Whole-Genome Sequencing Analysis Revealed High Genomic Variability, Recombination Events and Mobile Genetic Elements in Streptococcus uberis Strains Isolated from Bovine Mastitis in Colombian Dairy Herds
Abstract
:1. Introduction
2. Results
2.1. Streptococcus uberis Strains Isolated and Sequenced
2.2. General Genome Features
2.3. Pangenome Analysis
2.4. Multi-Locus Sequence Typing (MLST)
2.5. Recombination Events
2.6. Virulence Factors
2.7. Mobile Genetic Elements (MGE)
2.8. Resistance Genes
2.9. Antimicrobial Susceptibility Testing (AST)
3. Discussion
4. Methods and Materials
4.1. Sample Collection
4.2. Streptococcus uberis Isolation
4.3. DNA Extraction and S. uberis Identification by PCR
4.4. Whole Genome Sequencing, Assembly and Annotation
4.5. Genome Analysis
4.6. Recombination Events Detection
4.7. Multi-Locus Sequence Typing (MLST)
4.8. Antibiotic Susceptible Testing
4.9. Statistical Analysis
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pearson, L.J.; Williamson, J.H.; Turner, S.A.; Lacy-Hulbert, S.J.; Hillerton, J.E. Peripartum infection with Streptococcus uberis but not coagulase-negative staphylococci reduced milk production in primiparous cows. J. Dairy Sci. 2013, 96, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Bradley, A.J.; Leach, K.A.; Breen, J.E.; Green, L.E.; Green, M.J. Survey of the incidence and aetiology of mastitis on dairy farms in England and Wales. Vet. Rec. 2007, 160, 253–258. [Google Scholar] [CrossRef]
- Shum, L.; McConnel, C.; Gunn, A.; House, J. Environmental mastitis in intensive high-producing dairy herds in New South Wales. Aust. Vet. J. 2009, 87, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Leelahapongsathon, K.; Schukken, Y.H.; Srithanasuwan, A.; Suriyasathaporn, W. Molecular epidemiology of Streptococcus uberis intramammary infections: Persistent and transient patterns of infection in a dairy herd. J. Dairy Sci. 2020, 103, 3565–3576. [Google Scholar] [CrossRef] [PubMed]
- Zadoks, R.N.; Gillespie, B.E.; Barkema, H.W.; Sampimon, O.C.; Oliver, S.P.; Schukken, Y.H. Clinical, epidemiological and molecular characteristics of Streptococcus uberis infections in dairy herds. Epidemiol. Infect. 2003, 130, 335–349. [Google Scholar] [CrossRef] [PubMed]
- Whiley, D.; Jolley, K.; Blanchard, A.; Coffey, T.; Leigh, J. A core genome multi-locus sequence typing scheme for Streptococcus uberis: An evolution in typing a genetically diverse pathogen. Microb. Genom. 2024, 10, 001225. Available online: https://www.microbiologyresearch.org/content/journal/mgen/10.1099/mgen.0.001225 (accessed on 8 June 2024). [CrossRef]
- Kerro Dego, O.; Almeida, R.; Ivey, S.; Agga, G.E. Evaluation of Streptococcus uberis Surface Proteins as Vaccine Antigens to Control S. uberis Mastitis in Dairy Cows. Vaccines 2021, 9, 868. [Google Scholar] [CrossRef]
- Ward, P.N.; Holden, M.T.; A Leigh, J.; Lennard, N.; Bignell, A.; Barron, A.; Clark, L.; A Quail, M.; Woodward, J.; Barrell, B.G.; et al. Evidence for niche adaptation in the genome of the bovine pathogen Streptococcus uberis. BMC Genom. 2009, 10, 54. [Google Scholar] [CrossRef] [PubMed]
- Günther, J.; Czabanska, A.; Bauer, I.; Leigh, J.A.; Holst, O.; Seyfert, H.M. Streptococcus uberis strains isolated from the bovine mammary gland evade immune recognition by mammary epithelial cells, but not of macrophages. Vet. Res. 2016, 47, 13. [Google Scholar] [CrossRef]
- Tamilselvam, B.; Almeida, R.A.; Dunlap, J.R.; Oliver, S.P. Streptococcus uberis internalizes and persists in bovine mammary epithelial cells. Microb. Pathog. 2006, 40, 279–285. [Google Scholar] [CrossRef]
- Miotti, C.; Cicotello, J.; Archilla, G.S.; Neder, V.; Lucero, W.A.; Calvinho, L.; Signorini, M.; Camussone, C.; Zbrun, M.V.; Molineri, A.I. Antimicrobial resistance of Streptococcus uberis isolated from bovine mastitis: Systematic review and meta-analysis. Res. Vet. Sci. 2023, 164, 105032. [Google Scholar] [CrossRef] [PubMed]
- Tassi, R.; McNeilly, T.N.; Sipka, A.; Zadoks, R.N. Correlation of hypothetical virulence traits of two Streptococcus uberis strains with the clinical manifestation of bovine mastitis. Vet. Res. 2015, 46, 123. [Google Scholar] [CrossRef] [PubMed]
- Almeida, R.A.; Dego, O.K.; Headrick, S.I.; Lewis, M.J.; Oliver, S.P. Role of Streptococcus uberis adhesion molecule in the pathogenesis of Streptococcus uberis mastitis. Vet. Microbiol. 2015, 179, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, W.; Zhang, L.; Zhu, Y. Genetic diversity of Streptococcus uberis isolates from dairy cows with subclinical mastitis in Southern Xinjiang Province, China. J. Gen. Appl. Microbiol. 2013, 59, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Alves, B.G.; Martins, L.; Ribeiro, J.N.; Tavares, F.M.S.; Dos Santos, M.V. Application of a dot blot hybridization assay for genotyping Streptococcus uberis from Brazilian dairy herds. J. Dairy Sci. 2021, 104, 3418–3426. [Google Scholar] [CrossRef] [PubMed]
- Fessia, A.S.; Dieser, S.A.; Raspanti, C.G.; Odierno, L.M. Genotyping and study of adherence-related genes of Streptococcus uberis isolates from bovine mastitis. Microb. Pathog. 2019, 130, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Rosa, N.M.; Duprè, I.; Azara, E.; Longheu, C.M.; Tola, S. Molecular Typing and Antimicrobial Susceptibility Profiles of Streptococcus uberis Isolated from Sheep Milk. Pathogens 2021, 10, 1489. [Google Scholar] [CrossRef] [PubMed]
- Vezina, B.; Al-Harbi, H.; Ramay, H.R.; Soust, M.; Moore, R.J.; Olchowy, T.W.J.; Alawneh, J.I. Sequence characterisation and novel insights into bovine mastitis-associated Streptococcus uberis in dairy herds. Sci. Rep. 2021, 11, 3046. [Google Scholar] [CrossRef] [PubMed]
- Beres, S.B.; Sylva, G.L.; Barbian, K.D.; Lei, B.; Hoff, J.S.; Mammarella, N.D.; Liu, M.-Y.; Smoot, J.C.; Porcella, S.F.; Parkins, L.D.; et al. Genome sequence of a serotype M3 strain of group A Streptococcus: Phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc. Natl. Acad. Sci. USA 2002, 99, 10078–10083. [Google Scholar] [CrossRef]
- Fenske, L.; Noll, I.; Blom, J.; Ewers, C.; Semmler, T.; Fawzy, A.; Eisenberg, T. A dominant clonal lineage of Streptococcus uberis in cattle in Germany. Antonie Van. Leeuwenhoek 2022, 115, 857–870. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, F.; Li, X.P.; Luo, J.Y.; Wang, L.; Zhou, Y.L.; Yan, Y.; Wang, X.-R.; Li, H.-S. Detection of antimicrobial resistance and virulence-related genes in Streptococcus uberis and Streptococcus parauberis isolated from clinical bovine mastitis cases in northwestern China. J. Integr. Agric. 2020, 19, 2784–2791. Available online: https://linkinghub.elsevier.com/retrieve/pii/S2095311920631859 (accessed on 2 December 2024). [CrossRef]
- Fessia, A.S.; Odierno, L.M. Potential factors involved in the early pathogenesis of Streptococcus uberis mastitis: A review. Folia Microbiol. 2021, 66, 509–523. Available online: https://link.springer.com/10.1007/s12223-021-00879-9 (accessed on 2 December 2024). [CrossRef]
- Zouharová, M.; Matiašovic, J.; Gebauer, J.; Matiašková, K.; Nedbalcová, K. Survey of Genotype Diversity, Virulence, and Antimicrobial Resistance Genes in Mastitis-Causing Streptococcus uberis in Dairy Herds Using Whole-Genome Sequencing. Pathogens 2023, 12, 1378. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Wang, Y.; Fan, L.; Yang, N.; Pan, J.; Han, Y.; Wang, X.; Li, Q.; Guo, G.; Zheng, J.; et al. Novel Streptococcus uberis sequence types causing bovine subclinical mastitis in Hainan, China. J. Appl. Microbiol. 2022, 132, 1666–1674. Available online: https://academic.oup.com/jambio/article/132/3/1666/6988693 (accessed on 3 December 2024). [CrossRef]
- Woudstra, S.; Wente, N.; Zhang, Y.; Leimbach, S.; Gussmann, M.; Kirkeby, C.; Krömker, V. Strain diversity and infection durations of Staphylococcus spp. and Streptococcus spp. causing intramammary infections in dairy cows. J. Dairy Sci. 2023, 106, 4214–4231. [Google Scholar] [CrossRef]
- Lee, I.P.A.; Andam, C.P. Frequencies and characteristics of genome-wide recombination in Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus suis. Sci. Rep. 2022, 12, 1515. [Google Scholar] [CrossRef]
- Disser, S.A.; Fessia, A.S.; Ferrari, M.P.; Raspanti, C.G.; Odierno, L.M. Streptococcus uberis: In vitro biofilm production in response to carbohydrates and skim milk. Rev. Argent. Microbiol. 2017, 49, 305–310. Available online: https://www.elsevier.es/es-revista-revista-argentina-microbiologia-372-articulo-streptococcus-uberis-in-vitro-biofilm-S0325754117300822 (accessed on 20 January 2025). [CrossRef]
- Tenenbaum, T.; Spellerberg, B.; Adam, R.; Vogel, M.; Kim, K.S.; Schroten, H. Streptococcus agalactiae invasion of human brain microvascular endothelial cells is promoted by the laminin-binding protein Lmb. Microbes Infect. 2007, 9, 714–720. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1286457907000962 (accessed on 2 December 2024). [CrossRef]
- Torres, G.; Macias, D.; Reyes-Vélez, J.; Rios-Agudelo, P.; Caraballo-Guzmán, A. Streptococcus agalactiae virulence factors isolated from bovine mastitis and antibiotic treatment response. J. Appl. Microbiol. 2023, 134, lxad116. Available online: https://academic.oup.com/jambio/article/doi/10.1093/jambio/lxad116/7206407 (accessed on 2 December 2024). [CrossRef]
- Chou, W.C.; Huang, S.C.; Chiu, C.H.; Chen, Y.Y.M. YMC-2011, a Temperate Phage of Streptococcus salivarius, 57. I. Appl. Env. Microbiol. 2017, 83, e03186-16. [Google Scholar] [CrossRef] [PubMed]
- Samson, O.; Gaudout, N.; Schmitt, E.; Schukken, Y.H.; Zadoks, R. Use of on-farm data to guide treatment and control mastitis caused by Streptococcus uberis. J. Dairy Sci. 2016, 99, 7690–7699. [Google Scholar] [CrossRef]
- Achard, A.; Villers, C.; Pichereau, V.; Leclercq, R. New lnu(C) Gene Conferring Resistance to Lincomycin by Nucleotidylation in Streptococcus agalactiae UCN36. Antimicrob. Agents Chemother. 2005, 49, 2716–2719. [Google Scholar] [CrossRef]
- Hayes, K.; Cotter, L.; Barry, L.; O’Halloran, F. Emergence of the L phenotype in Group B Streptococci in the South of Ireland. Epidemiol. Infect. 2017, 145, 3535–3542. [Google Scholar] [CrossRef]
- Zouharova, M.; Nedbalcova, K.; Matiaskova, K.; Slama, P.; Matiasovic, J. Antimicrobial Susceptibility and Resistance Genes in Streptococcus uberis Isolated from Bovine Mastitis in the Czech Republic. Antibiotics 2023, 12, 1527. [Google Scholar] [CrossRef]
- Myrenås, M.; Fasth, C.; Waller, K.P.; Pedersen, K. Genomic analyses of Streptococcus uberis reveal high diversity but few antibiotic resistance genes. Vet. Microbiol. 2025, 300, 110319. [Google Scholar] [CrossRef]
- Vélez, J.R.; Cameron, M.; Rodríguez-Lecompte, J.C.; Xia, F.; Heider, L.C.; Saab, M.; McClure, J.T.; Sánchez, J. Whole-Genome Sequence Analysis of Antimicrobial Resistance Genes in Streptococcus uberis and Streptococcus dysgalactiae Isolates from Canadian Dairy Herds. Front. Vet. Sci. 2017, 4, 63. Available online: http://journal.frontiersin.org/article/10.3389/fvets.2017.00063/full (accessed on 2 December 2024). [CrossRef] [PubMed]
- Zhang, T.; Niu, G.; Boonyayatra, S.; Pichpol, D. Antimicrobial Resistance Profiles and Genes in Streptococcus uberis Associated with Bovine Mastitis in Thailand. Front. Vet. Sci. 2021, 8, 705338. [Google Scholar] [CrossRef] [PubMed]
- Amuasi, G.R.; Dsani, E.; Owusu-Nyantakyi, C.; Owusu, F.A.; Mohktar, Q.; Nilsson, P.; Adu, B.; Hendriksen, R.S.; Egyir, B. Enterococcus species: Insights into antimicrobial resistance and whole-genome features of isolates recovered from livestock and raw meat in Ghana. Front. Microbiol. 2023, 14, 1254896. [Google Scholar] [CrossRef] [PubMed]
- Fatoba, D.O.; Amoako, D.G.; Akebe, A.L.K.; Ismail, A.; Essack, S.Y. Genomic analysis of antibiotic-resistant Enterococcus spp. reveals novel enterococci strains and the spread of plasmid-borne Tet(M), Tet(L) and Erm(B) genes from chicken litter to agricultural soil in South Africa. J. Environ. Manag. 2022, 302, 114101. [Google Scholar] [CrossRef] [PubMed]
- Sharon, B.M.; Arute, A.P.; Nguyen, A.; Tiwari, S.; Bonthu, S.S.R.; Hulyalkar, N.V.; Neugent, M.L.; Araya, D.P.; Dillon, N.A.; Zimmern, P.E.; et al. Genetic and functional enrichments associated with Enterococcus faecalis isolated from the urinary tract. Cooper VS, editor. mBio 2023, 14, e02515-23. [Google Scholar] [CrossRef]
- Liao, J.; Guo, X.; Li, S.; Anupoju, S.M.B.; A Cheng, R.; Weller, D.L.; Sullivan, G.; Zhang, H.; Deng, X.; Wiedmann, M. Comparative genomics unveils extensive genomic variation between populations of Listeria species in natural and food-associated environments. ISME Commun. 2023, 3, 85. [Google Scholar] [CrossRef] [PubMed]
- Crestani, C.; Forde, T.L.; Lycett, S.J.; Holmes, M.A.; Fasth, C.; Persson-Waller, K.; Zadoks, R.N. The fall and rise of group B Streptococcus in dairy cattle: Reintroduction due to human-to-cattle host jumps? Microb. Genom. 2021, 7, 000648. Available online: https://www.microbiologyresearch.org/content/journal/mgen/10.1099/mgen.0.000648 (accessed on 29 November 2024). [CrossRef]
- National Mastitis Council. Laboratoy Handbook on Bovine Mastitis, 3rd ed.; National Mastitis Council: New Prague, MN, USA, 2017. [Google Scholar]
- Hassan, A.A.; Khan, I.U.; Abdulmawjood, A.; Lämmler, C. Evaluation of PCR Methods for Rapid Identification and Differentiation of Streptococcus uberis and Streptococcus parauberis. J. Clin. Microbiol. 2001, 39, 1618–1621. Available online: https://journals.asm.org/doi/10.1128/JCM.39.4.1618-1621.2001 (accessed on 2 December 2024). [CrossRef] [PubMed]
- Wattam, A.R.; Davis, J.J.; Assaf, R.; Boisvert, S.; Brettin, T.; Bun, C.; Conrad, N.; Dietrich, E.M.; Disz, T.; Gabbard, J.L.; et al. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res. 2017, 45, D535–D542. Available online: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw1017 (accessed on 2 December 2024). [CrossRef]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.G.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31, 3691–3693. Available online: https://academic.oup.com/bioinformatics/article/31/22/3691/240757 (accessed on 2 December 2024). [CrossRef]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; A Wlodarski, M.; Edalatmand, A.; Petkau, A.; A Syed, S.; Tsang, K.K.; et al. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2022, 51, D690–D699. Available online: https://academic.oup.com/nar/article/51/D1/D690/6764414 (accessed on 2 December 2024). [CrossRef] [PubMed]
- Carattoli, A.; Zankari, E.; Garcìa-Fernandez, A.; Larsen, M.; Lund, O.; Voldby Villa, L.; Møller Aarestrup, F.; Hasman, H. In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. Available online: https://journals.asm.org/doi/10.1128/AAC.02412-14 (accessed on 2 December 2024). [CrossRef] [PubMed]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016, 44, W16–W21. Available online: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw387 (accessed on 2 December 2024). [CrossRef]
- Orozco-Arias, S.; Tobon-Orozco, N.; Piña, J.S.; Jiménez-Varón, C.F.; Tabares-Soto, R.; Guyot, R. TIP_finder: An HPC Software to Detect Transposable Element Insertion Polymorphisms in Large Genomic Datasets. Biology 2020, 9, 281. Available online: https://www.mdpi.com/2079-7737/9/9/281 (accessed on 2 December 2024). [CrossRef] [PubMed]
- Lin, M.; Kussell, E. Inferring bacterial recombination rates from large-scale sequencing datasets. Nat. Methods 2019, 16, 199–204. Available online: https://www.nature.com/articles/s41592-018-0293-7 (accessed on 2 December 2024). [CrossRef] [PubMed]
- Richter, M.; Rosselló-Móra, R.; Oliver Glöckner, F.; Peplies, J. JSpeciesWS: A web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016, 32, 929–931. Available online: https://academic.oup.com/bioinformatics/article/32/6/929/1744508 (accessed on 2 December 2024). [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Test for Bacteria Isolated from Animals, 5th. ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
Isolate | Municipality | Herd | BV-BRC/PubMLST ID |
---|---|---|---|
m2 | La Ceja | 1 | 218495.87/2323 |
m3 | La Ceja | 1 | 218495.88/2324 |
m5 | San Pedro de los Milagros | 2 | 218495.92/2325 |
m6 | Entrerríos | 3 | 218495.84/2326 |
m7 | Santa Rosa de Osos | 4 | 218495.83/2327 |
m8 | Santa Rosa de Osos | 4 | 218495.85/2328 |
m9 | Entrerríos | 3 | 218495.93/2329 |
m10 | San Jerónimo | 5 | 218495.94/2330 |
m11 | San Pedro de los Milagros | 2 | 218495.95/2331 |
m12 | San Pedro de los Milagros | 6 | 218495.96/2332 |
Isolate | Genome Size (bp) | CDS | GC Content (%) | Contigs | N50 | ANI (%) | Antibiotic Resistance Genes | Virulence Factors | Plasmids | Transposons | Insertion Sequences | Prophages |
---|---|---|---|---|---|---|---|---|---|---|---|---|
m2 | 1,953,684 | 1959 | 36.77 | 35 | 446,257 | 98.68 | 3 | 37 | 1 * | 0 | 0 | 0 |
m3 | 2,036,297 | 2038 | 36.94 | 26 | 446,687 | 98.49 | 2 | 37 | 0 | 0 | 1 | 1 |
m5 | 1,952,255 | 1957 | 37.02 | 42 | 428,101 | 98.70 | 2 | 38 | 0 | 0 | 1 | 0 |
m6 | 2,134,443 | 2161 | 36.95 | 102 | 415,269 | 98.40 | 6 | 38 | 0 | 0 | 0 | 0 |
m7 | 1,964,012 | 1956 | 36.77 | 36 | 412,612 | 98.81 | 2 | 38 | 0 | 0 | 2 | 0 |
m8 | 2,053,252 | 2096 | 36.88 | 77 | 1,076,464 | 98.60 | 3 | 37 | 0 | 0 | 3 | 1 |
m9 | 1,967,434 | 1953 | 36.75 | 45 | 420,690 | 98.80 | 2 | 37 | 0 | 0 | 1 | 0 |
m10 | 1,902,784 | 1895 | 36.88 | 38 | 375,227 | 98.72 | 2 | 38 | 0 | 0 | 1 | 0 |
m11 | 1,956,456 | 1944 | 36.88 | 38 | 434,788 | 98.69 | 3 | 38 | 0 | 0 | 0 | 0 |
m12 | 1,947,552 | 1933 | 36.72 | 40 | 428,747 | 98.72 | 3 | 39 | 0 | 0 | 0 | 0 |
Pangenome | Gene Count | Percentage (%) |
---|---|---|
Core genes | 1608 | 55.65 |
Soft core genes | 0 | 0 |
Shell genes | 543 | 18.79 |
Cloud genes | 738 | 25.54 |
Total | 2889 | 100 |
MLST Allelic Profiles | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Isolate | ST | Genes | CC | Herd | ||||||
arcC | ddl | gki | recP | tdk | tpi | yqil | ||||
m2 | 1426 | 6 | 1 | 3 | 2 | 42 | 52 | 3 | NA | 1 |
m3 | 1427 | 6 | 1 | 5 | 2 | 17 | 52 | 6 | NA | 1 |
m5 | 1428 | 1 | 1 | 3 | 1 | 42 | 52 | 6 | NA | 2 |
m6 | 1435 | 1 | 1 | 2 | 2 | 28 | 52 | 86 | NA | 3 |
m7 | 1429 | 6 | 1 | 28 | 2 | 17 | 3 | 3 | 143 | 4 |
m8 | 1430 | 1 | 1 | 3 | 2 | 130 | 52 | 6 | NA | 4 |
m9 | 1431 | 1 | 1 | 28 | 2 | 28 | 52 | 3 | NA | 3 |
m10 | 1432 | 1 | 1 | 3 | 2 | 17 | 52 | 3 | 143 | 5 |
m11 | 1433 | 6 | 1 | 3 | 2 | 131 | 52 | 86 | NA | 2 |
m12 | 1434 | 1 | 1 | 3 | 2 | 26 | 52 | 3 | NA | 6 |
Parameter | Colombia | America | Asia | Europe | Oceania |
---|---|---|---|---|---|
θ | 0.0202 | 0.0140 | 0.0207 | 0.0161 | 0.0176 |
φ | 0.1676 | 0.1093 | 0.0602 | 0.0872 | 0.1182 |
f | 753 | 567 | 445 | 632 | 637 |
c | 0.1424 | 0.2111 | 0.2102 | 0.1789 | 0.2679 |
d | 0.0028 | 0.0029 | 0.0044 | 0.0029 | 0.0046 |
φ/θ | 8.2814 | 7.7696 | 2.9065 | 5.4080 | 6.6949 |
Insertion Sequence | Isolate | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
m2 | m3 | m5 | m6 | m7 | m8 | m9 | m10 | m11 | m12 | |
ISSag2 | X | X | X | X | X | X | ||||
ISStin10 | X | |||||||||
ISEfm2 | X | |||||||||
ISEnfa4 | X |
Gene | Isolate | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
m2 | m3 | m5 | m6 | m7 | m8 | m9 | m10 | m11 | m12 | |
tetM | X | |||||||||
tetO | X | |||||||||
patB | X | X | X | X | X | X | X | X | X | X |
lnuC | X | X | X | X | X | X | X | X | ||
lnuA | X | |||||||||
lsaE | X | X | ||||||||
ANT(6)-la | X | X | ||||||||
ermB | X | X |
Antibiotic | Isolate | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
m2 | m3 | m5 | m6 | m7 | m8 | m9 | m10 | m11 | m12 | |
Ampicilin | S | S | S | S | S | S | S | S | S | S |
Penicilin | S | S | I | I | S | I | I | I | I | I |
Cefotaxime | S | S | S | S | S | S | S | S | S | S |
Ceftriaxone | S | S | S | S | S | S | S | S | S | S |
Levofloxacin | S | S | S | S | S | S | S | S | S | S |
Chloramphenicol | S | S | S | S | S | S | S | S | S | S |
Linezolid | S | S | S | S | S | S | S | S | S | S |
Clindamycin | R | R | R | R | R | S | S | R | R | R |
Erythromycin | I | I | I | R | I | S | S | S | I | R |
Tetracycline | R | S | S | R | S | S | S | S | S | S |
Herd | Municipalities | Number of Samples |
---|---|---|
1 | La Ceja | 30 |
2 | San Pedro de los Milagros | 40 |
3 | Entrerríos | 12 |
4 | Santa Rosa de Osos | 16 |
5 | San Jerónimo | 2 |
6 | San Pedro de los Milagros | 50 |
Total | 150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rios Agudelo, P.A.; Reyes Vélez, J.; Olivera Angel, M.; Blanchard, A.M.; Cuesta Astroz, Y.; Caraballo Guzmán, A.; Torres Lindarte, G. Whole-Genome Sequencing Analysis Revealed High Genomic Variability, Recombination Events and Mobile Genetic Elements in Streptococcus uberis Strains Isolated from Bovine Mastitis in Colombian Dairy Herds. Antibiotics 2025, 14, 297. https://doi.org/10.3390/antibiotics14030297
Rios Agudelo PA, Reyes Vélez J, Olivera Angel M, Blanchard AM, Cuesta Astroz Y, Caraballo Guzmán A, Torres Lindarte G. Whole-Genome Sequencing Analysis Revealed High Genomic Variability, Recombination Events and Mobile Genetic Elements in Streptococcus uberis Strains Isolated from Bovine Mastitis in Colombian Dairy Herds. Antibiotics. 2025; 14(3):297. https://doi.org/10.3390/antibiotics14030297
Chicago/Turabian StyleRios Agudelo, Paola A., Julián Reyes Vélez, Martha Olivera Angel, Adam M. Blanchard, Yesid Cuesta Astroz, Arley Caraballo Guzmán, and Giovanny Torres Lindarte. 2025. "Whole-Genome Sequencing Analysis Revealed High Genomic Variability, Recombination Events and Mobile Genetic Elements in Streptococcus uberis Strains Isolated from Bovine Mastitis in Colombian Dairy Herds" Antibiotics 14, no. 3: 297. https://doi.org/10.3390/antibiotics14030297
APA StyleRios Agudelo, P. A., Reyes Vélez, J., Olivera Angel, M., Blanchard, A. M., Cuesta Astroz, Y., Caraballo Guzmán, A., & Torres Lindarte, G. (2025). Whole-Genome Sequencing Analysis Revealed High Genomic Variability, Recombination Events and Mobile Genetic Elements in Streptococcus uberis Strains Isolated from Bovine Mastitis in Colombian Dairy Herds. Antibiotics, 14(3), 297. https://doi.org/10.3390/antibiotics14030297