M.; Lehnick, D.; Dimopoulou, V.; et al. Less is more: Antibiotics at the beginning of life. Nat. Commun. 2023, 14, 2423. [Google Scholar] [CrossRef]
- Flenady, V.; Hawley, G.; Stock, O.M.; Kenyon, S.; Badawi, N. Prophylactic antibiotics for inhibiting preterm labour with intact membranes. Cochrane Database Syst. Rev. 2013, 2013, CD000246. [Google Scholar] [CrossRef]
- Baecher, L.; Grobman, W. Prenatal antibiotic treatment does not decrease group B streptococcus colonization at delivery. Int. J. Gynecol. Obstet. 2008, 101, 125–128. [Google Scholar] [CrossRef]
- Martinez de Tejada, B. Antibiotic use and misuse during pregnancy and delivery: Benefits and risks. Int. J. Environ. Res. Public Health 2014, 11, 7993–8009. [Google Scholar] [CrossRef] [PubMed]
- Subtil, D.; Brabant, G.; Tilloy, E.; Devos, P.; Canis, F.; Fruchart, A.; Bissinger, M.-C.; Dugimont, J.-C.; Nolf, C.; Hacot, C. Early clindamycin for bacterial vaginosis in pregnancy (PREMEVA): A multicentre, double-blind, randomised controlled trial. Lancet 2018, 392, 2171–2179. [Google Scholar] [CrossRef] [PubMed]
- Fung, T.Y.; Sahota, D.S. How can we reduce neonatal sepsis after universal group B streptococcus screening? BMC Pregnancy Childbirth 2024, 24, 586. [Google Scholar] [CrossRef] [PubMed]
- Schilling, A.-L.; Rody, A.; Bossung, V. Antibiotic use during pregnancy and childbirth: Prospective observational study on prevalence, indications, and prescribing patterns in a German tertiary center. Geburtshilfe Frauenheilkd. 2023, 83, 192–200. [Google Scholar] [CrossRef]
- Winteler, C.; Ardabili, S.; Hodel, M.; Stocker, M. A systematic review of Perinatal Antibiotic Stewardship–where we are, where to go? J. Perinatol. 2025, 1–12. [Google Scholar] [CrossRef]
- Manan, M.M.; Ibrahim, N.A.; Aziz, N.A.; Zulkifly, H.H.; Al-Worafi, Y.M.A.; Long, C.M. Empirical use of antibiotic therapy in the prevention of early onset sepsis in neonates: A pilot study. Arch. Med. Sci. 2016, 12, 603–613. [Google Scholar] [CrossRef]
- Reynolds, G.E.; Tierney, S.B.; Klein, J.M. Antibiotics before removal of percutaneously inserted central venous catheters reduces clinical sepsis in premature infants. J. Pediatr. Pharmacol. Ther. 2015, 20, 203–209. [Google Scholar] [CrossRef]
- Stiemsma, L.T.; Michels, K.B. The role of the microbiome in the developmental origins of health and disease. Pediatrics 2018, 141, e20172437. [Google Scholar] [CrossRef]
- Köstlin-Gille, N.; Serna-Higuita, L.M.; Bubser, C.; Arand, J.; Haag, L.; Schwarz, C.E.; Heideking, M.; Poets, C.F.; Gille, C. Early initiation of antibiotic therapy and short-term outcomes in preterm infants: A single-centre retrospective cohort analysis. Arch. Dis. Child.-Fetal Neonatal Ed. 2023, 108, 623–630. [Google Scholar] [CrossRef]
- Reyman, M.; Van Houten, M.A.; Watson, R.L.; Chu, M.L.J.; Arp, K.; De Waal, W.J.; Schiering, I.; Plötz, F.B.; Willems, R.J.; Van Schaik, W. Effects of early-life antibiotics on the developing infant gut microbiome and resistome: A randomized trial. Nat. Commun. 2022, 13, 893. [Google Scholar] [CrossRef]
- Vatne, A.; Hapnes, N.; Stensvold, H.J.; Dalen, I.; Guthe, H.J.; Støen, R.; Brigtsen, A.K.; Rønnestad, A.E.; Klingenberg, C.; Network, N.N. Early empirical antibiotics and adverse clinical outcomes in infants born very preterm: A population-based cohort. J. Pediatr. 2023, 253, 107–114. e105. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Zhang, L.; Li, S.; Yan, W.; Bai, R.; Yang, Z.; Shi, J.; Yuan, J.; Yang, C.; Cai, W. Early antibiotic use and neonatal outcomes among preterm infants without infections. Pediatrics 2023, 151, e2022059427. [Google Scholar] [CrossRef] [PubMed]
- Dermitzaki, N.; Atzemoglou, N.; Giapros, V.; Baltogianni, M.; Rallis, D.; Gouvias, T.; Serbis, A.; Drougia, A. Elimination of Candida Sepsis and Reduction of Several Morbidities in a Tertiary NICU in Greece After Changing Antibiotic, Ventilation, and Nutrition Protocols. Antibiotics 2025, 14, 159. [Google Scholar] [CrossRef]
- Kelly, M.S.; Benjamin, D.K.; Smith, P.B. The epidemiology and diagnosis of invasive candidiasis among premature infants. Clin. Perinatol. 2014, 42, 105. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Guo, M.; Zhang, T.; Chen, Q.; Wu, M.; Teng, F.; Long, Y.; Jiang, Z.; Xu, Y. Impact of exposure to antibiotics during pregnancy and infancy on childhood obesity: A systematic review and meta-analysis. Obesity 2020, 28, 793–802. [Google Scholar] [CrossRef]
- Brandt, S.; Thorsen, J.; Rasmussen, M.A.; Chawes, B.; Bønnelykke, K.; Blaser, M.J.; Sevelsted, A.; Stokholm, J. Use of antibiotics in early life and development of diseases in childhood: Nationwide registry study. BMJ Med. 2025, 4, e001064. [Google Scholar] [CrossRef]
- Arboleya, S.; Sánchez, B.; Solís, G.; Fernández, N.; Suárez, M.; Hernández-Barranco, A.M.; Milani, C.; Margolles, A.; de Los Reyes-Gavilán, C.G.; Ventura, M. Impact of prematurity and perinatal antibiotics on the developing intestinal microbiota: A functional inference study. Int. J. Mol. Sci. 2016, 17, 649. [Google Scholar] [CrossRef]
- Toubon, G.; Butel, M.-J.; Rozé, J.-C.; Lepage, P.; Delannoy, J.; Ancel, P.-Y.; Charles, M.-A.; Aires, J.; Group, E.S. Very preterm children gut Microbiota comparison at the neonatal period of 1 month and 3.5 years of life. Front. Microbiol. 2022, 13, 919317. [Google Scholar] [CrossRef]
- Chernikova, D.A.; Madan, J.C.; Housman, M.L.; Zain-Ul-Abideen, M.; Lundgren, S.N.; Morrison, H.G.; Sogin, M.L.; Williams, S.M.; Moore, J.H.; Karagas, M.R. The premature infant gut microbiome during the first 6 weeks of life differs based on gestational maturity at birth. Pediatr. Res. 2018, 84, 71–79. [Google Scholar] [CrossRef]
- Schlapbach, L.J.; Watson, R.S.; Sorce, L.R.; Argent, A.C.; Menon, K.; Hall, M.W.; Akech, S.; Albers, D.J.; Alpern, E.R.; Balamuth, F. International consensus criteria for pediatric sepsis and septic shock. JAMA 2024, 331, 665–674. [Google Scholar] [CrossRef]
- Rajar, P.; Saugstad, O.D.; Berild, D.; Dutta, A.; Greisen, G.; Lausten-Thomsen, U.; Mande, S.S.; Nangia, S.; Petersen, F.C.; Dahle, U.R. Antibiotic stewardship in premature infants: A systematic review. Neonatology 2021, 117, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Cotten, C.M.; Taylor, S.; Stoll, B.; Goldberg, R.N.; Hansen, N.I.; Sanchez, P.J.; Ambalavanan, N.; Benjamin, D.K., Jr.; Network, N.N.R. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatrics 2009, 123, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Alexander, V.N.; Northrup, V.; Bizzarro, M.J. Antibiotic exposure in the newborn intensive care unit and the risk of necrotizing enterocolitis. J. Pediatr. 2011, 159, 392–397. [Google Scholar] [CrossRef]
- Cantey, J.B.; Wozniak, P.S.; Pruszynski, J.E.; Sánchez, P.J. Reducing unnecessary antibiotic use in the neonatal intensive care unit (SCOUT): A prospective interrupted time-series study. Lancet Infect. Dis. 2016, 16, 1178–1184. [Google Scholar] [CrossRef] [PubMed]
- Flannery, D.D.; Ross, R.K.; Mukhopadhyay, S.; Tribble, A.C.; Puopolo, K.M.; Gerber, J.S. Temporal trends and center variation in early antibiotic use among premature infants. JAMA Netw. Open 2018, 1, e180164. [Google Scholar] [CrossRef] [PubMed]
- Vitale, S.; Marilli, I.; Rapisarda, A.; Rossetti, D.; Belluomo, G.; Iapichino, V.; Stancanelli, F.; Cianci, A. Cellular and biochemical mechanisms, risk factors and management of preterm birth: State of the art. Minerva Ginecol. 2014, 66, 589–595. [Google Scholar] [PubMed]
- Perin, J.; Mulick, A.; Yeung, D.; Villavicencio, F.; Lopez, G.; Strong, K.L.; Prieto-Merino, D.; Cousens, S.; Black, R.E.; Liu, L. Global, regional, and national causes of under-5 mortality in 2000–19: An updated systematic analysis with implications for the Sustainable Development Goals. Lancet Child Adolesc. Health 2022, 6, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Thompson, D.K.; Anderson, P.J.; Yang, J.Y.-M. Short-and long-term neurodevelopmental outcomes of very preterm infants with neonatal sepsis: A systematic review and meta-analysis. Children 2019, 6, 131. [Google Scholar] [CrossRef]
- Ong, W.J.; Seng, J.J.B.; Yap, B.; He, G.; Moochhala, N.A.; Ng, C.L.; Ganguly, R.; Lee, J.H.; Chong, S.-L. Impact of neonatal sepsis on neurocognitive outcomes: A systematic review and meta-analysis. BMC Pediatr. 2024, 24, 505. [Google Scholar] [CrossRef]
- Arnau-Sánchez, J.; Jiménez-Guillén, C.; Alcaraz-Quiñonero, M.; Vigueras-Abellán, J.J.; Garnica-Martínez, B.; Soriano-Ibarra, J.F.; Martín-Ayala, G. Factors influencing inappropriate use of antibiotics in infants under 3 years of age in primary care: A qualitative study of the paediatricians’ perceptions. Antibiotics 2023, 12, 727. [Google Scholar] [CrossRef]
- Zhang, X.; Zhivaki, D.; Lo-Man, R. Unique aspects of the perinatal immune system. Nat. Rev. Immunol. 2017, 17, 495–507. [Google Scholar] [CrossRef]
- Kariniotaki, C.; Thomou, C.; Gkentzi, D.; Panteris, E.; Dimitriou, G.; Hatzidaki, E. Neonatal Sepsis: A Comprehensive Review. Antibiotics 2024, 14, 6. [Google Scholar] [CrossRef]
- Puopolo, K.M.; Benitz, W.E.; Zaoutis, T.E.; Cummings, J.; Juul, S.; Hand, I.; Eichenwald, E.; Poindexter, B.; Stewart, D.L.; Aucott, S.W. Management of neonates born at ≤34 6/7 weeks’ gestation with suspected or proven early-onset bacterial sepsis. Pediatrics 2018, 142, e20182896. [Google Scholar] [CrossRef]
- Achten, N.B.; Klingenberg, C.; Benitz, W.E.; Stocker, M.; Schlapbach, L.J.; Giannoni, E.; Bokelaar, R.; Driessen, G.J.; Brodin, P.; Uthaya, S. Association of use of the neonatal early-onset sepsis calculator with reduction in antibiotic therapy and safety: A systematic review and meta-analysis. JAMA Pediatr. 2019, 173, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Baur, D.; Gladstone, B.P.; Burkert, F.; Carrara, E.; Foschi, F.; Döbele, S.; Tacconelli, E. Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: A systematic review and meta-analysis. Lancet Infect. Dis. 2017, 17, 990–1001. [Google Scholar] [CrossRef]
- Kitano, T.; Takagi, K.; Arai, I.; Yasuhara, H.; Ebisu, R.; Ohgitani, A.; Kitagawa, D.; Oka, M.; Masuo, K.; Minowa, H. A simple and feasible antimicrobial stewardship program in a neonatal intensive care unit of a Japanese community hospital. J. Infect. Chemother. 2019, 25, 860–865. [Google Scholar] [CrossRef]
- Berardi, A.; Zinani, I.; Rossi, C.; Spaggiari, E.; D’Amico, V.; Toni, G.; Bedetti, L.; Lucaccioni, L.; Iughetti, L.; Lugli, L. Antibiotic use in very low birth weight neonates after an antimicrobial stewardship program. Antibiotics 2021, 10, 411. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.P.; Khattak, H.; Kini, P.K.; Heaton, P.A.; Goel, N. NICE guideline review: Neonatal infection: Antibiotics for prevention and treatment (NG195). Arch. Dis. Child.-Educ. Pract. 2022, 107, 292–297. [Google Scholar] [CrossRef]
- Lawrence, S.M.; Wynn, J.L.; Kimberlin, D.W.; Cantey, J.B. Investigating antibiotics in the NICU and patient safety. Frontiers in Cell. Infect. Microbiol. 2025, 15, 1563940. [Google Scholar] [CrossRef] [PubMed]
- Tagare, A.; Kadam, S.; Vaidya, U.; Pandit, A. Routine antibiotic use in preterm neonates: A randomised controlled trial. J. Hosp. Infect. 2010, 74, 332–336. [Google Scholar] [CrossRef]
- Lazzerini, M.; Bua, J.; Vuillard, C.L.J.; Squillaci, D.; Tumminelli, C.; Panunzi, S.; Girardelli, M.; Mariani, I. Characteristics of intervention studies on family-centred care in neonatal intensive care units: A scoping review of randomised controlled trials. BMJ Paediatr. Open 2024, 8, e002469. [Google Scholar] [CrossRef]
- Caporali, C.; Pisoni, C.; Gasparini, L.; Ballante, E.; Zecca, M.; Orcesi, S.; Provenzi, L. A global perspective on parental stress in the neonatal intensive care unit: A meta-analytic study. J. Perinatol. 2020, 40, 1739–1752. [Google Scholar] [CrossRef]
- Fleiss, N.; Hooven, T.A.; Polin, R.A. Can we back off using antibiotics in the NICU? Semin. Fetal Neonatal Med. 2021, 26, 101217. [Google Scholar] [CrossRef] [PubMed]
- Neri, E.; Genova, F.; Stella, M.; Provera, A.; Biasini, A.; Agostini, F. Parental Distress and Affective Perception of Hospital Environment after a Pictorial Intervention in a Neonatal Intensive Care Unit. Int. J. Environ. Res. Public Health 2022, 19, 8893. [Google Scholar] [CrossRef]
- Van Hecke, O.; Butler, C.C.; Wang, K.; Tonkin-Crine, S. Parents’ perceptions of antibiotic use and antibiotic resistance (PAUSE): A qualitative interview study. J. Antimicrob. Chemother. 2019, 74, 1741–1747. [Google Scholar] [CrossRef]
- Khan, M.U.; Khan, Z.; Khan, A. Parental Knowledge, Attitudes, and Practices Regarding Antibiotic Use in Pediatric Respiratory Infections: A Qualitative Study. medRxiv 2024. [Google Scholar] [CrossRef]
- Cantarero-Arévalo, L.; Hallas, M.P.; Kaae, S. Parental knowledge of antibiotic use in children with respiratory infections: A systematic review. Int. J. Pharm. Pract. 2017, 25, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Bagshaw, S.M.; Kellner, J.D. Beliefs and behaviours of parents regarding antibiotic use by children. Can. J. Infect. Dis. Med. Microbiol. 2001, 12, 93–97. [Google Scholar] [CrossRef]
- Ivanovska, V.; Angelovska, B.; Van Dijk, L.; Zdravkovska, M.; Leufkens, H.G.; Mantel-Teeuwisse, A.K. Change in parental knowledge, attitudes and practice of antibiotic use after a national intervention programme. Eur. J. Public Health 2018, 28, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Alejandro, A.L.; Bruce, M.; Leo, C. Parents’ awareness of antimicrobial resistance: A qualitative study utilising the Health Belief Model in Perth, Western Australia. Aust. N. Z. J. Public Health 2022, 46, 764–770. [Google Scholar] [CrossRef] [PubMed]
- Vallejo-Espín, D.; Galarza-Mayorga, J.; Lalaleo, L.; Calero-Cáceres, W. Beyond clinical genomics: Addressing critical gaps in One Health AMR surveillance. Front. Microbiol. 2025, 16, 1596720. [Google Scholar] [CrossRef]
- Kariuki, S. Global burden of antimicrobial resistance and forecasts to 2050. Lancet 2024, 404, 1172–1173. [Google Scholar] [CrossRef]
- Antimicrobial Resistance: Causes and How It Spreads. Available online: https://www.cdc.gov/antimicrobial-resistance/causes/index.html (accessed on 20 June 2025).
- Resman, F. Antimicrobial stewardship programs; a two-part narrative review of step-wise design and issues of controversy Part I: Step-wise design of an antimicrobial stewardship program. Ther. Adv. Infect. Dis. 2020, 7, 2049936120933187. [Google Scholar] [CrossRef]
- Burnham, J.P. The Antimicrobial Resistance–Water–Corporate Interface: Exploring the Connections Between Antimicrobials, Water, and Pollution. Trop. Med. Infect. Dis. 2025, 10, 105. [Google Scholar] [CrossRef]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef]
- World Health Organization. Regional Office for Europe. Roadmap on Antimicrobial Resistance for the WHO European Region 2023–2030; World Health Organization: Geneva, Switzerland, 2023.
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; Wool, E.E.; Aguilar, G.R.; Mestrovic, T.; Smith, G.; Han, C. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef] [PubMed]
- Santy-Tomlinson, J. Antimicrobial resistance stewardship: It’s up to us all. Int. J. Orthop. Trauma Nurs. 2018, 28, 1–3. [Google Scholar] [CrossRef]
- McGowan, J., Jr.; Gerding, D. Does antibiotic restriction prevent resistance? New Horiz. 1996, 4, 370–376. [Google Scholar]
- Garazzino, S.; Lutsar, I.; Bertaina, C.; Tovo, P.-A.; Sharland, M. New antibiotics for paediatric use: A review of a decade of regulatory trials submitted to the European Medicines Agency from 2000—Why aren’t we doing better? Int. J. Antimicrob. Agents 2013, 42, 99–118. [Google Scholar] [CrossRef]
- Branstetter, J.W.; Barker, L.; Yarbrough, A.; Ross, S.; Stultz, J.S. Challenges of antibiotic stewardship in the pediatric and neonatal intensive care units. J. Pediatr. Pharmacol. Ther. 2021, 26, 659–668. [Google Scholar] [CrossRef]
- Da Silva, A.R.A.; Marques, A.; Di Biase, C.; Faitanin, M.; Murni, I.; Dramowski, A.; Hübner, J.; Zingg, W. Effectiveness of antimicrobial stewardship programmes in neonatology: A systematic review. Arch. Dis. Child. 2020, 105, 563–568. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, K.; Hawke, A.; Dempsey, E. Antimicrobial stewardship in the neonatal unit reduces antibiotic exposure. Acta Paediatr. 2018, 107, 1716–1721. [Google Scholar] [CrossRef]
- Lee, K.R.; Bagga, B.; Arnold, S.R. Reduction of broad-spectrum antimicrobial use in a tertiary children’s hospital post antimicrobial stewardship program guideline implementation. Pediatr. Crit. Care Med. 2016, 17, 187–193. [Google Scholar] [CrossRef]
- Nzegwu, N.I.; Rychalsky, M.R.; Nallu, L.A.; Song, X.; Deng, Y.; Natusch, A.M.; Baltimore, R.S.; Paci, G.R.; Bizzarro, M.J. Implementation of an antimicrobial stewardship program in a neonatal intensive care unit. Infect. Control. Hosp. Epidemiol. 2017, 38, 1137–1143. [Google Scholar] [CrossRef]
- Ting, J.Y.; Paquette, V.; Ng, K.; Lisonkova, S.; Hait, V.; Shivanada, S.; Tilley, P.; Osiovich, H.; Roberts, A. Reduction of inappropriate antimicrobial prescriptions in a tertiary neonatal intensive care unit after antimicrobial stewardship care bundle implementation. Pediatr. Infect. Dis. J. 2019, 38, 54–59. [Google Scholar] [CrossRef]
- Mascarenhas, D.; Ho, M.S.P.; Ting, J.; Shah, P.S. Antimicrobial stewardship programs in neonates: A meta-analysis. Pediatrics 2024, 153, e2023065091. [Google Scholar] [CrossRef]
- Malviya, M.N.; Murthi, S.; Selim, A.A.; Malik, F.; Jayraj, D.; Mendoza, J.; Ramdas, V.; Rasheed, S.; Al Jabri, A.; Al Sabri, R. A neonatologist-driven antimicrobial stewardship program in a neonatal tertiary care center in Oman. Am. J. Perinatol. 2024, 41, e747–e754. [Google Scholar] [CrossRef] [PubMed]
- Cantey, J.B. Fulfilling the Promise of the Premise in Neonatal Antimicrobial Stewardship. Pediatrics 2024, 153, e2024065735. [Google Scholar] [CrossRef]
- Notarbartolo, V.; Badiane, B.A.; Insinga, V.; Giuffrè, M. Antimicrobial Stewardship: A Correct Management to Reduce Sepsis in NICU Settings. Antibiotics 2024, 13, 520. [Google Scholar] [CrossRef] [PubMed]
- Morowitz, M.J.; Katheria, A.C.; Polin, R.A.; Pace, E.; Huang, D.T.; Chang, C.-C.H.; Yabes, J.G. The NICU Antibiotics and Outcomes (NANO) trial: A randomized multicenter clinical trial assessing empiric antibiotics and clinical outcomes in newborn preterm infants. Trials 2022, 23, 428. [Google Scholar] [CrossRef]
- NNFI: National Neonatology Forum, India, 2021. Clinical Practice Guidelines. Diagnosis and Management of Neonatal Sepsis. Available online: https://www.nnfi.org/assests/upload/usefull-links-pdf/Diagnosis_and_Management_of_Neonatal_Sepsis_NNFI_CPG_Dec2021.pdf (accessed on 4 June 2025).
- Lawrence, K.L.; Kollef, M.H. Antimicrobial stewardship in the intensive care unit: Advances and obstacles. Am. J. Respir. Crit. Care Med. 2009, 179, 434–438. [Google Scholar]
- Steinmann, K.E.; Lehnick, D.; Buettcher, M.; Schwendener-Scholl, K.; Daetwyler, K.; Fontana, M.; Morgillo, D.; Ganassi, K.; O’Neill, K.; Genet, P. Impact of empowering leadership on antimicrobial stewardship: A single center study in a neonatal and pediatric intensive care unit and a literature review. Front. Pediatr. 2018, 6, 294. [Google Scholar] [CrossRef]
- Patel, S.J.; Saiman, L. Principles and strategies of antimicrobial stewardship in the neonatal intensive care unit. Semin. Perinatol. 2012, 36, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Tolia, V.N.; Desai, S.; Qin, H.; Rayburn, P.D.; Poon, G.; Murthy, K.; Ellsbury, D.L.; Chiruvolu, A. Implementation of an automatic stop order and initial antibiotic exposure in very low birth weight infants. Am. J. Perinatol. 2017, 34, 105–110. [Google Scholar]
- Morales-Betancourt, C.; De la Cruz-Bértolo, J.; Muñoz-Amat, B.; Bergón-Sendín, E.; Pallás-Alonso, C. Reducing early antibiotic use: A quality improvement initiative in a level III neonatal intensive care unit. Front. Pediatr. 2022, 10, 913175. [Google Scholar] [CrossRef]
- Chu, M.; Lin, J.; Wang, M.; Liao, Z.; Cao, C.; Hu, M.; Ding, Y.; Liu, Y.; Yue, S. Restrictive use of empirical antibiotics is associated with improved short term outcomes in very low birth weight infants: A single center, retrospective cohort study from China. Antibiotics 2023, 12, 741. [Google Scholar] [CrossRef]
- Lahart, A.C.; McPherson, C.C.; Gerber, J.S.; Warner, B.B.; Lee, B.R.; Newland, J.G. Application of an antibiotic spectrum index in the neonatal intensive care unit. Infect. Control. Hosp. Epidemiol. 2019, 40, 1181–1183. [Google Scholar]
- Lindell-Osuagwu, L.; Korhonen, M.; Saano, S.; Helin-Tanninen, M.; Naaranlahti, T.; Kokki, H. Off-label and unlicensed drug prescribing in three paediatric wards in Finland and review of the international literature. J. Clin. Pharm. Ther. 2009, 34, 277–287. [Google Scholar] [CrossRef]
- Laforgia, N.; Nuccio, M.M.; Schettini, F.; Dell’Aera, M.; Gasbarro, A.R.; Dell’Erba, A.; Solarino, B. Off-label and unlicensed drug use among neonatal intensive care units in Southern Italy. Pediatr. Int. 2014, 56, 57–59. [Google Scholar] [PubMed]
- Nir-Neuman, H.; Abu-Kishk, I.; Toledano, M.; Heyman, E.; Ziv-Baran, T.; Berkovitch, M. Unlicensed and off-label medication use in pediatric and neonatal intensive care units: No change over a decade. Adv. Ther. 2018, 35, 1122–1132. [Google Scholar] [CrossRef]
- Villanueva-Bueno, C.; Montecatine-Alonso, E.; Jiménez-Parrilla, F.; González-López, M.; Manrique-Rodríguez, S.; Moreno-Ramos, F.; Cañete-Ramírez, C.; Dolz, E.; García-Robles, A.; Caro-Teller, J.M. Antimicrobial Defined Daily Dose in Neonatal Population: Validation in the Clinical Practice. Antibiotics 2023, 12, 602. [Google Scholar] [CrossRef] [PubMed]
- Dell’Aera, M.; Gasbarro, A.R.; Padovano, M.; Laforgia, N.; Capodiferro, D.; Solarino, B.; Quaranta, R.; Dell’Erba, A.S. Unlicensed and off-label use of medicines at a neonatology clinic in Italy. Pharm. World Sci. 2007, 29, 361–367. [Google Scholar] [CrossRef]
- Resman, F. Antimicrobial stewardship programs; a two-part narrative review of step-wise design and issues of controversy. Part II: Ten questions reflecting knowledge gaps and issues of controversy in the field of antimicrobial stewardship. Ther. Adv. Infect. Dis. 2020, 7, 2049936120945083. [Google Scholar] [CrossRef] [PubMed]
- Permanand, G.; Mossialos, E.; McKee, M. The EU’s new paediatric medicines legislation: Serving children’s needs? Arch. Dis. Child. 2007, 92, 808–811. [Google Scholar]
- Tomasi, P.A.; Egger, G.F.; Pallidis, C.; Saint-Raymond, A. Enabling development of paediatric medicines in Europe: 10 years of the EU paediatric regulation. Pediatr. Drugs 2017, 19, 505–513. [Google Scholar] [CrossRef]
- Hwang, T.J.; Tomasi, P.A.; Bourgeois, F.T. Delays in completion and results reporting of clinical trials under the Paediatric Regulation in the European Union: A cohort study. PLoS Med. 2018, 15, e1002520. [Google Scholar] [CrossRef]
- Bradley, J.; Roilides, E.; Tawadrous, M.; Yan, J.L.; Soto, E.; Stone, G.G.; Kamat, S.; Irani, P.; England, R. Pharmacokinetics and Safety of Ceftazidime-Avibactam in Neonates and Young Infants: A Phase 2a, Multicenter Prospective Trial. J. Pediatr. Infect. Dis. Soc. 2025, 14, piaf028. [Google Scholar] [CrossRef]
- Thompson, G.; Barker, C.I.; Folgori, L.; Bielicki, J.A.; Bradley, J.S.; Lutsar, I.; Sharland, M. Global shortage of neonatal and paediatric antibiotic trials: Rapid review. BMJ Open 2017, 7, e016293. [Google Scholar] [CrossRef]
- Soll, R.F.; Ovelman, C.; McGuire, W. The future of Cochrane neonatal. Early Hum. Dev. 2020, 150, 105191. [Google Scholar] [CrossRef]
- Lai, N.M.; Ong, J.M.; Chen, K.-H.; Chaiyakunapruk, N.; Ovelman, C.; Soll, R. Are neonatal trials better conducted and reported over the last 6 decades? An analysis on their risk-of-bias status in Cochrane reviews. Neonatology 2019, 116, 123–131. [Google Scholar] [CrossRef]
- Lai, N.M.; Ong, J.M.-J.; Chen, K.-H.; Chaiyakunapruk, N.; Ovelman, C.; Soll, R. Decreasing number of conclusive neonatal reviews: Increasing role for shared decision-making? Neonatology 2020, 117, 125–126. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S. Evidence-based medicine in neonatology: The need for multifaceted improvements. Neonatology 2020, 117, 123–124. [Google Scholar] [CrossRef] [PubMed]
- Varrio, T.; De Luca, D.; Kuitunen, I. Evidence certainty in neonatology—A meta-epidemiological analysis of Cochrane reviews. Eur. J. Pediatr. 2025, 184, 191. [Google Scholar] [CrossRef]
- Willhelm, C.; Girisch, W.; Gortner, L.; Meyer, S. Evidence-based medicine and Cochrane reviews in neonatology: Quo vadis? Acta Paediatr. 2012, 101, 352–353. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, J. Evidence-based therapy in neonatology: Distilling the evidence and applying it in practice. Acta Paediatr. 2004, 93, 1146–1152. [Google Scholar] [CrossRef] [PubMed]
- Soll, R.F.; Andruscavage, L. The principles and practice of evidence-based neonatology. Pediatrics 1999, 103, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Davis, J.M. Challenges and opportunities to enhance global drug development in neonates. Curr. Opin. Pediatr. 2017, 29, 149–152. [Google Scholar] [CrossRef]
- The, L. Antimicrobial resistance: An agenda for all. Lancet 2024, 403, 2349. [Google Scholar] [CrossRef]
- Schulman, J.; Dimand, R.J.; Lee, H.C.; Duenas, G.V.; Bennett, M.V.; Gould, J.B. Neonatal intensive care unit antibiotic use. Pediatrics 2015, 135, 826–833. [Google Scholar]
- Lawn, J.E.; Blencowe, H.; Oza, S.; You, D.; Lee, A.C.; Waiswa, P.; Lalli, M.; Bhutta, Z.; Barros, A.J.; Christian, P. Every Newborn: Progress, priorities, and potential beyond survival. Lancet 2014, 384, 189–205. [Google Scholar] [CrossRef]
- Thomson, K.M.; Dyer, C.; Liu, F.; Sands, K.; Portal, E.; Carvalho, M.J.; Barrell, M.; Boostrom, I.; Dunachie, S.; Farzana, R. Effects of antibiotic resistance, drug target attainment, bacterial pathogenicity and virulence, and antibiotic access and affordability on outcomes in neonatal sepsis: An international microbiology and drug evaluation prospective substudy (BARNARDS). Lancet Infect. Dis. 2021, 21, 1677–1688. [Google Scholar] [CrossRef]
- Russell, N.J.; Stöhr, W.; Plakkal, N.; Cook, A.; Berkley, J.A.; Adhisivam, B.; Agarwal, R.; Ahmed, N.U.; Balasegaram, M.; Ballot, D. Patterns of antibiotic use, pathogens, and prediction of mortality in hospitalized neonates and young infants with sepsis: A global neonatal sepsis observational cohort study (NeoOBS). PLoS Med. 2023, 20, e1004179. [Google Scholar] [CrossRef]
- Dramowski, A.; Prusakov, P.; Goff, D.A.; Brink, A.; Govender, N.P.; Annor, A.S.; Balfour, L.; Bekker, A.; Cassim, A.; Gijzelaar, M.; et al. Prospective antimicrobial stewardship interventions by multidisciplinary teams to reduce neonatal antibiotic use in South Africa: The Neonatal Antimicrobial Stewardship (NeoAMS) study. Int. J. Infect. Dis. 2024, 146, 107158. [Google Scholar] [CrossRef]
- Zini, T.; Miselli, F.; D’Esposito, C.; Fidanza, L.; Cuoghi Costantini, R.; Corso, L.; Mazzotti, S.; Rossi, C.; Spaggiari, E.; Rossi, K. Sustaining the continued effectiveness of an antimicrobial stewardship program in preterm infants. Trop. Med. Infect. Dis. 2024, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Queensland Clinical Guidelines. Early Onset Group B Streptococcal Disease. Guideline No. MN22.20-V7-R27. Queensland Health. Available online: http://www.health.qld.gov.au/qcg (accessed on 5 June 2025).
- Lee Him, R.; Rehman, S.; Sihota, D.; Yasin, R.; Azhar, M.; Masroor, T.; Naseem, H.A.; Masood, L.; Hanif, S.; Harrison, L. Prevention and treatment of neonatal infections in facility and community settings of low-and middle-income countries: A descriptive review. Neonatology 2025, 122, 173–208. [Google Scholar]
- Ishikawa, K.; Tsuchida, T.; Ichiki, K.; Ueda, T.; Yamada, K.; Iijima, K.; Otani, N.; Nakajima, K. Efficacy of Enhanced Environmental Cleaning/Disinfection Using Pulsed Xenon Ultraviolet Light in Preventing Outbreaks of Methicillin-Resistant Staphylococcus aureus in Neonatal Intensive Care Units. Epidemiologia 2025, 6, 12. [Google Scholar] [PubMed]
- Folgori, L.; Ellis, S.J.; Bielicki, J.A.; Heath, P.T.; Sharland, M.; Balasegaram, M. Tackling antimicrobial resistance in neonatal sepsis. Lancet Glob. Health 2017, 5, e1066–e1068. [Google Scholar] [CrossRef]
- Oliva, A.; Carmona, Y.; de La C. López, E.; Álvarez, R.; Aung, M.S.; Kobayashi, N.; Quiñones, D. Characterization of Neonatal Infections by Gram-Negative Bacilli and Associated Risk Factors, Havana, Cuba. Infect. Dis. Rep. 2021, 13, 219–229. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Yan, J.; Zhang, T. Literature review on the distribution characteristics and antimicrobial resistance of bacterial pathogens in neonatal sepsis. J. Matern.-Fetal Neonatal Med. 2022, 35, 861–870. [Google Scholar] [CrossRef]
- Schoffelen, T.; Papan, C.; Carrara, E.; Eljaaly, K.; Paul, M.; Keuleyan, E.; Martin Quirós, A.; Peiffer-Smadja, N.; Palos, C.; May, L.; et al. European society of clinical microbiology and infectious diseases guidelines for antimicrobial stewardship in emergency departments (endorsed by European association of hospital pharmacists). Clin. Microbiol. Infect. 2024, 30, 1384–1407. [Google Scholar] [CrossRef] [PubMed]
- Dabkey, K.; Wieczorkiewicz, S.M.; Rabs, N.; Oram, R. Development of a neonatal intensive care unit (NICU)-specific antibiogram and assessment of patient-specific factors on susceptibility. Open Forum Infect. Dis. 2015, 2, 1477. [Google Scholar] [CrossRef]
- Oshiro, B.T.; Berns, S.D. Quality improvement opportunities to prevent preterm births. Clin. Perinatol. 2011, 38, 565–578. [Google Scholar] [CrossRef]
- Tartari, E.; Garlasco, J.; Mezerville, M.H.-d.; Ling, M.L.; Márquez-Villarreal, H.; Seto, W.-H.; Simon, A.; Hennig, T.-J.; Pittet, D. Ten years of hand hygiene excellence: A summary of outcomes, and a comparison of indicators, from award-winning hospitals worldwide. Antimicrob. Resist. Infect. Control 2024, 13, 45. [Google Scholar] [CrossRef]
- Kapatsa, T.; Lubanga, A.F.; Bwanali, A.N.; Harawa, G.; Mudenda, S.; Chipewa, P.C.; Kamayani, M.; Makole, T.J.; Ali, A.Y.; Mohamed, A.A. Behavioral and Socio-Economic Determinants of Antimicrobial Resistance in Sub-Saharan Africa: A Systematic Review. Infect. Drug Resist. 2025, 18, 855–873. [Google Scholar] [CrossRef]
- Vasilescu, D.I.; Dan, A.M.; Stefan, L.A.; Vasilescu, S.L.; Dima, V.; Cîrstoiu, M.M. Assessment of Culture-Negative Neonatal Early-Onset Sepsis: Risk Factors and Utility of Currently Used Serum Biomarkers. Children 2025, 12, 355. [Google Scholar] [CrossRef] [PubMed]
- Iskandar, K.; Murugaiyan, J.; Hammoudi Halat, D.; Hage, S.E.; Chibabhai, V.; Adukkadukkam, S.; Roques, C.; Molinier, L.; Salameh, P.; Van Dongen, M. Antibiotic discovery and resistance: The chase and the race. Antibiotics 2022, 11, 182. [Google Scholar] [CrossRef]
- Bick, D. Born too soon: The global issue of preterm birth. Midwifery 2012, 28, 401–402. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, C.; Kornelisse, R.F.; Buonocore, G.; Maier, R.F.; Stocker, M. Culture-Negative Early-Onset Neonatal Sepsis—At the Crossroad Between Efficient Sepsis Care and Antimicrobial Stewardship. Front. Pediatr. 2018, 6, 285. [Google Scholar] [CrossRef]
- Modi, N.; Clark, H.; Wolfe, I.; Costello, A.; Budge, H.; Goodier, R. writing group of the Royal College of Paediatrics and Child Health Commission on Child Health Research. A healthy nation: Strengthening child health research in the UK. Lancet 2013, 381, 73–87. [Google Scholar] [CrossRef]
- Modi, N. The future of perinatal research. Eur. J. Pediatr. 2023, 182, 1935–1939. [Google Scholar] [CrossRef] [PubMed]
Tools for the Initiation of Antibiotics (Highly Subjective and Nonspecific) | ||
---|---|---|
Maternal Risk Factors: Chorioamnionitis, preterm prelabor rupture of membranes, spontaneous onset of preterm labor, or maternal Group B Streptococcus colonization. | ||
Blood Culture (gold standard for confirmation): Limited use as a basis for initial empirical antibiotic use [39]. It is desirable to take two samples from different sites, especially if CNS infection is suspected, as well as samples in aerobic and anaerobic environments [26]. Should be collected before starting antibiotics (at least 1 mL of blood). Time-consuming—takes up to 72 h. | ||
Lumbar Puncture (if sepsis/meningitis suspected): Indicated in symptomatic infants or cases of positive blood culture. | ||
Gastric aspirate, tracheal aspirate in intubated infants. Urine culture when CNS infection is suspected. Peripheral secretions: Ear (up to 12 h after birth), anal, nasal, throat, and, if symptoms are present, eye, umbilical, and skin lesions (pustules, etc.). | ||
Molecular Diagnostics (PCR, Multiplex Panels): Rapid pathogen detection (e.g., 16S rRNA PCR, sepsis panels) | ||
Unspecific makers with low predictive values |
| Respiratory distress, apnea, temperature instability, cold extremities, feeding intolerance, tachycardia, cyanosis, hypotension, poor peripheral perfusion [26]. |
| Abnormal white blood cell count: leukocytosis, leukopenia (more sensitive marker): up to 24 h < 8000 and >30,000; up to 72 h < 5000 and >20,000; after 72 h > 15,000, neutropenia, or an elevated immature-to-total neutrophil (I/T) ratio: in early infections > 0.2; in late infections > 0.14, red cell distribution width to platelet ratio (RPR) [40,41] | |
| Early marker (within 3–6 h of infection) for bacterial infection (demonstrating higher specificity than CRP for bacterial infections). Serial measurements (0 h/24 h/48 h) to guide decisions; expensive [42,43,44,45]. Values depend on GA. Physiological increase in PCT during the first days of life. Cut-off values:
| |
| Rise 12–24 h after infection and peak at 48–72 h. Lower specificity. Serial measurements (0 h/24 h/48 h) to guide decisions [42,43,46]. | |
| The concentration of IL-6 rises rapidly after the onset of bacteremia, but its half-life is short. Serum IL-6 has high accuracy in detecting neonatal sepsis [47,48,49]. Cut-off values:
| |
| The optimal timing for presepsin measurement and whether presepsin may be helpful before the onset of symptoms remains to be determined [50,51,52,53]. | |
| A promising biomarker for the diagnosis of EOS [54]. | |
Tools for Duration of Antibiotic Treatment | ||
Serial CRP/PCT Trends | Declining levels suggest a response to therapy. PCT declines faster with treatment, making it valuable for stewardship. | |
Blood Culture Results (gold standard for confirmation) | Serves as the basis for transitioning from empiric treatment to a continued course of therapy and can be used to guide rational antibiotic selection [47,55]. If negative at 36 to 48 h, reevaluate the necessity of ongoing antibiotics. | |
Clinical Improvement | Resolution of symptoms (e.g., apnea, feeding tolerance). | |
Tools for Termination of Antibiotic Treatment | ||
Negative Blood Cultures (≥48–72 h) | The most common reason to stop is if the cultures are negative and the infant is improving [56]. | |
Normalizing Inflammatory Markers (CRP and PCT) | Have good negative predictive accuracy to rule out sepsis within 24 to 48 h: CRP < 10 and PCT < 0.5 ng/mL) [46]. | |
Clinical Stability | No ongoing signs of infection. |
Antibiotics | Doses Used in Neonates 1 |
---|---|
Penicillins | Used in staphylococcal infections, excluding Methicillin-resistant staphylococci |
Benzylpenicillin (Penicillin G) | Empiric treatment of EOS (in combination with an aminoglycoside) 30–90 mg/kg/dose; every 6–8 h 60 mg = 100,000 units of penicillin |
400,000 U/kg/24 h, every 8 h in GBS meningitis | |
50,000 U/kg/24 h every 8–12 h for 10 days in high probability of congenital syphilis | |
Oxacillin | 50–100 mg/kg/24 h every 8–12 h 1 |
Nafcillin | 25 mg/kg/24 h every 8–12 h 1 |
Broad-spectrum penicillins | Used in a wide range of bacteria, including both Gram-positive and Gram-negative bacteria |
Ampichhillin | Empiric treatment of suspected EOS including meningitis (with an aminoglycoside) 50–100 mg/kg/24 every 8–12 h |
300 mg/kg/24 in meningitis 1 | |
Carbenicillin | 200–400 mg/kg/24 h in 3–4 applications 1 |
Azlocillin | 100–200 mg/kg/24 h 1 |
Piperacillin | 100 mg/kg/24 h in 2–3 applications 1 |
Amoxicillin | Empiric treatment of suspected EOS including meningitis (with an aminoglycoside) 50 mg/kg, every 8–12 h |
100 mg/kg every 8–12 h for meningitis | |
Amoxicillin/Clavulanic acid | 60 mg/kg/24 h every 12 h 1 |
Ampicillin/Sulbactam | 75–150 mg/kg/24 h every 12 h 1 |
Piperacillin/Tazobactam | 80–100 mg/kg dose every 6–8 h Effective in HAI: Acinetobacter, Klebsiella, Pseudomonas, incl. ESBL |
Aminoglycosides | Empiric treatment of suspected EOS (in combination) |
Gentamicin | 4–5 mg/kg every 36–48 h |
Amikacin | 7.5 mg/kg/12 h 1 Used for suspected or proven Gram-negative infection resistant to other aminoglycosides 12–14 mg/kg every 36–48 h |
Tobramhycin | 4–5 mg/kg/dose every 24–36–48 h depending on current body weight |
Cephalosporins | Cephalosporins are not first-line antibiotics when initiating routine empirical AB therapy after birth due to the rapid development of resistance to them. In newborns, mainly third- and fourth-generation cephalosporins are used, and they are used empirically as a third-line antibiotic in severe infections or after isolation of the bacterial strain according to the antibiogram. |
Cefazolin (I generation) | 25–50 mg/kg/dose every 12 h |
Cefuroxime (II generation) | 40–100 mg/kg/24 h every 12 h 1 |
Ceftazidime (III generation) | 60–100 mg/kg/24 h every 12 h 1 50 mg/kg/dose every 8–12 h suitable for Gr (-) meningitis, pronounced anti-pseudomonal activity |
Cefotaxime (III generation) | 50 mg/kg/dose every 8–12 h |
Ceftriaxone (III generation) | 50–75 mg/kg/24 h One application, not recommended in hyperbilirubinemia (displaces bilirubin from its binding to albumin). Alternative therapy for gonococcal infection and congenital syphilis. |
Cefepime (IV generation) | 30 mg/kg every 12 h |
Cefoperazone/Sulbactam | 60–80 mg/kg/24 h in 2–3 applications 1 |
Glycopeptides | Crucial in the fight against Gram-positive pathogens |
Vancomycin | 10–15 mg/kg/24 h once or 2–3–4 applications depending on body weight and day after birth for Gr (+) bacteria 15 mg/kg every 8–12–18 h depending on cGA |
Lincosamides | In the neonatal period, they are mainly used for osteoarthritis, with a course of treatment lasting 21 days. |
Lincomycin | 10 mg/kg/24 h |
Clindamycin | 5 mg/kg/dose every 8 h |
Macrolides | Administered orally, which limits their use in newborns in serious condition |
Clarithromycin | 7.5 mg/kg/24, every 12 h orally |
Azithromycin | 10–20 mg/kg/dose daily IV for 3 days Eradication of Ureaplasma urealyticum in preterm infants |
Flucloxacillin | 25–50–100 mg/kg/dose every 8–12 h |
Carbapenems | They are used for Gr (-) microorganisms, Klebsiella, Serratia, Enterobacter |
Imipenem | 15 mg/kg/24 every 8 h |
Meropenem | 20–40 mg/kg/dose every 8–12 h The dose depends on GFR |
Fluoroquinolones | Active against Staph. aureus, Streptococcus, and Gr (-) microorganisms, including Pseudomonas. Due to reports of growth disorders, they are used in the neonatal period only for vital indications and in the presence of sensitivity (antibiogram). |
Ciprofloxacin | 6–8 mg/kg/24, every 12 h |
Levofloxacin | 6–8 mg/kg/24, once or every 12 h |
Polymyxins | Effective against multidrug-resistant Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter, and β-lactamase multidrug-resistant Enterobacteriaceae |
Polymyxin E | 50,000–150,000 IU/kg/day every 8 h in infusion for 30 min to 1 h |
Systemic antimycotics | Empiric treatment of suspected or confirmed invasive fungal infections |
Fluconozole | Initial dose 6–12 mg/kg, then 3–6 mg/kg every 72–24 h |
Antiprotozoal medication | Used to treat certain bacterial and parasitic infections, including NEC in neonates |
Metronidazole | Loading dose IV or oral 15 mg/kg, Maintenance dose IV or oral 7.5 mg/kg/dose every 12–24 h |
Microorganism | Antibiotic | Bacteremia | Meningitis |
---|---|---|---|
GBS | Ampicillin or Ampicillin/Sulbactam or Benzylpenicillin | 10 days | 14–21 days |
Escherichia coli | Cefotaxime or Ampicillin + Gentamicin or Amicacin | 10–14 days | 21 days |
CoNS | Vancomycin | 7 days | 14 days |
Klebsiella, Serratia | Cefotaxime or Meropenem + Gentamicin or Amikacin | 10–14 days | 21 days |
Enterobacter, Citrobacter | Cefepime or Meropenem + Gentamicin | 10–14 days | 21 days |
Enterococcus | Ampicillin or Vancomycin + Gentamicin | 10 days | 14–21 days |
Listeria | Ampicillin + Gentamicin | 10–14 days | 14–21 days |
Pseudomonas | Ceftazidime or Piperacillin/Tazobactam + Gentamicin or Tobramycin | 14 days | 21 days |
MSSA | Nafcillin or Meticillin | 10–14 days | 21 days |
MRSA | Vancomycin | 10–14 days | 22 days |
Category | Strategy | Impact on AMR | Key Evidence |
---|---|---|---|
Rational AB use | Narrow-spectrum empiric therapy (e.g., ampicillin + gentamicin) for EOS. De-escalate or stop if culture is negative at 48–72 h. | Reduces selection pressure for resistant strains. | [164,165,166] |
Duration of AB therapy | Short-course (5–7 days) for uncomplicated sepsis. Avoid prolonged empiric therapy. | Decreases risk of resistance and dysbiosis; equivalent efficacy with shorter courses. | [55,81,138,139] |
ASPs | NICUs adopt protocols for empiric therapy. | Reduces unnecessary broad-spectrum use. | [81,123,131,167] |
Infection Prevention | Strict ward and personnel hygiene. Maternal GBS prophylaxis. | Lowers infection rates, reducing the need for ABs. | [168,169,170] |
Probiotics | Lactobacillus/Bifidobacterium for preterm neonates. | Decreases antibiotic exposure; reduces NEC/LOS. | [169] |
AMR Surveillance | Monitor NICU pathogens (e.g., ESBL E. coli, CRE, MRSA). NICU-specific resistance patterns should guide therapy. Use rapid diagnostics (PCR). | Guides targeted therapy, avoids empiric overuse. | [164,171,172,173] |
Global Policies | WHO “AWaRe” classification for neonates. | Standardizes rational AB use. | [35] |
Ethical Principle/Consideration | Parents | Physicians/Clinicians | Regulators and Public Health Officials |
---|---|---|---|
Autonomy | Act as surrogate decision-makers for their non-verbal infant. Their role is to represent the infant’s and family’s interests and values. | Must respect parental autonomy (as surrogates) by providing full information and involving them in the shared decision-making process. | Prioritize procedural justice and system-wide policies that ensure equitable access to care, often superseding individual autonomy. |
Beneficence | Often interpret “benefit” as immediate survival and symptom relief for their critically ill infant. | Obligated to promote infant wellbeing by balancing immediate life-saving needs against potential long-term sequelae (e.g., NEC, dysbiosis). | Define benefit through a population health lens, focusing on broad outcomes like AMR containment and equitable resource distribution. |
Non-Maleficence | Perceive the risk of withholding antibiotics (leading to infection) as a more concrete and immediate harm than the abstract risk of future dysbiosis or AMR. | Face acute tension: both administering (risking dysbiosis/resistance) and withholding (risking lethal infection) antibiotics carry significant potential harms. | Focus on mitigating systemic harm, primarily the long-term public health threat of antimicrobial resistance (AMR). |
Justice | Focus is almost exclusively on justice for their individual child and securing the best possible care and resources for them. | Focus on micro-allocation of resources and treatments at the unit or patient level. | Focus on macro-allocation of resources, equitable access to care, and the societal implications of AMR. |
Best Interest Standard | Prioritize survival and comfort, viewing antibiotic risks as secondary to the acute threat of infection. | Weigh short-term vs. long-term outcomes, often experiencing moral distress when stewardship goals conflict with individual patient concerns. | Assess best interest through population-level outcomes, which may conflict with bedside imperatives (e.g., restricting antibiotic use to curb AMR). |
Vulnerability | Experience vulnerability due to emotional distress, lack of medical knowledge, and an intimidating NICU environment. | Experience vulnerability through moral distress when constrained by protocols or forced to make decisions that conflict with their clinical judgment. | Not directly vulnerable in the clinical context, but their policies must be designed to protect the vulnerable (neonates and families). |
Shared Decision-Making | Desire to actively participate but face barriers like information asymmetry, emotional distress, and time constraints. | Hold the responsibility to facilitate shared decision-making by bridging information gaps and creating space for parental values amidst time pressures. | Their policies (e.g., ASPs, guidelines) create the framework and constraints within which bedside decisions are made. |
Primary Ethical Tension | The immediacy of their infant’s critical condition vs. the abstract, long-term risks of treatment (e.g., dysbiosis, AMR). | The duty to act in the best interest of the immediate patient vs. the responsibility to practice stewardship for the broader community’s health. | The mandate to protect public health and resources at a population level vs. supporting individualized care at the bedside. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangarov, I.; Iliev, S.; Voynikov, Y.; Petkova, V.; Parvova, I.; Tsvetkova, A.; Nikolova, I. Neonatology: First Exposure to Antibiotics from the Ethical Perspective of Parents, Physicians, and Regulators. Antibiotics 2025, 14, 936. https://doi.org/10.3390/antibiotics14090936
Mangarov I, Iliev S, Voynikov Y, Petkova V, Parvova I, Tsvetkova A, Nikolova I. Neonatology: First Exposure to Antibiotics from the Ethical Perspective of Parents, Physicians, and Regulators. Antibiotics. 2025; 14(9):936. https://doi.org/10.3390/antibiotics14090936
Chicago/Turabian StyleMangarov, Iliya, Simeon Iliev, Yulian Voynikov, Valentina Petkova, Iva Parvova, Antoaneta Tsvetkova, and Irina Nikolova. 2025. "Neonatology: First Exposure to Antibiotics from the Ethical Perspective of Parents, Physicians, and Regulators" Antibiotics 14, no. 9: 936. https://doi.org/10.3390/antibiotics14090936
APA StyleMangarov, I., Iliev, S., Voynikov, Y., Petkova, V., Parvova, I., Tsvetkova, A., & Nikolova, I. (2025). Neonatology: First Exposure to Antibiotics from the Ethical Perspective of Parents, Physicians, and Regulators. Antibiotics, 14(9), 936. https://doi.org/10.3390/antibiotics14090936