Phenotypic Characterization of pilA, pilB, and pilD Mutants of Acinetobacter baumannii 5075: Impacts on Growth, Biofilm Formation, and Tazobactam Response
Abstract
1. Introduction
2. Results and Discussion
2.1. Growth Kinetics of the Planktonic AB5075 Strain and Its Mutants
2.2. Colony-Forming Abilities of the AB5075 Strain and Its Mutants
2.3. Tazobactam Response of the AB5075 Strain and Its Mutants Evaluated Using Time–Kill Assays
2.4. Tazobactam Response of Biofilms Formed by the AB5075 Strain and Its Mutants at Distinct Times
2.5. Tazobactam Inhibition of Biofilms Formed by the AB5075 Strain and Its Mutants
3. Materials and Methods
3.1. Bacterial Strains
3.2. Measurement of Planktonic Growth Kinetics
3.3. Measurement of Colony Growth Kinetics
3.4. Time–Kill Assays
3.5. Biofilm Formation Assays
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef]
- Zhou, H.; Yao, Y.; Zhu, B.; Ren, D.; Yang, Q.; Fu, Y.; Yu, Y.; Zhou, J. Risk Factors for Acquisition and Mortality of Multidrug-Resistant Acinetobacter baumannii Bacteremia: A Retrospective Study From a Chinese Hospital. Medicine 2019, 98, e14937. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, A.C.; Thompson, M.G.; Black, C.C.; Kessler, J.L.; Clark, L.P.; McQueary, C.N.; Gancz, H.Y.; Corey, B.W.; Moon, J.K.; Si, Y.; et al. AB5075, a Highly Virulent Isolate of Acinetobacter baumannii, as a Model Strain for the Evaluation of Pathogenesis and Antimicrobial Treatments. mBio 2014, 5, e01076-14. [Google Scholar] [CrossRef]
- Alrahmany, D.; Omar, A.F.; Alreesi, A.; Harb, G.; Ghazi, I.M. Acinetobacter baumannii Infection-Related Mortality in Hospitalized Patients: Risk Factors and Potential Targets for Clinical and Antimicrobial Stewardship Interventions. Antibiotics 2022, 11, 1086. [Google Scholar] [CrossRef] [PubMed]
- Bashiri, S.; Lucidi, M.; Visaggio, D.; Capecchi, G.; Persichetti, L.; Cincotti, G.; Visca, P.; Capellini, G. Growth Phase- and Desiccation-Dependent Acinetobacter baumannii Morphology: An Atomic Force Microscopy Investigation. Langmuir 2021, 37, 1110–1119. [Google Scholar] [CrossRef]
- Bergogne-Bérézin, E.; Towner, K.J. Acinetobacter spp. as Nosocomial Pathogens: Microbiological, Clinical, and Epidemiological Features. Clin. Microbiol. Rev. 1996, 9, 148–165. [Google Scholar] [CrossRef]
- Kyriakidis, I.; Vasileiou, E.; Pana, Z.D.; Tragiannidis, A. Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens 2021, 10, 373. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Acinetobacter baumannii Infections among Patients at Military Medical Facilities Treating Injured U.S. Service Members, 2002–2004. MMWR Morb. Mortal. Wkly. Rep. 2004, 53, 1063–1066.
- Roy, S.; Chowdhury, G.; Mukhopadhyay, A.K.; Dutta, S.; Basu, S. Convergence of Biofilm Formation and Antibiotic Resistance in Acinetobacter baumannii Infection. Front. Med. 2022, 9, 793615. [Google Scholar] [CrossRef]
- Lee, C.R.; Lee, J.H.; Park, M.; Park, K.S.; Bae, I.K.; Kim, Y.B.; Cha, C.J.; Jeong, B.C.; Lee, S.H. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front. Cell Infect. Microbiol. 2017, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Craig, L.; Pique, M.; Tainer, J. Type IV Pilus Structure and Bacterial Pathogenicity. Nat. Rev. Microbiol. 2004, 2, 363–378. [Google Scholar] [CrossRef]
- Meng, R.; Xing, Z.; Chang, J.Y.; Yu, Z.; Thongchol, J.; Xiao, W.; Wang, Y.; Chamakura, K.; Zeng, Z.; Wang, F.; et al. Structural Basis of Acinetobacter Type IV Pili Targeting by an RNA Virus. Nat. Commun. 2024, 15, 2746. [Google Scholar] [CrossRef]
- Ronish, L.A.; Lillehoj, E.; Fields, J.K.; Sundberg, E.J.; Piepenbrink, K.H. The Structure of PilA from Acinetobacter baumannii AB5075 Suggests a Mechanism for Functional Specialization in Acinetobacter Type IV Pili. J. Biol. Chem. 2019, 294, 218–230. [Google Scholar] [CrossRef]
- Burdman, S.; Bahar, O.; Parker, J.K.; De La Fuente, L. Involvement of Type IV Pili in Pathogenicity of Plant Pathogenic Bacteria. Genes 2011, 2, 706–735. [Google Scholar] [CrossRef]
- Higgins, P.G.; Wisplinghoff, H.; Stefanik, D.; Seifert, H. In Vitro Activities of the Beta-Lactamase Inhibitors Clavulanic Acid, Sulbactam, and Tazobactam alone or in Combination with Beta-Lactams against Epidemiologically Characterized Multidrug-Resistant Acinetobacter baumannii Strains. Antimicrob. Agents Chemother. 2004, 48, 1586–1592. [Google Scholar] [CrossRef]
- Acar, J.F.; Goldstein, F.W.; Kitzis, M.D. Susceptibility Survey of Piperacillin alone and in the Presence of Tazobactam. J. Antimicrob. Chemother. 1993, 31 (Suppl. A), 23–28. [Google Scholar] [CrossRef] [PubMed]
- Moosdeen, F.; Williams, J.D.; Yamabe, S. Antibacterial characteristics of YTR 830, a sulfone beta-lactamase inhibitor, compared with those of clavulanic acid and sulbactam. Antimicrob. Agents Chemother. 1988, 32, 925–927. [Google Scholar] [CrossRef]
- Yourassowsky, E.; Van der Linden, M.P.; Lismont, M.J.; Crokaert, F. Turbidimetric and Microscopic Analysis of Bacteroides fragilis Exposed to Tazobactam and Piperacillin alone and in Combination. Chemotherapy 1990, 36, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Duske, H.; Claus, H.; Krone, M.; Lâm, T.T. Prevalence of Piperacillin/Tazobactam Resistance in Invasive Haemophilus influenzae in Germany. JAC Antimicrob. Resist. 2023, 6, dlad148. [Google Scholar] [CrossRef]
- Holden, E.R.; Yasir, M.; Turner, A.K.; Charles, I.G.; Webber, M.A. Tazobactam selects for multidrug resistance. Npj Antimicrob. Resist. 2025, 3, 48. [Google Scholar] [CrossRef]
- Gallagher, L.A.; Ramage, E.; Weiss, E.J.; Radey, M.; Hayden, H.S.; Held, K.G.; Huse, H.K.; Zurawski, D.V.; Brittnacher, M.J.; Manoil, C. Resources for Genetic and Genomic Analysis of Emerging Pathogen Acinetobacter baumannii. J. Bacteriol. 2015, 197, 2027–2035. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Chavez, J.D.; Schweppe, D.K.; Zheng, C.; Weisbrod, C.R.; Eng, J.K.; Murali, A.; Lee, S.A.; Ramage, E.; Gallagher, L.A.; et al. In vivo protein interaction network analysis reveals porin-localized antibiotic inactivation in Acinetobacter baumannii strain AB5075. Nat. Commun. 2016, 7, 13414. [Google Scholar] [CrossRef] [PubMed]
- Vesel, N.; Blokesch, M. Pilus Production in Acinetobacter baumannii Is Growth Phase Dependent and Essential for Natural Transformation. J. Bacteriol. 2021, 203, e00034-21. [Google Scholar] [CrossRef] [PubMed]
- Harding, C.M.; Tracy, E.N.; Carruthers, M.D.; Rather, P.N.; Actis, L.A.; Munson, R.S., Jr. Acinetobacter baumannii strain M2 produces type IV pili which play a role in natural transformation and twitching motility but not surface-associated motility. mBio 2013, 4, e00360-13. [Google Scholar] [CrossRef]
- Li, P.; Zhang, S.; Wang, J.; Al-Shamiri, M.M.; Han, B.; Chen, Y.; Han, S.; Han, L. Uncovering the Secretion Systems of Acinetobacter baumannii: Structures and Functions in Pathogenicity and Antibiotic Resistance. Antibiotics 2023, 12, 195. [Google Scholar] [CrossRef]
- Molenaar, D.; van Berlo, R.; de Ridder, D.; Teusink, B. Shifts in growth strategies reflect tradeoffs in cellular economics. Mol. Syst. Biol. 2009, 5, 323. [Google Scholar] [CrossRef]
- Weiße, A.Y.; Oyarzún, D.A.; Danos, V.; Swain, P.S. Mechanistic links between cellular trade-offs, gene expression, and growth. Proc. Natl. Acad. Sci. USA 2015, 112, E1038–E1047. [Google Scholar] [CrossRef]
- Salgado-Pabón, W.; Du, Y.; Hackett, K.T.; Lyons, K.M.; Arvidson, C.G.; Dillard, J.P. Increased expression of the type IV secretion system in piliated Neisseria gonorrhoeae variants. J. Bacteriol. 2010, 192, 1912–1920. [Google Scholar] [CrossRef]
- Zöllner, R.; Oldewurtel, E.R.; Kouzel, N.; Maier, B. Phase and antigenic variation govern competition dynamics through positioning in bacterial colonies. Sci. Rep. 2017, 7, 12151. [Google Scholar] [CrossRef]
- Harshey, R.M. Bacterial Motility on a Surface: Many Ways to a Common Goal. Annu. Rev. Microbiol. 2003, 57, 249–273. [Google Scholar] [CrossRef]
- Mattick, J.S. Type IV Pili and Twitching Motility. Annu. Rev. Microbiol. 2002, 56, 289–314. [Google Scholar] [CrossRef]
- Chlebek, J.L.; Hughes, H.Q.; Ratkiewicz, A.S.; Rayyan, R.; Wang, J.C.; Herrin, B.E.; Dalia, T.N.; Biais, N.; Dalia, A.B. PilT and PilU are Homohexameric ATPases that Coordinate to Retract Type IVa Pili. PLoS Genet. 2019, 15, e1008448. [Google Scholar] [CrossRef]
- Corral, J.; Pérez-Varela, M.; Sánchez-Osuna, M.; Cortés, P.; Barbé, J.; Aranda, J. Importance of Twitching and Surface-Associated Motility in the Virulence of Acinetobacter baumannii. Virulence 2021, 12, 2201–2213. [Google Scholar] [CrossRef]
- Salzer, R.; Joos, F.; Averhoff, B. Type IV Pilus Biogenesis, Twitching Motility, and DNA Uptake in Thermus thermophilus: Discrete Roles of Antagonistic ATPases PilF, PilT1, and PilT2. Appl. Environ. Microbiol. 2014, 80, 644–652. [Google Scholar] [CrossRef]
- Dhabaan, G.N.; AbuBakar, S.; Cerqueira, G.M.; Al-Haroni, M.; Pang, S.P.; Hassan, H. Imipenem Treatment Induces Expression of Important Genes and Phenotypes in a Resistant Acinetobacter baumannii Isolate. Antimicrob. Agents Chemother. 2015, 60, 1370–1376. [Google Scholar] [CrossRef]
- Eijkelkamp, B.A.; Stroeher, U.H.; Hassan, K.A.; Papadimitrious, M.S.; Paulsen, I.T.; Brown, M.H. Adherence and Motility Characteristics of Clinical Acinetobacter baumannii Isolates. FEMS Microbiol. Lett. 2011, 323, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Korotkov, K.V.; Gonen, T.; Hol, W.G.J. Secretins: Dynamic Channels for Protein Transport across Membranes. Trends Biochem. Sci. 2011, 36, 433–443. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Qiu, H.; Dai, W. Type IV PilD Mutant Stimulates the Formation of Persister Cells in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2025, 80, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K. Persister Cells, Dormancy and Infectious Disease. Nat. Rev. Microbiol. 2007, 5, 48–56. [Google Scholar] [CrossRef]
- Van den Bergh, B.; Fauvart, M.; Michiels, J. Formation, Physiology, Ecology, Evolution and Clinical Importance of Bacterial Persisters. FEMS Microbiol. Rev. 2017, 41, 219–251. [Google Scholar] [CrossRef]
- Uzoechi, S.C.; Abu-Lail, N.I. Variations in the Morphology, Mechanics and Adhesion of Persister and Resister E. coli Cells in Response to Ampicillin: AFM Study. Antibiotics 2020, 9, 235. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Bassler, B.L. Surviving as a Community: Antibiotic Tolerance and Persistence in Bacterial Biofilms. Cell Host Microbe. 2019, 26, 15–21. [Google Scholar] [CrossRef]
- Conrad, J.C.; Gibiansky, M.L.; Jin, F.; Gordon, V.D.; Motto, D.A.; Mathewson, M.A.; Stopka, W.G.; Zelasko, D.C.; Shrout, J.D.; Wong, G.C. Flagella and Pili-Mediated Near-Surface Single-Cell Motility Mechanisms in P. aeruginosa. Biophys. J. 2011, 100, 1608–1616. [Google Scholar] [CrossRef]
- Lin, M.F.; Lin, Y.Y.; Lan, C.Y. Characterization of Biofilm Production in Different Strains of Acinetobacter baumannii and the Effects of Chemical Compounds on Biofilm Formation. PeerJ 2020, 8, e9020. [Google Scholar] [CrossRef]
- Tomaras, A.P.; Dorsey, C.W.; Edelmann, R.E.; Actis, L.A. Attachment to and Biofilm Formation on Abiotic Surfaces by Acinetobacter baumannii: Involvement of a Novel Chaperone–Usher Pili Assembly System. Microbiology 2003, 149, 3473–3484. [Google Scholar] [CrossRef] [PubMed]
- Giltner, C.L.; Habash, M.; Burrows, L.L. Pseudomonas aeruginosa Minor Pilins are Incorporated into Type IV Pili. J. Mol. Biol. 2010, 398, 444–461. [Google Scholar] [CrossRef] [PubMed]
- Heydorn, A.; Ersbøll, B.; Kato, J.; Hentzer, M.; Parsek, M.R.; Tolker-Nielsen, T.; Givskov, M.; Molin, S. Statistical Analysis of Pseudomonas aeruginosa Biofilm Development: Impact of Mutations in Genes Involved in Twitching Motility, Cell-to-Cell Signaling, and Stationary-Phase Sigma Factor Expression. Appl. Environ. Microbiol. 2002, 68, 2008–2017. [Google Scholar] [CrossRef]
- Klausen, M.; Heydorn, A.; Ragas, P.; Lambertsen, L.; Aaes-Jørgensen, A.; Molin, S.; Tolker-Nielsen, T. Biofilm Formation by Pseudomonas aeruginosa Wild Type, Flagella and Type IV Pili Mutants. Mol. Microbiol. 2003, 48, 1511–1524. [Google Scholar] [CrossRef]
- O’Toole, G.A.; Kolter, R. Flagellar and Twitching Motility are Necessary for Pseudomonas aeruginosa Biofilm Development. Mol. Microbiol. 1998, 30, 295–304. [Google Scholar] [CrossRef]
- Webb, J.S.; Lau, M.; Kjelleberg, S. Bacteriophage and Phenotypic Variation in Pseudomonas aeruginosa Biofilm Development. J. Bacteriol. 2004, 186, 8066–8073. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Jayaraman, N.; Chatterji, D. Small-Molecule Inhibition of Bacterial Biofilm. ACS Omega 2020, 5, 3108–3115. [Google Scholar] [CrossRef]
- Choudhary, M.; Shrivastava, R.; Vashistt, J. Acinetobacter baumannii Biofilm Formation: Association with Antimicrobial Resistance and Prolonged Survival under Desiccation. Curr. Microbiol. 2022, 79, 361. [Google Scholar] [CrossRef]
- O’Toole, G.; Kaplan, H.B.; Kolter, R. Biofilm Formation as Microbial Development. Annu. Rev. Microbiol. 2000, 54, 49–79. [Google Scholar] [CrossRef]
- Ferro, B.E.; van Ingen, J.; Wattenberg, M.; van Soolingen, D.; Mouton, J.W. Time-kill kinetics of slowly growing mycobacteria common in pulmonary disease. J. Antimicrob. Chemother. 2015, 70, 2838–2843. [Google Scholar] [CrossRef] [PubMed]
- Rabodoarivelo, M.S.; Hoffmann, E.; Gaudin, C.; Aguilar-Ayala, D.A.; Galizia, J.; Sonnenkalb, L.; Dal Molin, M.; Cioetto-Mazzabò, L.; Degiacomi, G.; Recchia, D.; et al. Protocol to quantify bacterial burden in time-kill assays using colony-forming units and most probable number readouts for Mycobacterium tuberculosis. STAR Protoc. 2025, 6, 103643. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, G.A. Microtiter Dish Biofilm Formation Assay. J. Vis. Exp. 2011, 47, 2437. [Google Scholar] [CrossRef]
Strain | Time Interval: 2–5 h | Time Interval: 5–8 h | ||
---|---|---|---|---|
µ (h−1) | td (min) | µ (h−1) | td (min) | |
AB5075 WT | 0.348 | 119.4 | 0.271 | 153.5 |
AB5075 pilA mutant | 0.974 | 42.7 | 0.311 | 134.0 |
AB5075 pilB mutant | 0.558 | 74.5 | 0.200 | 208.0 |
AB5075 pilD mutant | 0.539 | 77.2 | 0.185 | 225.0 |
Time Point 1 | Time Point 2 | Time Point 3 | Time Point 4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Strain | CFU/mL | Abs | Time (h) | CFU/mL | Abs | Time (h) | CFU/mL | Abs | Time (h) | CFU/mL | Abs | Time (h) |
AB5075 WT | 1.47 × 107 | 0.112 | 1.9 | 4.83 × 107 | 0.311 | 4.7 | 6.65 × 107 | 0.500 | 6.3 | 8.60 × 107 | 0.746 | 7.9 |
AB5075 pilA mutant | 2.15 × 108 | 0.189 | 4.6 | 3.03 × 108 | 0.325 | 5.8 | 4.32 × 108 | 0.455 | 7.8 | 5.87 × 108 | 0.610 | 8.4 |
AB5075 pilB mutant | 6.14 × 107 | 0.201 | 2.7 | 8.47 × 107 | 0.284 | 3.3 | 1.25 × 108 | 0.398 | 4.0 | 1.68 × 108 | 0.484 | 4.3 |
AB5075 pilD mutant | 6.20 × 107 | 0.227 | 2.7 | 1.33 × 108 | 0.391 | 3.6 | 3.33 × 108 | 0.581 | 4.7 | 3.98 × 108 | 0.770 | 5.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salinas, J.H., Jr.; Gordesli-Duatepe, F.P.; Diaz-Sanchez, A.; Abu-Lail, N.I. Phenotypic Characterization of pilA, pilB, and pilD Mutants of Acinetobacter baumannii 5075: Impacts on Growth, Biofilm Formation, and Tazobactam Response. Antibiotics 2025, 14, 816. https://doi.org/10.3390/antibiotics14080816
Salinas JH Jr., Gordesli-Duatepe FP, Diaz-Sanchez A, Abu-Lail NI. Phenotypic Characterization of pilA, pilB, and pilD Mutants of Acinetobacter baumannii 5075: Impacts on Growth, Biofilm Formation, and Tazobactam Response. Antibiotics. 2025; 14(8):816. https://doi.org/10.3390/antibiotics14080816
Chicago/Turabian StyleSalinas, Joel H., Jr., Fatma Pinar Gordesli-Duatepe, Angelica Diaz-Sanchez, and Nehal I. Abu-Lail. 2025. "Phenotypic Characterization of pilA, pilB, and pilD Mutants of Acinetobacter baumannii 5075: Impacts on Growth, Biofilm Formation, and Tazobactam Response" Antibiotics 14, no. 8: 816. https://doi.org/10.3390/antibiotics14080816
APA StyleSalinas, J. H., Jr., Gordesli-Duatepe, F. P., Diaz-Sanchez, A., & Abu-Lail, N. I. (2025). Phenotypic Characterization of pilA, pilB, and pilD Mutants of Acinetobacter baumannii 5075: Impacts on Growth, Biofilm Formation, and Tazobactam Response. Antibiotics, 14(8), 816. https://doi.org/10.3390/antibiotics14080816