Determination of Antimicrobial Resistance Megaplasmid-Like pESI Structures Contributing to the Spread of Salmonella Schwarzengrund in Japan
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Susceptibilities of the Isolates and Their Antimicrobial Resistance Genes
2.2. Horizontal Transfer of Antimicrobial Resistance
2.3. WGS
2.4. cgMLST Analysis for S. Schwaruzengrund Isolates Carrying pESI-Like Plasmids in Japan, the UK, and the USA
3. Discussion
4. Materials and Methods
4.1. Salmonella Isolates
4.2. Antimicrobial Susceptibility Tests
4.3. Antimicrobial Resistance Gene and Integron Detection
4.4. Conjugation Assay
4.5. WGS Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DFAST | DDBJ Fast Annotation and Submission Tool |
MAFFT | Multiple Alignment using Fast Fourier Transform |
MIC | Minimum inhibitory concentration |
NCBI | National Center for Biotechnology Information |
RFLP | Restriction fragment length polymorphism |
WGS | Whole-genome sequencing |
References
- Han, J.; Aljahdali, N.; Zhao, S.; Tang, H.; Harbottle, H.; Hoffmann, M.; Frye, G.J.; Foley, L.S. Infection biology of Salmonella enterica. EcoSal Plus 2024, 12, eesp-0001. [Google Scholar] [CrossRef]
- Grimont, A.D.P.; Weill, F.-X. Antigenic Formulae of the Salmonella Serovars, 9th ed.; WHO Collaborating Center for Reference and Research on Salmonella: Paris, France, 2007. [Google Scholar]
- World Health Organization. Salmonella (Non-Typhoidal). Available online: https://www.who.int/en/news-room/fact-sheets/detail/salmonella-(non-typhoidal) (accessed on 18 February 2025).
- Alvarez, D.; Barrón-Montenegro, R.; Conejeros, J.; Rivera, D.; Undurraga, E.; Moreno-Switt, A. A review of the global emergence of multidrug-resistant Salmonella enterica subsp. enterica serovar Infantis. Int. J. Food Microbiol. 2023, 403, 110297. [Google Scholar] [CrossRef] [PubMed]
- Aviv, G.; Tsyba, K.; Steck, N.; Salmon-Divon, M.; Cornelius, A.; Rahav, G.; Grassl, G.A.; Gal-Mor, O. A unique megaplasmid contributes to stress tolerance and pathogenicity of an emergent Salmonella enterica serovar Infantis strain. Environ. Microbiol. 2014, 16, 977–994. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, K.; Nakazawa, C.; Nomura, S.; Elahi, S.; Yamashita, M.; Fujikawa, H. Effects of climatic elements on Salmonella contamination in broiler chicken meat in Japan. J. Vet. Med. Sci. 2020, 82, 646–652. [Google Scholar] [CrossRef]
- Matsui, K.; Nakazawa, C.; Khin, S.; Iwabuchi, E.; Asai, T.; Ishihara, K. Molecular Characteristics and antimicrobial resistance of Salmonella enterica serovar Schwarzengrund from chicken meat in Japan. Antibiotics 2021, 10, 1336. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, A.M.P.; Panzenhagen, P.; Ferrari, R.G.; Conte-Junior, C.A. Large-scale genomic analysis reveals the pESI-like megaplasmid presence in Salmonella Agona, Muenchen, Schwarzengrund, and Senftenberg. Food Microbiol. 2022, 108, 104112. [Google Scholar] [CrossRef]
- Karch, H.; Schubert, S.; Zhang, D.; Zhang, W.; Schmidt, H.; Ölschlager, T.; Hacker, J. A genomic island, termed high-pathogenicity island, is present in certain non-O157 shiga toxin-producing Escherichia coli clonal lineages. Infect. Immun. 1999, 67, 5994–6001. [Google Scholar] [CrossRef]
- Franco, A.; Leekitcharoenphon, P.; Feltrin, F.; Alba, P.; Cordaro, G.; Iurescia, M.; Tolli, R.; D’Incau, M.; Staffolani, M.; Di Giannatale, E.; et al. Emergence of a clonal lineage of multidrug-resistant ESBL-producing Salmonella Infantis transmitted from broilers and broiler meat to humans in Italy between 2011 and 2014. PLoS ONE 2015, 10, e0144802. [Google Scholar] [CrossRef]
- García-Soto, S.; Abdel-Glil, M.; Tomaso, H.; Linde, J.; Methner, U. Emergence of multidrug-resistant Salmonella enterica subspecies enterica serovar Infantis of multilocus sequence Type 2283 in German broiler farms. Front. Microbiol. 2020, 11, 1741. [Google Scholar] [CrossRef]
- Alba, P.; Carfora, V.; Feltrin, F.; Diaconu, E.; Sorbara, L.; Dell’Aira, E.; Cerci, T.; Ianzano, A.; Donati, V.; Franco, A.; et al. Evidence of structural rearrangements in ESBL-positive pESI(like) megaplasmids of S. Infantis. FEMS Microbiol. Lett. 2023, 370, fnad014. [Google Scholar] [CrossRef]
- Bogomazova, A.N.; Gordeeva, V.D.; Krylova, E.V.; Soltynskaya, I.V.; Davydova, E.E.; Ivanova, O.E.; Komarov, A.A. Megaplasmid found worldwide confers multiple antimicrobial resistance in Salmonella Infantis of broiler origin in Russia. Int. J. Food Microbiol. 2020, 319, 108497. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.; Kriger, O.; Amit, S.; Davidovich, M.; Rahav, G.; Gal-Mor, O. The emergence of a multidrug resistant Salmonella Muenchen in Israel is associated with horizontal acquisition of the epidemic pESI plasmid. Clin. Microbiol. Infect. 2022, 28, 1499.e7–1499.e14. [Google Scholar] [CrossRef]
- Iwabuchi, E.; Yamamoto, S.; Endo, Y.; Ochiai, T.; Hirai, K. Prevalence of Salmonella isolates and antimicrobial resistance patterns in chicken meat throughout Japan. J. Food Prot. 2011, 74, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.; Kakizawa, H.; Baba, Y.; Ito, T.; Haremaki, Y.; Yonemichi, M.; Ikeda, T.; Kuroda, M.; Ohya, K.; Hara-Kudo, Y.; et al. Antimicrobial resistance in Salmonella isolated from food workers and chicken products in Japan. Antibiotics 2021, 10, 1541. [Google Scholar] [CrossRef]
- Aviv, G.; Rahav, G.; Gal-Mor, O. Horizontal transfer of the Salmonella enterica serovar Infantis resistance and virulence plasmid pESI to the gut microbiota of warm-blooded hosts. mBio 2016, 7, e01395-16. [Google Scholar] [CrossRef]
- Sasaki, Y.; Ikeda, A.; Ishikawa, K.; Murakami, M.; Kusukawa, M.; Asai, T.; Yamada, Y. Prevalence and antimicrobial susceptibility of Salmonella in Japanese broiler flocks. Epidemiol. Infect. 2012, 140, 2074–2081. [Google Scholar] [CrossRef] [PubMed]
- Duc, V.M.; Shin, J.; Nagamatsu, Y.; Fuhiwara, A.; Toyofuku, H.; Obi, T.; Chuma, T. Increased Salmonella Schwarzengrund prevalence and antimicrobial susceptibility of Salmonella enterica isolated from broiler chickens in Kagoshima Prefecture in Japan between 2013 and 2016. J. Vet. Med. Sci. 2020, 82, 585–589. [Google Scholar] [CrossRef]
- Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries. Annual Report on Animal Quarantine. Available online: https://www.maff.go.jp/aqs/tokei/toukeinen.html (accessed on 28 November 2024).
- Sodagari, H.; Sohail, M.; Varga, C. Differences in the prevalence and antimicrobial resistance among non-typhoidal Salmonella serovars isolated from retail chicken meat across the United States of America, 2013–2020. Food Control 2024, 165, 110701. [Google Scholar] [CrossRef]
- Buyrukoglu, G.; Moreira, J.; Topalcengiz, Z. Causal mediation analysis of foodborne Salmonella outbreaks in the United States: Serotypes and food vehicles. Pathogens 2024, 13, 1134. [Google Scholar] [CrossRef]
- Willis, C.; Jorgensen, F.; Cawthraw, S.; Aird, H.; Lai, S.; Kesby, M.; Chattaway, M.; Lock, I.; Quill, E.; Raykova, G. A survey of Salmonella, Escherichia coli, and antimicrobial resistance in frozen, part-cooked, breaded, or battered chicken products on retail sale in the UK. J. Appl. Microbiol. 2023, 134, lxad093. [Google Scholar] [CrossRef]
- Murakami, K.; Horikawa, K.; Ito, T.; Otsuki, K. Environmental survey of salmonella and comparison of genotypic character with human isolates in Western Japan. Epidemiol. Infect. 2001, 126, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, E.; Ando, N.; Ohta, T.; Kanada, A.; Shiwa, Y.; Ishige, T.; Murakami, K.; Kikuchi, T.; Murakami, S. A novel subpopulation of Salmonella enterica serovar Infantis strains isolated from broiler chicken organs other than the gastrointestinal tract. Vet. Microbiol. 2015, 175, 312–318. [Google Scholar] [CrossRef]
- Tate, H.; Folster, J.P.; Hsu, C.H.; Chen, J.; Hoffmann, M.; Li, C.; Morales, C.; Tyson, G.H.; Mukherjee, S.; Brown, A.C.; et al. Comparative analysis of extended-spectrum-β-lactamase CTX-M-65-producing Salmonella enterica serovar Infantis isolates from humans, food animals, and retail chickens in the United States. Antimicrob. Agents Chemother. 2017, 61, e00488-17. [Google Scholar] [CrossRef]
- Egorova, A.; Mikhaylova, Y.; Saenko, S.; Tyumentseva, M.; Tyumentsev, A.; Karbyshev, K.; Chernyshkov, A.; Manzeniuk, I.; Akimkin, V.; Shelenkov, A. Comparative whole-genome analysis of Russian foodborne multidrug-resistant Salmonella Infantis isolates. Microorganisms 2022, 10, 89. [Google Scholar] [CrossRef]
- Ishihara, K.; Takahashi, T.; Morioka, A.; Kojima, A.; Kijima, M.; Asai, T.; Tamura, Y. National surveillance of Salmonella enterica in food-producing animals in Japan. Acta Vet. Scand. 2009, 51, 35. [Google Scholar] [CrossRef]
- M100-30; Performance Standards for Antimicrobial Susceptibility Testing. Clinilac and Laboratry Standards Institute: Wayne, PA, USA, 2019.
- Kozak, G.K.; Boerlin, P.; Janecko, N.; Reid-Smith, R.J.; Jardine, C. Antimicrobial resistance in Escherichia coli isolates from swine and wild small mammals in the proximity of swine farms and in natural environments in Ontario, Canada. Appl. Environ. Microbiol. 2009, 75, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Edelstein, M.; Pimkin, M.; Palagin, I.; Edelstein, I.; Stratchounski, L. Prevalence and molecular epidemiology of CTX-M extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob. Agents Chemother. 2003, 47, 3724–3732. [Google Scholar] [CrossRef] [PubMed]
- Ng, L.K.; Mulvey, M.R.; Martin, I.; Peters, G.A.; Johnson, W. Genetic characterization of antimicrobial resistance in Canadian isolates of Salmonella serovar Typhimurium DT104. Antimicrob. Agents Chemother. 1999, 43, 3018–3021. [Google Scholar] [CrossRef]
- Lin, T.; Nomura, S.; Someno, S.; Abe, T.; Nishiyama, M.; Shiki, S.; Harima, H.; Ishihara, K. Role of multidrug resistance and co-resistance on a high percentage of streptomycin resistance in Escherichia coli isolated from chicken meats in Japan. J. Vet. Med. Sci. 2023, 85, 832–836. [Google Scholar] [CrossRef]
- Sekizuka, T.; Yatsu, K.; Inamine, Y.; Segawa, T.; Nishio, M.; Kishi, N.; Kuroda, M. Complete genome sequence of a blaKPC-2-Positive Klebsiella pneumoniae strain isolated from the effluent of an urban sewage treatment plant in Japan. Msphere 2018, 3, e00314-18. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Salmela, L.; Rivals, E. LoRDEC: Accurate and efficient long read error correction. Bioinformatics 2014, 30, 3506–3514. [Google Scholar] [CrossRef] [PubMed]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef]
- Tanizawa, Y.; Fujisawa, T.; Kaminuma, E.; Nakamura, Y.; Arita, M. DFAST and DAGA: Web-based integrated genome annotation tools and resources. Biosci. Microbiota. Food Health 2016, 35, 173–184. [Google Scholar] [CrossRef]
- Sullivan, M.J.; Petty, N.K.; Beatson, S.A. Easyfig: A genome comparison visualizer. Bioinformatics 2011, 27, 1009–1010. [Google Scholar] [CrossRef]
- Bharat, A.; Petkau, A.; Avery, B.P.; Chen, J.C.; Folster, J.P.; Carson, C.A.; Kearney, A.; Nadon, C.; Mabon, P.; Thiessen, J.; et al. Correlation between phenotypic and in silico detection of antimicrobial resistance in Salmonella enterica in Canada using staramr. Microorganisms 2022, 10, 292. [Google Scholar] [CrossRef]
- Clausen, P.; Aarestrup, F.; Lund, O. Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinformatics 2018, 19, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Alikhan, N.; Zhou, Z.; Sergeant, M.; Achtman, M. A genomic overview of the population structure of Salmonella. PLoS Genet. 2018, 14, e1007261. [Google Scholar] [CrossRef]
- Zhou, Z.; Alikhan, N.; Sergeant, M.; Luhmann, N.; Vaz, C.; Francisco, A.; Carriço, J.; Achtman, M. GrapeTree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018, 28, 1395–1404. [Google Scholar] [CrossRef]
No. of Isolates | S. Infantis | S. Typhimurium | S. Manhattan | Other | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Antimicrobial Resistance Genes | 1 kb (a) | No (b) | 1 kb | No | 1 kb | No | 1 kb | No | ||
aadA1 (c) | aadA2 | aadA1 | aadA1 | aadA1 | ||||||
aac(6′)-Iaa, aadA1, tetA, sul1, dfrA14, aphA1, blaTEM | 1 | 1 | ||||||||
aac(6′)-Iaa, aadA1, tetA, sul1, aphA2, blaTEM | 1 | 1 | ||||||||
aac(6′)-Iaa, aadA1, tetA, sul1, dfrA14, aphA1 | 18 | 18 | ||||||||
aac(6′)-Iaa, aadA1, tetA, sul1, dfrA14, blaCMY-2 | 3 | 3 | ||||||||
aac(6′)-Iaa, aadA1, tetA, sul1, dfrA14, blaTEM | 1 | 1 | ||||||||
aac(6′)-Iaa, aadA1, tetA, sul1, aphA1 | 5 | 5 | ||||||||
aac(6′)-Iaa, aadA1, tetA, sul1, dfrA14 | 32 | 32 | ||||||||
aac(6′)-Iaa, aadA1, tetA, sul1, blaTEM | 1 | 1 | ||||||||
aac(6′)-Iaa, aadA2, tetA, sul1, blaCTX-M | 2 | 2 | ||||||||
aac(6′)-Iaa, aadA1, tetA, sul1 | 16 | 5 | 6 | 5 (d) | ||||||
aac(6′)-Iaa, dfrA14, aphA1, blaTEM | 1 | 1 | ||||||||
aac(6′)-Iaa, aphA2, blaTEM | 6 | 6 | ||||||||
aac(6′)-Iaa, dfrA14, aphA1 | 5 | 4 | 1 (e) | |||||||
aac(6′)-Iaa, aphA1 | 1 | 1 | ||||||||
aac(6′)-Iaa, dfrA14 | 5 | 5 | ||||||||
aac(6′)-Iaa | 3 | 1 | 1 | 1 (f) | ||||||
total | 101 | 64 | 2 | 11 | 3 | 7 | 6 | 1 | 5 | 2 |
Serovar | Donar | Transconjugant | |
---|---|---|---|
Isolate ID | Antimicrobial Resistance Genes | Antimicrobial Resistance Genes | |
S. Infantis | Sal_235 | aadA1, tetA, sul1, dfrA14, aphA1, blaTEM | aadA **, tetA, sul1, dfrA14, aphA1, blaTEM |
aadA, tetA, sul1, dfrA14, aphA1 | |||
aadA, sul1 | |||
aadA, blaTEM | |||
S. Infantis | Sal_286 | aadA1, tetA, sul1, dfrA14, blaCMY-2 | No transfer |
S. Infantis | Sal_31 | aadA1, tetA, sul1, dfrA14, aphA1 | aadA, tetA, sul1, dfrA14, aphA1 |
S. Infantis | Sal_238 * | aadA1, tetA, sul1, dfrA14, aphA1 | aadA, tetA, sul1, dfrA14, aphA1 |
S. Infantis | Sal_180 | aadA1, tetA, sul1, dfrA14, aphA1 | aadA, tetA, sul1, dfrA14, aphA1 |
S. Infantis | Sal_181 | aadA1, tetA, sul1, dfrA14, aphA1 | aadA, tetA, sul1, dfrA14, aphA1 |
S. Infantis | Sal_256 * | aadA1, tetA, sul1, dfrA14, aphA1 | No transfer |
S. Schwarzengrund | Sal_63 | aadA1, tetA, sul1, dfrA14, aphA1 | aadA, tetA, sul1, dfrA14, aphA1 |
S. Schwarzengrund | Sal_15 | aadA1, tetA, sul1, dfrA14, aphA1 | aadA, tetA, sul1, dfrA14, aphA1 |
S. Schwarzengrund | Sal_249 * | aadA1, tetA, sul1, dfrA14, aphA1 | aadA, tetA, sul1, dfrA14, aphA1 |
S. Schwarzengrund | Sal_278 * | aadA1, tetA, sul1, dfrA14, aphA1 | aadA, tetA, sul1, dfrA14, aphA1 |
S. Infantis | Sal_51 | aadA1, tetA, sul1, aphA1 | aadA, tetA, sul1, aphA1 |
S. Schwarzengrund | Sal_272 | aadA1, tetA, sul1, aphA1 | aadA, tetA, sul1, aphA1 |
S. Infantis | Sal_80 | aadA1, tetA, sul1, dfrA14 | No transfer |
S. Infantis | Sal_25 | aadA1, tetA, sul1, dfrA14 | aadA, tetA, sul1, dfrA14 |
S. Schwarzengrund | Sal_159 | aadA1, tetA, sul1, dfrA14 | aadA, tetA, sul1, dfrA14 |
S. Schwarzengrund | Sal_167 * | aadA1, tetA, sul1, dfrA14 | aadA, tetA, sul1, dfrA14 |
S. Infantis | Sal_157 | aadA2, tetA, sul1, blaCTX-M | aadA, tetA, sul1, blaCTX-M |
S. Infantis | Sal_36 | aadA1, tetA, sul1 | aadA, tetA, sul1 |
S. Schwarzengrund | Sal_82 | aadA1, tetA, sul1 | aadA, tetA, sul1 |
S. Schwarzengrund | Sal_287 | strA, strB, sul2, dfrA14, aphA1 | aphA1 |
Sal_289 | strA, strB, sul2, dfrA14, aphA1 | aphA1 | |
Sal_291 * | strA, strB, sul2, dfrA14, aphA1 | aphA1 | |
S. Infantis | Sal_102 | aphA1 | No transfer |
S. Schwarzengrund | Five isolates † | aphA1 | No transfer |
Serovar | Country | Isolation of Year | Isolate ID | ST | cgST | Antimicrobial Resistance Genes * | Chromosomal Point Mutation | Plasmid Replicons | Reference |
---|---|---|---|---|---|---|---|---|---|
S. Schwarzengrund | |||||||||
Japan | |||||||||
2016 | Sal_167 | 241 ** | 287831 | aadA1, sul1, tetA, dfrA14 ** | parC (T57S) | IncFIB | [7] | ||
2016 | Sal_249 | 241 ** | 167363 | aadA1, sul1, tetA, dfrA14, aphA1 ** | parC (T57S) | IncFIB | [7] | ||
2017 | Sal_266 | 241 ** | 167363 | aphA1 ** | parC (T57S) | IncFIB | [7] | ||
2017 | Sal_278 | 241 ** | 167363 | aadA1, sul1, tetA, dfrA14, aphA1 ** | parC (T57S) | IncFIB | [7] | ||
2019 | Sal_291 | 241 ** | 167363 | aphA1, strA/strB, dfrA14, sul2 ** | parC (T57S) | IncFIB | [7] | ||
USA | |||||||||
No data | GCA_004237325 | 241 ** | 287831 | aadA1, sul1, tetA, dfrA14, aphA1 ** | parC (T57S) ** | IncFIB ** | [8] | ||
No data | GCA_005730955 | 241 ** | 167363 | Not detected** | parC (T57S) ** | IncFIB ** | [8] | ||
No data | GCA_007854735 | 241 ** | 196045 | aadA1, sul1, tetA, dfrA14, aphA1 ** | parC (T57S) ** | IncFIB ** | [8] | ||
UK | |||||||||
2018 | GCA_007418385 | 241 ** | 167363 | aadA1, sul1, tetA, dfrA14, aphA1 ** | parC (T57S) ** | IncFIB ** | [8] | ||
2018 | GCA_007589355 | 241 ** | 167363 | aadA1, sul1, tetA, aphA1** | parC (T57S) ** | IncFIB, IncI1-I ** | [8] | ||
S. Infantis | |||||||||
Japan | |||||||||
2016 | Sal_238 | 32 | 40031 | aadA1, sul1, tetA, dfrA14, aphA1 | parC (T57S) | IncFIB | [6] | ||
2016 | Sal_256 | 32 | 18978 | aadA1, sul1, tetA, dfrA14, aphA1 | parC (T57S) | IncFIB, IncX4 | [6] |
Serovar | Year of Isolation | No. of Isolates | (%) | |
---|---|---|---|---|
Tested | Positive | |||
S. Schwarzengrund | 2008 | 37 | 37 | (100%) |
2015–2019 | 87 | 87 | (100%) | |
S. Infantis | 2015–2017 | 77 | 77 | (100%) |
S. Typhimurium | 2015–2016 | 10 | 4 | (40%) |
S. Manhattan | 2016 | 7 | 7 | (100%) |
S. Agona | 2015–2017 | 3 | 3 | (100%) |
S. Yovokome | 2015 | 2 | 2 | (100%) |
S. Kedougou | 2016 | 1 | 0 | |
OUT: r: 1,5 | 2016 | 1 | 1 | (100%) |
Total | 225 | 218 | (96.9%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishihara, K.; Someno, S.; Matsui, K.; Nakazawa, C.; Abe, T.; Harima, H.; Omatsu, T.; Ozawa, M.; Iwabuchi, E.; Asai, T. Determination of Antimicrobial Resistance Megaplasmid-Like pESI Structures Contributing to the Spread of Salmonella Schwarzengrund in Japan. Antibiotics 2025, 14, 288. https://doi.org/10.3390/antibiotics14030288
Ishihara K, Someno S, Matsui K, Nakazawa C, Abe T, Harima H, Omatsu T, Ozawa M, Iwabuchi E, Asai T. Determination of Antimicrobial Resistance Megaplasmid-Like pESI Structures Contributing to the Spread of Salmonella Schwarzengrund in Japan. Antibiotics. 2025; 14(3):288. https://doi.org/10.3390/antibiotics14030288
Chicago/Turabian StyleIshihara, Kanako, Suzuka Someno, Kaoru Matsui, Chisato Nakazawa, Takahiro Abe, Hayato Harima, Tsutomu Omatsu, Manao Ozawa, Eriko Iwabuchi, and Tetsuo Asai. 2025. "Determination of Antimicrobial Resistance Megaplasmid-Like pESI Structures Contributing to the Spread of Salmonella Schwarzengrund in Japan" Antibiotics 14, no. 3: 288. https://doi.org/10.3390/antibiotics14030288
APA StyleIshihara, K., Someno, S., Matsui, K., Nakazawa, C., Abe, T., Harima, H., Omatsu, T., Ozawa, M., Iwabuchi, E., & Asai, T. (2025). Determination of Antimicrobial Resistance Megaplasmid-Like pESI Structures Contributing to the Spread of Salmonella Schwarzengrund in Japan. Antibiotics, 14(3), 288. https://doi.org/10.3390/antibiotics14030288