Prevalence and Antimicrobial Resistance of Staphylococcus aureus and Staphylococcus schleiferi Isolated from Dogs with Otitis Externa and Healthy Dogs
Abstract
1. Introduction
2. Results
2.1. Prevalence of S. aureus and S. schleiferi in Dogs with Otitis Externa and Healthy Dogs
2.2. Antimicrobial Resistance Profiles of S. aureus and S. schleiferi from Dogs with Otitis Externa and Healthy Dogs
2.3. Antimicrobial Resistance by Antimicrobial Class
2.4. MDR Strains
3. Discussion
3.1. Strengths
3.2. Limitations
4. Materials and Methods
4.1. Study Design
4.2. Sampling
4.3. Bacterial Isolation and Identification
4.4. Antimicrobial Susceptibility Testing (AST)
4.5. Ethical Approval
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AMR | Antimicrobial resistance |
| MDR | Multidrug-resistant |
| MRSA | Methicillin-resistant Staphylococcus aureus |
| S. schleiferi | Staphylococcus schleiferi |
| MRSS | Methicillin-resistant Staphylococcus schleiferi |
| MALDI-TOF MS | Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry |
| AST | Antimicrobial Susceptibility Testing |
| CLSI | Clinical and Laboratory Standards Institute |
References
- Garcias, B.; Batalla, M.; Vidal, A.; Durán, I.; Darwich, L. Trends in antimicrobial resistance of canine otitis pathogens in the Iberian Peninsula (2010–2021). Antibiotics 2025, 14, 328. [Google Scholar] [CrossRef]
- Popa, I.; Imre, K.; Morar, A.; Iancu, I.; Iorgoni, V.; Bochiș, T.; Pop, C.; Gligor, A.; Florea, T.; Popa, S.A.; et al. Questionnaire-based survey regarding the rational usage of antimicrobial agents in food-producing animals in Romania. Vet. Sci. 2025, 12, 408. [Google Scholar] [CrossRef]
- Li, Y.; Fernández, R.; Durán, I.; Molina-López, R.A.; Darwich, L. Antimicrobial resistance in bacteria isolated from cats and dogs from the Iberian Peninsula. Front. Microbiol. 2021, 11, 621597. [Google Scholar] [CrossRef]
- Brinkac, L.; Voorhies, A.; Gomez, A.; Nelson, K.E. The threat of antimicrobial resistance on the human microbiome. Microb. Ecol. 2017, 74, 1001–1008. [Google Scholar] [CrossRef]
- Ertas Onmaz, N.; Demirezen Yilmaz, D.; Imre, K.; Morar, A.; Gungor, C.; Yilmaz, S.; Gundog, D.A.; Dishan, A.; Herman, V.; Gungor, G. Green synthesis of gold nanoflowers using Rosmarinus officinalis and Helichrysum italicum extracts: Comparative studies of their antimicrobial and antibiofilm activities. Antibiotics 2022, 11, 1466. [Google Scholar] [CrossRef]
- Sayem, S.A.J.; Lee, G.Y.; Abbas, M.A.; Park, S.C.; Lee, S.J. Pharmacodynamic profiling of amoxicillin: Targeting multidrug-resistant Gram-positive pathogens Staphylococcus aureus and Staphylococcus pseudintermedius in canine clinical isolates. Antibiotics 2025, 14, 99. [Google Scholar] [CrossRef] [PubMed]
- Khambam, S.; Ghodasara, S.; Barad, D.; Javia, B.; Fefar, D.; Kathiriya, J. Detection of antibiotic resistance genes among Staphylococcus schleiferi subsp. coagulans and its antibiogram profile from canine pyoderma isolates. Vet. Arhiv. 2025, 95, 437–447. [Google Scholar] [CrossRef]
- Marco-Fuertes, A.; Marin, C.; Lorenzo-Rebenaque, L.; Vega, S.; Montoro-Dasi, L. Antimicrobial resistance in companion animals: A new challenge for the One Health approach in the European Union. Vet. Sci. 2022, 9, 208. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying Definitions for Multidrug Resistance, Extensive Drug Resistance and Pandrug Resistance to Clinically Significant Livestock and Companion Animal Bacterial Pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef]
- Velazquez-Meza, M.E.; Galarde-López, M.; Carrillo-Quiróz, B.; Alpuche-Aranda, C.M. Antimicrobial resistance: One Health approach. Vet. World 2022, 15, 743–749. [Google Scholar] [CrossRef]
- Rousham, E.K.; Unicomb, L.; Islam, M.A. Human, animal and environmental contributors to antibiotic resistance in low-resource settings: Integrating behavioural, epidemiological and One Health approaches. Proc. Biol. Sci. 2018, 285, 20180332. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A.; et al. Antibiotic Resistance: One Health One World Outlook. Front. Cell. Infect. Microbiol. 2021, 11, 771510. [Google Scholar] [CrossRef] [PubMed]
- Msemakweli, J.; Mzuka, K.; Osward, A. One Health Approach to Antimicrobial Resistance: Integrating Human, Animal, and Environmental Perspectives. J. Public Health Community Med. 2024, 1, 132–142. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Rana, E.A.; Islam, M.Z.; Das, T.; Dutta, A.; Ahad, A.; Biswas, P.K.; Barua, H. Prevalence of coagulase-positive methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius in dogs in Bangladesh. Vet. Med. Sci. 2022, 8, 498–508. [Google Scholar] [CrossRef]
- Afshar, M.F.; Zakaria, Z.; Cheng, C.H.; Ahmad, N.I. Prevalence and multidrug-resistant profile of methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus pseudintermedius in dogs, cats, and pet owners in Malaysia. Vet. World 2023, 16, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Roncada, P.; Tilocca, B. Antimicrobial resistance in veterinary medicine and public health. Animals 2022, 12, 3253. [Google Scholar] [CrossRef]
- Caddey, B.; Fisher, S.; Barkema, H.W.; Nobrega, D.B. Companions in antimicrobial resistance: Examining transmission of common antimicrobial-resistant organisms between people and their dogs, cats, and horses. Clin. Microbiol. Rev. 2025, 38, e0014622. [Google Scholar] [CrossRef]
- Thomson, P.; García, P.; Miles, J.; Isla, D.; Yáñez, C.; Santibáñez, R.; Núñez, A.; Flores-Yáñez, C.; Del Río, C.; Cuadra, F. Isolation and Identification of Staphylococcus Species Obtained from Healthy Companion Animals and Humans. Vet. Sci. 2022, 9, 79. [Google Scholar] [CrossRef]
- Ma, G.C.; Worthing, K.A.; Ward, M.P.; Norris, J.M. Commensal Staphylococci Including Methicillin-Resistant Staphylococcus aureus from Dogs and Cats in Remote New South Wales, Australia. Microb. Ecol. 2020, 79, 164–174. [Google Scholar] [CrossRef]
- Baptiste, K.E.; Williams, K.; Willams, N.J.; Wattret, A.; Clegg, P.D.; Dawson, S.; Corkill, J.E.; O’Neill, T.; Hart, C.A. Methicillin-resistant staphylococci in companion animals. Emerg. Infect. Dis. 2005, 11, 1942–1944. [Google Scholar] [CrossRef]
- Rutland, B.E.; Weese, J.S.; Bolin, C.; Au, J.; Malani, A.N. Human-to-dog transmission of methicillin-resistant Staphylococcus aureus. Emerg. Infect. Dis. 2009, 15, 1328–1330. [Google Scholar] [CrossRef]
- Oh, J.Y.; Chae, J.C.; Han, J.I.; Song, W.K.; Lee, C.M.; Park, H.M. Distribution and epidemiological relatedness of methicillin-resistant Staphylococcus aureus isolated from companion dogs, owners, and environments. J. Vet. Med. Sci. 2020, 82, 1379–1386. [Google Scholar] [CrossRef]
- Algammal, A.M.; Hetta, H.F.; Elkelish, A.; Alkhalifah, D.H.H.; Hozzein, W.N.; Batiha, G.E.; El Nahhas, N.; Mabrok, M.A. Methicillin-Resistant Staphylococcus aureus (MRSA): One Health Perspective Approach to the Bacterium Epidemiology, Virulence Factors, Antibiotic-Resistance, and Zoonotic Impact. Infect. Drug Resist. 2020, 13, 3255–3265. [Google Scholar] [CrossRef] [PubMed]
- Yakubu, Y.; Gaddafi, M.; Musawa, A.; Garba, B.; Bitrus, A.; Emeka, A.; Lawal, H.; Aliyu, M.; Barka, S. Evidence of Methicillin-Resistant Staphylococcus aureus (MRSA) in Pet and Stray Dogs within Sokoto Metropolis, Nigeria. Folia Vet. 2022, 66, 54–60. [Google Scholar] [CrossRef]
- Abdullahi, I.N.; Zarazaga, M.; Campaña-Burguet, A.; Eguizábal, P.; Lozano, C.; Torres, C. Nasal Staphylococcus aureus and S. pseudintermedius carriage in healthy dogs and cats: A systematic review of their antibiotic resistance, virulence and genetic lineages of zoonotic relevance. J. Appl. Microbiol. 2022, 133, 3368–3390. [Google Scholar] [CrossRef] [PubMed]
- Di Gregorio, S.; Haim, M.S.; Vielma Vallenilla, J.; Cohen, V.; Rago, L.; Gulone, L.; Aanensen, D.M.; Argimón, S.; Mollerach, M. Genomic epidemiology of CC30 methicillin-resistant Staphylococcus aureus strains from Argentina reveals four major clades with distinctive genetic features. mSphere 2021, 6, e01297-20. [Google Scholar] [CrossRef]
- Fernandez, S.; Ledo, C.; Lattar, S.; Noto Llana, M.; Bertelli, A.M.; Di Gregorio, S.; Sordelli, D.O.; Gómez, M.I.; Mollerach, M.E. High virulence of methicillin resistant Staphylococcus aureus ST30-SCCmecIVc-spat019, the dominant community-associated clone in Argentina. Int. J. Med. Microbiol. 2017, 307, 191–199. [Google Scholar] [CrossRef]
- Feltrin, F.; Alba, P.; Kraushaar, B.; Ianzano, A.; Argudín, M.A.; Di Matteo, P.; Porrero, M.C.; Aarestrup, F.M.; Butaye, P.; Franco, A.; et al. A livestock-associated, multidrug-resistant, methicillin-resistant Staphylococcus aureus clonal complex 97 lineage spreading in dairy cattle and pigs in Italy. Appl. Environ. Microbiol. 2015, 82, 816–821. [Google Scholar] [CrossRef]
- Souza-Silva, T.; Rossi, C.C.; Andrade-Oliveira, A.L.; Vilar, L.C.; Pereira, M.F.; Penna, B.A.; Giambiagi-deMarval, M. Interspecies transfer of plasmid-borne gentamicin resistance between Staphylococcus isolated from domestic dogs to Staphylococcus aureus. Infect. Genet. Evol. 2022, 98, 105230. [Google Scholar] [CrossRef]
- Lee, G.Y.; Lee, H.H.; Hwang, S.Y.; Hong, J.; Lyoo, K.S.; Yang, S.J. Carriage of Staphylococcus schleiferi from canine otitis externa: Antimicrobial resistance profiles and virulence factors associated with skin infection. J. Vet. Sci. 2019, 20, e6. [Google Scholar] [CrossRef]
- Nguyen, A.D.K.; Moran, D.; Eland, C.L.; Wilks, K. Staphylococcus schleiferi subspecies coagulans septic shock in an immunocompetent male following canine otitis externa. Turk. J. Emerg. Med. 2023, 23, 184–187. [Google Scholar] [CrossRef]
- Yamashita, K.; Shimizu, A.; Kawano, J.; Uchida, E.; Haruna, A.; Igimi, S. Isolation and characterization of staphylococci from external auditory meatus of dogs with or without otitis externa with special reference to Staphylococcus schleiferi subsp. coagulans isolates. J. Vet. Med. Sci. 2005, 67, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.; Kekeç, A.I.; Halaç, B.; Başaran Kahraman, B. Otitis externa in dogs: Distribution and antimicrobial susceptibility patterns of Staphylococcus spp. isolates. Maced. Vet. Rev. 2023, 46, 43–50. [Google Scholar] [CrossRef]
- Öztürk, D.; Avki, S.; Türütoğlu, H.; Yiğitarslan, K.; Sağnak, S. Methicillin resistance among coagulase-positive Staphylococci isolated from dogs with otitis externa, skin wounds and pyoderma. Kafkas Univ. Vet. Fak. Derg. 2010, 16, 651–656. [Google Scholar] [CrossRef]
- Chehida, F.; Tombari, W.; Gharsa, H.; Rabia, Y.; Ferhi, S.; Jrad, M.; Messadi, L. New Insights into Molecular Characterization, Antimicrobial Resistance and Virulence Factors of Methicillin-Sensitive Coagulase-Positive Staphylococcus spp. from Dogs with Pyoderma and Otitis Externa. Microbiol. Res. 2024, 15, 81. [Google Scholar] [CrossRef]
- Bourély, C.; Cazeau, G.; Jarrige, N.; Leblond, A.; Madec, J.Y.; Haenni, M.; Gay, E. Antimicrobial resistance patterns of bacteria isolated from dogs with otitis. Epidemiol. Infect. 2019, 147, e121. [Google Scholar] [CrossRef]
- Penna, B.; Varges, R.; Medeiros, L.; Martins, G.M.; Martins, R.R.; Lilenbaum, W. Species distribution and antimicrobial susceptibility of staphylococci isolated from canine otitis externa. Vet. Dermatol. 2010, 21, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Saputra, S.; Jordan, D.; Worthing, K.A.; Norris, J.M.; Wong, H.S.; Abraham, R.; Trott, D.J.; Abraham, S. Antimicrobial resistance in coagulase-positive staphylococci isolated from companion animals in Australia: A one year study. PLoS ONE 2017, 12, e0176379. [Google Scholar] [CrossRef]
- Wedley, A.L.; Dawson, S.; Maddox, T.W.; Coyne, K.P.; Pinchbeck, G.L.; Clegg, P.; Jamrozy, D.; Fielder, M.D.; Donovan, D.; Nuttall, T.; et al. Carriage of Staphylococcus species in the veterinary visiting dog population in mainland UK: Molecular characterisation of resistance and virulence. Vet. Microbiol. 2014, 170, 81–88. [Google Scholar] [CrossRef]
- Katakweba, A.A.S.; Iversen, C.M.; Tsaxra, J.B.; Muhairwa, A.P.; Moodley, A.; Olsen, J.E. Brief communication: Carrier rate, antimicrobial resistance and molecular typing of Staphylococcus aureus and Staphylococcus pseudintermedius in healthy dogs from Morogoro, Tanzania. Vet. Dermatol. 2024, 35, 557–562. [Google Scholar] [CrossRef]
- Khermouche, F.; Heleili, N.; Merradi, M.; Hachemi, A.; Drapeau, A.; Murri, S.; Madec, J.Y.; Haenni, M. Methicillin-Resistant S. aureus Carrying the PVL and Toxic Shock Syndrome Toxin in Healthy Dogs in Algeria. Antibiotics 2024, 13, 1090. [Google Scholar] [CrossRef]
- Loeffler, A.; Pfeiffer, D.U.; Lindsay, J.A.; Soares Magalhães, R.J.; Lloyd, D.H. Prevalence of and risk factors for MRSA carriage in companion animals: A survey of dogs, cats and horses. Epidemiol. Infect. 2011, 139, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Madhaiyan, M.; Wirth, J.S.; Saravanan, V.S. Phylogenomic analyses of the Staphylococcaceae family suggest the reclassification of five species within the genus Staphylococcus as heterotypic synonyms, the promotion of five subspecies to novel species, the taxonomic reassignment of five Staphylococcus species to Mammaliicoccus gen. nov., and the formal assignment of Nosocomiicoccus to the family Staphylococcaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 5926–5936. [Google Scholar] [CrossRef] [PubMed]
- Dégi, J.; Morariu, S.; Simiz, F.; Herman, V.; Beteg, F.; Dégi, D.M. Future challenge: Assessing the antibiotic susceptibility patterns of Staphylococcus species isolated from canine otitis externa cases in Western Romania. Antibiotics 2024, 13, 1162. [Google Scholar] [CrossRef]
- Rosales, R.S.; Ramírez, A.S.; Moya-Gil, E.; de la Fuente, S.N.; Suárez-Pérez, A.; Poveda, J.B. Microbiological survey and evaluation of antimicrobial susceptibility patterns of microorganisms obtained from suspect cases of canine otitis externa in Gran Canaria, Spain. Animals 2024, 14, 742. [Google Scholar] [CrossRef] [PubMed]
- Palomino-Farfán, J.A.; Vega, L.G.A.; Espinoza, S.Y.C.; Magallanes, S.G.; Moreno, J.J.S. Methicillin-resistant Staphylococcus schleiferi subspecies coagulans associated with otitis externa and pyoderma in dogs. Open Vet. J. 2021, 11, 364–369. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). CLSI VET01; Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals. 5th ed. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018.

| Tested Antimicrobial Agent | S. aureus Otitis (n = 20) | S. aureus Healthy (n = 94) | S. schleiferi Otitis (n = 38) | S. schleiferi Healthy (n = 18) | ||||
|---|---|---|---|---|---|---|---|---|
| S (%) | R (%) | S (%) | R (%) | S (%) | R (%) | S (%) | R (%) | |
| Penicillin | 35 | 65 | 45.7 | 54. 3 | 71.05 | 28.9 | 83.3 | 16.7 |
| Oxacillin | 100 | 0 | 95.7 | 4.3 | 100 | 0 | 100 | 0 |
| Gentamicin | 90 | 10 | 100 | 0 | 89.5 | 10.5 | 100 | 0 |
| Tetracycline | 65 | 35 | 67 | 33 | 78.95 | 21.05 | 94.4 | 5.6 |
| Ciprofloxacin | 100 | 0 | 85.1 | 14.9 | 100 | 0 | 100 | 0 |
| Moxifloxacin | 100 | 0 | 100 | 0 | 100 | 0 | 100 | 0 |
| Erythromycin | 95 | 5 | 100 | 0 | 89.5 | 10.5 | 100 | 0 |
| Clindamycin | 65 | 35 | 66 | 34 | 55.3 | 44.7 | 55.6 | 44.4 |
| Linezolid | 100 | 0 | 100 | 0 | 100 | 0 | 100 | 0 |
| Teicoplanin | 100 | 0 | 100 | 0 | 100 | 0 | 100 | 0 |
| Vancomycin | 100 | 0 | 97.9 | 2.1 | 100 | 0 | 100 | 0 |
| Fusidic acid | 100 | 0 | 97.9 | 2.1 | 100 | 0 | 100 | 0 |
| Tigecycline | 100 | 0 | 100 | 0 | 100 | 0 | 100 | 0 |
| Trimethoprim + sulfamethoxazole | 85 | 15 | 91.5 | 8.5 | 100 | 0 | 100 | 0 |
| Antimicrobial Class | S. aureus Otitis (n = 20) | S. aureus Healthy (n = 94) | S. schleiferi Otitis (n = 38) | S. schleiferi Healthy (n = 18) |
|---|---|---|---|---|
| S/R % | S/R % | S/R % | S/R | |
| Beta-lactams | 35/65 | 45.7/54.3 | 71.05/28.9 | 83.3/16.7 |
| Aminoglycosides | 90/10 | 90/10 | 89.5/10.5 | 100/0 |
| Tetracyclines | 65/35 | 67/33 | 78.95/21.05 | 94.4/5.6 |
| Fluoroquinolones | 100/0 | 85.1/14.9 | 100/0 | 100/0 |
| Macrolides | 95/5 | 100/0 | 89.5/10.5 | 100/0 |
| Lincosamides | 65/35 | 66/34 | 55.3/44.7 | 55.6/44.4 |
| Oxazolidinones | 100/0 | 100/0 | 100/0 | 100/0 |
| Glycopeptides | 100/0 | 97.9/2.1 | 100/0 | 100/0 |
| Fusidane antibiotics | 100/0 | 97.9/2.1 | 100/0 | 100/0 |
| Glycylcyclines | 100/0 | 100/0 | 100/0 | 100/0 |
| Sulfonamides + Pyrimidines | 85/0 | 91.5/8.5 | 100/0 | 100/0 |
| S. aureus (n = 20) | |
|---|---|
| Antimicrobial resistance | Number of strains and percentage |
| PEN | 8 (40%) |
| CLI | 2 (10%) |
| TET | 2 10%) |
| PEN + CLI | 2 (10%) |
| PEN + TET | 1 (5%) |
| TET + CLI + SXT | 2 (10%) |
| PEN + TET + ERY | 1 (5%) |
| PEN + GEN + SXT | 1 (5%) |
| GEN + TET + CLI | 1 (5%) |
| S. aureus (n = 94) | |
|---|---|
| Antimicrobial resistance | Number of strains and percentage |
| PEN | 34 (36.2%) |
| TET | 13 (13.8%) |
| CLI | 12 (12.8%) |
| SXT | 4 (4.3%) |
| CLI + CIP | 11 (11.7%) |
| PEN + TET | 5 (5.3%) |
| PEN + TET + CLI | 4 (4.3%) |
| PEN + TET + SXT | 4 (4.3%) |
| TET + CIP + CLI | 3 (3.2%) |
| PEN + OXA + VAN + FUS | 1 (1.1%) |
| PEN + OXA + TET + CLI + FUS | 1 (1.1%) |
| PEN + OXA + VAN + TET | 1 (1.1%) |
| PEN + OXA + TET + CLI | 1 (1.1%) |
| S. schleiferi (n = 38) | |
|---|---|
| Antimicrobial resistance | Number of strains and percentage |
| Susceptible to all tested antibiotics | 5 (13.2%) |
| PEN | 5 (13.2%) |
| CLI | 12 (31.6%) |
| TET | 4 (10.5%) |
| GEN | 3 (7.9%) |
| ERY | 2 (5.3%) |
| PEN + TET | 2 (5.3%) |
| GEN + CLI | 1 (2.6%) |
| PEN + TET + CLI | 2 (5.3%) |
| PEN + ERY + CLI | 2 (5.3%) |
| S. schleiferi (n = 18) | |
|---|---|
| Antimicrobial resistance | Number of strains and percentage |
| Susceptible to all tested antibiotics | 8 (44.4%) |
| CLI | 7 (38.9%) |
| PEN | 2 (11.1%) |
| PEN + TET + CLI | 1 (5.6%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popa, I.; Iancu, I.; Iorgoni, V.; Degi, J.; Gligor, A.; Imre, K.; Tîrziu, E.; Bochiș, T.; Pop, C.; Plotuna, A.-M.; et al. Prevalence and Antimicrobial Resistance of Staphylococcus aureus and Staphylococcus schleiferi Isolated from Dogs with Otitis Externa and Healthy Dogs. Antibiotics 2025, 14, 1194. https://doi.org/10.3390/antibiotics14121194
Popa I, Iancu I, Iorgoni V, Degi J, Gligor A, Imre K, Tîrziu E, Bochiș T, Pop C, Plotuna A-M, et al. Prevalence and Antimicrobial Resistance of Staphylococcus aureus and Staphylococcus schleiferi Isolated from Dogs with Otitis Externa and Healthy Dogs. Antibiotics. 2025; 14(12):1194. https://doi.org/10.3390/antibiotics14121194
Chicago/Turabian StylePopa, Ionela, Ionica Iancu, Vlad Iorgoni, Janos Degi, Alexandru Gligor, Kalman Imre, Emil Tîrziu, Timea Bochiș, Călin Pop, Ana-Maria Plotuna, and et al. 2025. "Prevalence and Antimicrobial Resistance of Staphylococcus aureus and Staphylococcus schleiferi Isolated from Dogs with Otitis Externa and Healthy Dogs" Antibiotics 14, no. 12: 1194. https://doi.org/10.3390/antibiotics14121194
APA StylePopa, I., Iancu, I., Iorgoni, V., Degi, J., Gligor, A., Imre, K., Tîrziu, E., Bochiș, T., Pop, C., Plotuna, A.-M., Nistor, P., Pentea, M., Herman, V., & Nichita, I. (2025). Prevalence and Antimicrobial Resistance of Staphylococcus aureus and Staphylococcus schleiferi Isolated from Dogs with Otitis Externa and Healthy Dogs. Antibiotics, 14(12), 1194. https://doi.org/10.3390/antibiotics14121194

