Microbiological Monitoring and Microbial Susceptibility of Salmonella from Aquacultured Tambaqui Hybrids (Colossoma macropomum): Implications for Food Safety
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Salmonella spp. Isolates
4.2. Identification of Serotypes of Human Clinical Importance
4.3. Antimicrobial Susceptibility Testing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDR | Multidrug-resistant |
AMC | Amoxicillin-clavulanic acid |
PPT | Piperacillin-tazobactam |
CFE | Cephalexin |
CRX | Cefuroxime |
CRXA | Cefuroxime axetil |
CRO | Ceftriaxone |
CPM | Cefepime |
ERT | Ertapenem |
MPM | Meropenem |
AMI | Amikacin |
GENT | Gentamicin |
CIP | Ciprofloxacin |
FOS | Fosfomycin |
SUT | Trimethoprim–sulfamethoxazole |
BrCAST | Brazilian Committee on Antimicrobial Susceptibility Testing |
ANVISA | National Health Surveillance Agency |
References
- Teklemariam, A.D.; Al-Hindi, R.R.; Albiheyri, R.S.; Alharbi, M.G.; Alghamdi, M.A.; Filimban, A.A.R.; Al Mutiri, A.S.; Al-Alyani, A.M.; Alseghayer, M.S.; Almaneea, A.M.; et al. Human Salmonellosis: A Continuous Global Threat in the Farm-to-Fork Food Safety Continuum. Foods 2023, 12, 1756. [Google Scholar] [CrossRef]
- Somorin, Y.M.; Odeyemi, O.A.; Ateba, C.N. Salmonella Is the Most Common Foodborne Pathogen in African Food Exports to the European Union: Analysis of the Rapid Alert System for Food and Feed (1999–2019). Food Control 2021, 123, 107849. [Google Scholar] [CrossRef]
- Hendriksen, R.S.; Vieira, A.R.; Karlsmose, S.; Lo Fo Wong, D.M.A.; Jensen, A.B.; Wegener, H.C.; Aarestrup, F.M. Global Monitoring of Salmonella Serovar Distribution from the World Health Organization’s Global Foodborne Infections Network Country Database: Quality-Assured Laboratory Results 2001–2007. Foodborne Pathog. Dis. 2011, 8, 887–900. [Google Scholar] [CrossRef]
- Uche, I.V.; MacLennan, C.A.; Saul, A. A Systematic Review of the Incidence, Risk Factors and Case Fatality Rates of Invasive Nontyphoidal Salmonella Disease in Africa (1966–2014). PLoS Neglected Trop. Dis. 2017, 11, e0005118. [Google Scholar] [CrossRef]
- Government of Brazil, Ministry of Health. Epidemiological Information—DIVEP (Sub-Secretariat of Health Surveillance, Federal District). 2023. Available online: https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/boletins/epidemiologicos?utm (accessed on 7 March 2025).
- Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture 2022: Sustainability in Action; FAO: Rome, Italy, 2022; Available online: https://www.fao.org/brasil/noticias (accessed on 10 August 2024).
- Pedrini, B.; Furlaneto, F.; Peixe, B.R. Association. Peixe BR Yearbook 2023—The Strength of Brazilian Aquaculture. 2023. Available online: https://www.peixebr.com.br/Anuario2023/AnuarioPeixeBR2023.pdf (accessed on 7 March 2025).
- FAMATO—Federation of Agriculture and Livestock of the State of Mato Grosso. Diagnosis of Fish Farming in Mato Grosso; Imea: Cuiabá, Brazil, 2014; Available online: https://sistemafamato.org.br/blog/2014/10/14/sistema-famato-divulga-diagnostico-da-piscicultura-de-mato-grosso/ (accessed on 7 March 2025).
- Ferreira, A.C.A.O.; Pavelquesi, S.L.S.; Monteiro, E.S.; Rodrigues, L.F.S.; Silva, C.M.S.; Silva, I.C.R.; Orsi, D.C. Prevalence and Antimicrobial Resistance of Salmonella spp. in Aquacultured Nile Tilapia (Oreochromis niloticus) Commercialized in Federal District, Brazil. Foodborne Pathog. Dis. 2021, 18, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.A.; Costa, R.L.; Pereira, M.G. Vulnerabilidade de Peixes a Infecções Bacterianas. Rev. Bras. Aquicult. 2020, 15, 123–130. [Google Scholar]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Estatística da Produção Pecuária: Abate, Leite, Couro e Ovos (Fascículo 2023). 2023. Available online: https://ftp.ibge.gov.br/Producao_Pecuaria/Fasciculo_Indicadores_IBGE/2023/abate-leite-couro-ovos_202302caderno.pdf (accessed on 25 September 2025).
- Fernandes, D.V.G.S.; Castro, V.S.; Neto, A.C.; Figueiredo, E.E.S. Salmonella spp. in the fish production chain: A review. Ciência Rural 2018, 48, e20180141. [Google Scholar] [CrossRef]
- Porto, Y.D.; Fogaça, F.H.S.; Andrade, A.O.; da Silva, L.K.S.; Lima, J.P.; da Silva, J.L.; Vieira, B.S.; Cunha Neto, A.; Figueiredo, E.E.S.; Tassinari, W.S. Salmonella spp. in Aquaculture: An Exploratory Analysis (Integrative Review) of Microbiological Diagnoses between 2000 and 2020. Animals 2023, 13, 27. [Google Scholar] [CrossRef]
- Fernandes, D.V.G.S.; Carvalho, R.C.T.; Castro, V.S.; Cunha-Neto, A.; Müller, B.; Carvalho, F.T.; Rodrigues, D.P.; Vieira, B.S.; Figueiredo, E.E.S. Salmonella in the Processing Line of Farmed Tambatinga (Colossoma macropomum × Piaractus brachypomus) in Mato Grosso, Brazil: Serotypes of Occurrence and Antimicrobial Profile. Trop. Anim. Health Prod. 2021, 53, 146. [Google Scholar] [CrossRef] [PubMed]
- Cunha-Neto, A.; Panzenhagen, P.; Carvalho, L.; Rodrigues, D.; Conte-Júnior, C.; Figueiredo, E.E.S. Occurrence and Antimicrobial Resistance Profile of Salmonella Isolated from Native Fish Slaughtered and Commercialized in Brazil. J. Food Saf. Food Qual. 2019, 70, 94–98. [Google Scholar] [CrossRef]
- Dos Santos, R.R.; Xavier, R.G.C.; de Oliveira, T.F.; Leite, R.C.; Figueiredo, H.C.P.; Leal, C.A.G. Occurrence, Genetic Diversity, and Control of Salmonella enterica in Native Brazilian Farmed Fish. Aquaculture 2019, 501, 304–312. [Google Scholar] [CrossRef]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef]
- Segundo, R.F.; Messias, C.T.; Silva, T.I.B.; Freitas, H.J.; Araújo, D.S.S.; Marchi, P.G.F. Salmonellosis Occasioned by Products of Animal Origin and Its Implications for Public Health: Literature Review. Braz. J. Anim. Environ. Res. 2020, 3, 3715–3746. [Google Scholar] [CrossRef]
- Pan American Health Organization (PAHO). CD54/12, Rev. 1—Action Plan on Antimicrobial Resistance. 2015. Available online: https://www3.paho.org/hq/dmdocuments/2015/CD54-12-e.pdf?utm (accessed on 3 June 2025).
- De Araújo, R.P.; Dantas, F.G.D.S.; de Almeida-Apolonio, A.A.; da Rocha, M.P.; Crispim, B.A.; Barufatti, A.; Rodrigues, D.D.P.; Santos, J.V.D.A.D.; de Oliveira, K.M.P. Presence and Antimicrobial Susceptibility Profile of Salmonella spp. Isolated from Fish Farms. Evidencia 2024, 24, 2. [Google Scholar] [CrossRef]
- Suyamud, B.; Chen, Y.; Quyen, D.T.T.; Dong, Z.; Zhao, C.; Hu, J. Antimicrobial Resistance in Aquaculture: Occurrence and Strategies in Southeast Asia. Sci. Total Environ. 2024, 907, 167942. [Google Scholar] [CrossRef]
- Torres, D.T.; Keb, C.A.C.; Alcántara, J.G.; Balan, R.A.P.; Baldemar, A.C.; Rodríguez, G.V.; Mayari, T.R.P.; Gastélum, J.L.A.; Alcocer, B.S.; Alcantara, E.J.G. The Prevalence of Multidrug-Resistant Salmonella in Raw Shrimp and Octopus in Campeche, Mexico. J. Health Sci. 2022, 12, 193–197. [Google Scholar] [CrossRef]
- Pincus, D.H. Microbial Identification Using the bioMérieux Vitek 2 System. Encycl. Rapid Microbiol. Methods 2006, 1, 1–32. [Google Scholar]
- Lozano-León, A.; García-Omil, C.; Rodríguez-Souto, R.R.; Lamas, A.; Garrido-Maestu, A. An Evaluation of the Pathogenic Potential, and the Antimicrobial Resistance, of Salmonella Strains Isolated from Mussels. Microorganisms 2022, 10, 126. [Google Scholar] [CrossRef] [PubMed]
- Brazilian Committee on Antimicrobial Susceptibility Testing (BrCAST). Disc Diffusion Method for Antimicrobial Susceptibility Testing. 2023. Available online: http://brcast.org.br/documentos/ (accessed on 3 June 2023).
- Mumbo, M.T.; Nyaboga, E.N.; Kinyua, J.K.; Muge, E.K.; Mathenge, S.G.K.; Rotich, H.; Muriira, G.; Njiraini, B.; Njiru, J.M. Antimicrobial Resistance Profiles of Salmonella spp. and Escherichia coli Isolated from Fresh Nile Tilapia (Oreochromis niloticus) Fish Marketed for Human Consumption. BMC Microbiol. 2023, 23, 306. [Google Scholar] [CrossRef]
- Han, K.; Leem, K.; Choi, Y.R.; Chung, K. What Drives a Country’s Fish Consumption? Market Growth Phase and the Causal Relations Among Fish Consumption, Production and Income Growth. Fish. Res. 2022, 254, 106435. [Google Scholar] [CrossRef]
- Ribeiro, R.V.; Reis, E.M.F.; Reis, C.M.F.; Freitas-Almeida, A.C.; Rodrigues, D.P. Incidence and Antimicrobial Resistance of Enteropathogens Isolated from an Integrated Aquaculture System. Lett. Appl. Microbiol. 2010, 51, 611–618. [Google Scholar] [CrossRef]
- Ferrari, R.G.; Rosario, D.K.A.; Cunha-Neto, A.; Mano, S.B.; Figueiredo, E.E.S.; Conte-Junior, C.A. Worldwide Epidemiology of Salmonella Serovars in Animal-Based Foods: A Meta-Analysis. Appl. Environ. Microbiol. 2019, 85, e00591-19. [Google Scholar] [CrossRef]
- Fernandes, S.A.; Tavechio, A.T.; Ghilardi, Â.C.R.; Almeida, E.A.; Silva, J.M.L.; Camargo, C.H. Salmonella enterica Serotypes from Human and Nonhuman Sources in São Paulo State, Brazil, 2004–2020. Rev. Inst. Med. Trop. São Paulo 2022, 64, e66. [Google Scholar] [CrossRef] [PubMed]
- Pinedo, L.C.; Mughini-Gras, L.; Franz, E.; Hald, T.; Pires, S.M. Sources and Trends of Human Salmonellosis in Europe, 2015–2019: An Analysis of Outbreak Data. Int. J. Food Microbiol. 2022, 379, 109850. [Google Scholar] [CrossRef]
- Baniga, Z.; Mdegela, R.H.; Barco, L.; Kusiluka, L.J.M.; Dalsgaard, A. Prevalence and Characterisation of Salmonella Waycross and Salmonella enterica subsp. salamae in Nile Perch (Lates niloticus) of Lake Victoria, Tanzania. Food Control 2019, 100, 28–34. [Google Scholar] [CrossRef]
- Traoré, O.; Nyholm, O.; Siitonen, A.; Bonkoungou, I.J.O.; Traoré, A.S.; Barro, N.; Haukka, K. Prevalence and Diversity of Salmonella enterica in Water, Fish and Lettuce in Ouagadougou, Burkina Faso. BMC Microbiol. 2015, 15, 151. [Google Scholar] [CrossRef] [PubMed]
- Deaven, A.M.; Ferreira, C.M.; Reed, E.A.; See, J.R.C.; Lee, N.A.; Almaraz, E.; Rios, P.C.; Marogi, J.G.; Lamendella, R.; Zheng, J.; et al. Salmonella Genomics and Population Analyses Reveal High Inter- and Intraserovar Diversity in Freshwater. Appl. Environ. Microbiol. 2021, 87, e02594-20. [Google Scholar] [CrossRef]
- Hassanin, A.; Lories, B.; Steenackers, H.P. Salmonella Stress Response Systems as Targets for Anti-Virulence Strategies. BMC Microbiol. 2025, 25, 378. [Google Scholar] [CrossRef]
- Jia, J.; Liu, Q.; Zhao, E.; Li, X.; Xiong, X.; Wu, C. Biofilm Formation on Microplastics and Interactions with Antibiotics, Antibiotic Resistance Genes and Pathogens in Aquatic Environments. Eco Environ. Health 2024, 3, 516–528. [Google Scholar] [CrossRef]
- Sanguankiat, A.; Pinniam, N.; Tulayakul, P. Surveillance of Antimicrobial Resistance, Phenotypic, and Genotypic Patterns of Salmonella enterica Isolated from Animal Feedstuffs: Annual Study. Vet. World 2023, 16, 939–945. [Google Scholar] [CrossRef]
- Aishbani, S.J.; Al-Griw, H.H.; Al-Sharif, J.A.; Karim, E.S.; Farag, S.A.; Ahmed, M.O.; Abouzeed, Y.M. Antibiotic Susceptibility of Salmonella spp. Isolated from Farm Animals and Environmental Sources in Tripoli, Libya. Open Vet. J. 2025, 15, 1941–1946. [Google Scholar] [CrossRef]
- Giacometti, F.; Pezzi, A.; Galletti, G.; Tamba, M.; Merialdi, G.; Piva, S.; Serraino, A.; Rubini, S. Antimicrobial resistance patterns in Salmonella enterica subsp. enterica and Escherichia coli isolated from bivalve molluscs and marine environment. Food Control 2021, 121, 107590. [Google Scholar] [CrossRef]
- Cordeiro, K.S.; Galeno, L.S.; Mendonça, C.J.S.; Carvalho, I.A.; Costa, F.N. Occurrence of pathogenic and spoilage bacteria in salmon sashimi: Histamine and antimicrobial susceptibility evaluation. Braz. J. Food Technol. 2020, 23, e2019085. [Google Scholar] [CrossRef]
- Lulijwa, R.; Rupia, E.J.; Alfaro, A.C. Antibiotic Use in Aquaculture, Policies and Regulation, Health and Environmental Risks: A Review of the Top 15 Major Producers. Rev. Aquac. 2020, 12, 640–663. [Google Scholar] [CrossRef]
- FDA. Approved Aquaculture Drugs. 2025. Available online: https://www.fda.gov/animal-veterinary/aquaculture/approved-aquaculture-drugs (accessed on 25 September 2025).
- Ministério da Agricultura, Pecuária e Abastecimento, Secretaria de Defesa Agropecuária. Instrução Normativa n° 13. Approves the Residue and Contaminant Control Programs in Meat (Bovine, Poultry, Swine, and Equine), Milk, Fish, Honey, and Eggs for the Year 2015. Diário Oficial da União; Ministério da Agricultura, Pecuária e Abastecimento, Secretaria de Defesa Agropecuária: Brasília, Brazil, 2015.
- Mohammed, E.A.H.; Kovács, B.; Kuunya, R.; Mustafa, E.O.A.; Abbo, A.S.H.; Pál, K. Antibiotic Resistance in Aquaculture: Challenges, Trend Analysis, and Alternative Approaches. Antibiotics 2025, 14, 598. [Google Scholar] [CrossRef]
- Ponzo, E.; De Gaetano, S.; Midiri, A.; Mancuso, G.; Giovanna, P.; Giuliana, D.; Zummo, S.; Biondo, C. The Antimicrobial Resistance Pandemic Is Here: Implementation Challenges and the Need for the One Health Approach. Hygiene 2024, 4, 297–316. [Google Scholar] [CrossRef]
- Marijani, E. Prevalence and Antimicrobial Resistance of Bacteria Isolated from Marine and Freshwater Fish in Tanzania. Int. J. Microbiol. 2022, 2022, 4652326. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A.; et al. Corrigendum: Antibiotic resistance: One Health One World outlook. Front. Cell. Infect. Microbiol. 2024, 14, 1488430. [Google Scholar] [CrossRef] [PubMed]
- Onjong, H.A.; Ntuli, V.; Wambui, J.; Mwaniki, M.; Kamau Njage, P.M. Potential influence of regulation of the food value chain on prevalence and patterns of antimicrobial resistance: The case of Tilapia (Oreochromis niloticus). Appl. Environ. Microbiol. 2021, 87, e00945-21. [Google Scholar] [CrossRef]
- Da Cunha-Neto, A.; Carvalho, L.A.; Carvalho, R.C.T.; Rodrigues, D.P.; Mano, S.B.; Figueiredo, E.E.S.; Conte-Junior, C.A. Salmonella isolated from chicken carcasses from a slaughterhouse in the state of Mato Grosso, Brazil: Antibiotic resistance profile, serotyping, and characterization by repetitive sequence-based PCR system. Poult. Sci. 2018, 97, 1373–1381. [Google Scholar] [CrossRef] [PubMed]
- Muller, B.; Cunha-Neto, A.; Castro, V.S.; Carvalho, R.C.T.; Teixeira, L.A.C.; Rodrigues, D.d.P.; Figueiredo, E.E.d.S. Salmonella Schwarzengrund, Akuafo, and O:16 Isolated from Vacuum-Packaged Beef Produced in the State of Mato Grosso, Brazil. J. Infect. Dev. Ctries. 2021, 15, 1876–1882. [Google Scholar] [CrossRef]
- Li, Y.; Teng, L.; Xu, X.; Li, X.; Peng, X.; Zhou, X.; Du, J.; Tang, Y.; Jiang, Z.; Wang, Z.; et al. A nontyphoidal Salmonella serovar domestication accompanying enhanced niche adaptation. EMBO Mol. Med. 2022, 14, e16366. [Google Scholar] [CrossRef]
- Thaotumpitak, V.; Sripradite, J.; Atwill, E.R.; Jeamsripong, S. Emergence of colistin resistance and characterization of antimicrobial resistance and virulence factors of Aeromonas hydrophila, Salmonella spp., and Vibrio cholerae isolated from hybrid red tilapia cage culture. PeerJ 2023, 11, e14896. [Google Scholar] [CrossRef] [PubMed]
- Ubeyratne, K.H.; Madalagama, R.P.; Liu, X.; Pathirage, S.; Ariyawansa, S.; Wong, M.K.L.; Tun, H.M. Phenotypic and genotypic characterization of antibiotic-resistant Salmonella isolated from humans, aquaculture, and poultry in Sri Lanka: A retrospective study. J. Infect. Public Health 2023, 16 (Suppl. S1), 203–209. [Google Scholar] [CrossRef]
- Memesh, R.; Yasir, M.; Ledder, R.G.; Zowawi, H.; McBain, A.J.; Azhar, E.I. An update on the prevalence of colistin and carbapenem-resistant Gram-negative bacteria in aquaculture: An emerging threat to public health. J. Appl. Microbiol. 2024, 135, lxad288. [Google Scholar] [CrossRef]
- Olatayo, A.O.; Ayansina, A.D.V.; Dahunsi, S.O.; Oroye, O.A. Genotypic characterization of antibiotic-resistant genes in Gram-negative bacteria isolated from selected fish pond effluent samples within Oyo State. Trop. J. Nat. Prod. Res. 2022, 6, 1305–1310. [Google Scholar] [CrossRef]
- Marshall, B.M.; Levy, S.B. Food Animals and Antimicrobials: Impacts on Human Health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef]
- Li, K.; Petersen, G.; Barco, L.; Hvidtfeldt, K.; Liu, L.; Dalsgaard, A. Salmonella Weltevreden in integrated and non-integrated tilapia aquaculture systems in Guangdong, China. Food Microbiol. 2017, 65, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Custodio, M.; Peñaloza, R.; Ordinola-Zapata, A.; Peralta-Ortiz, T.; Sánchez-Suárez, H.; Vieyra-Peña, E.; De la Cruz, H.; Alvarado-Ibáñez, J. Diversity of Enterobacterales in sediments of lagoons with fish farming activity and analysis of antibiotic resistance. Toxicol. Rep. 2023, 10, 235–244. [Google Scholar] [CrossRef]
- Rehman, J.; Kamboh, A.A.; Moryani, A.A.; Leghari, R.A.; Sethar, A.; Nizamani, A.R.; Soomro, A.A.; Malhi, K.K. Prevalence and antimicrobial susceptibility of bacterial organisms in raw fish of pond and retail market. J. Anim. Health Prod. 2023, 11, 258–266. [Google Scholar] [CrossRef]
- ANVISA (National Health Surveillance Agency). Normative Instruction No. 161. 1 July 2022. Available online: https://www.in.gov.br/en/web/dou/-/instrucao-normativa-in-n-161-de-1-de-julho-de-2022-413366880?utm (accessed on 7 March 2025).
- Porto, Y.D. Surveillance and Diagnosis of Salmonella spp. in Native Round Fish Aquaculture (Colossoma macropomum). Ph.D. Thesis, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, Brazil, 2023. Available online: https://tede.ufrrj.br/jspui/handle/jspui/6673 (accessed on 29 October 2023).
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. International Organization for Standardization (ISO): Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/56712.html (accessed on 13 February 2021).
- Guo, X.; Chen, J.; Beuchat, L.R.; Brackett, R.E. PCR Detection of Salmonella enterica Serotype Montevideo in and on Raw Tomatoes Using Primers Derived from hilA. Appl. Environ. Microbiol. 2000, 66, 5248–5252. [Google Scholar] [CrossRef] [PubMed]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Divisão Regional do Brasil em Regiões Geográficas Imediatas e Regiões Geográficas Intermediárias, 2017; Coordenação de Geografia, IBGE, Eds.; IBGE: Rio de Janeiro, Brazil, 2017; 82p, ISBN 978-85-240-4418-2. Available online: https://biblioteca.ibge.gov.br/visualizacao/livros/liv100600.pdf (accessed on 27 February 2023).
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.D.M.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Funke, G.; Funke-Kissling, P. Evaluation of the New VITEK 2 Card for Identification of Clinically Relevant Gram-Negative Rods. J. Clin. Microbiol. 2004, 42, 4067–4071. [Google Scholar] [CrossRef]
- Livermore, D.M.; Struelens, M.; Amorim, J.; Baquero, F.; Bille, J.; Canton, R.; Henning, S.; Gatermann, S.; Marchese, A.; Mittermayer, H.; et al. Multicentre evaluation of the VITEK 2 Advanced Expert System for interpretive reading of antimicrobial resistance tests. J. Antimicrob. Chemother. 2002, 49, 289–300. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
Antibiotic | MIC | Analysis | Antibiotic | MIC | Analysis |
---|---|---|---|---|---|
Penicillins | Sulfa | ||||
Amoxicillin/ Clavulanic acid | ≤2 | S | Trimethoprim/ Sulfamethoxazole | ≤20 | S |
Piperacillin/ Tazobactam | ≤4 | S | Carbapenems | ||
Beta-lactams | Meropenem | ≤0.25 | S | ||
Cephalexin | ≤4 | S | Ertapenem | ≤0.12 | S |
Cefuroxime | 4 | I | Aminoglycosides | ||
Cefuroxime Axetil | 4 | S | Amikacin | ≤1 | S |
Ceftriaxone | ≤0.25 | S | Gentamicin | ≤1 | S |
Cefepime | ≤0.12 | S | Fluoroquinolones | ||
Phosphonics | Ciprofloxacin | ≤0.06 | S | ||
Fosfomycin | ≤0.16 | S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paula, C.C.d.; Porto, Y.D.; Fogaça, F.H.d.S.; Tassinari, W.d.S.; Castro, V.S.; Cunha-Neto, A.; Carvalho, R.C.T.; Savay-da-Silva, L.K.; Figueiredo, E.E.d.S.; Motheo, T.F. Microbiological Monitoring and Microbial Susceptibility of Salmonella from Aquacultured Tambaqui Hybrids (Colossoma macropomum): Implications for Food Safety. Antibiotics 2025, 14, 1047. https://doi.org/10.3390/antibiotics14101047
Paula CCd, Porto YD, Fogaça FHdS, Tassinari WdS, Castro VS, Cunha-Neto A, Carvalho RCT, Savay-da-Silva LK, Figueiredo EEdS, Motheo TF. Microbiological Monitoring and Microbial Susceptibility of Salmonella from Aquacultured Tambaqui Hybrids (Colossoma macropomum): Implications for Food Safety. Antibiotics. 2025; 14(10):1047. https://doi.org/10.3390/antibiotics14101047
Chicago/Turabian StylePaula, Cristiane Coimbra de, Yuri Duarte Porto, Fabiola Helena dos Santos Fogaça, Wagner de Souza Tassinari, Vinícius Silva Castro, Adelino Cunha-Neto, Ricardo César Tavares Carvalho, Luciana Kimie Savay-da-Silva, Eduardo Eustáquio de Souza Figueiredo, and Tathiana Ferguson Motheo. 2025. "Microbiological Monitoring and Microbial Susceptibility of Salmonella from Aquacultured Tambaqui Hybrids (Colossoma macropomum): Implications for Food Safety" Antibiotics 14, no. 10: 1047. https://doi.org/10.3390/antibiotics14101047
APA StylePaula, C. C. d., Porto, Y. D., Fogaça, F. H. d. S., Tassinari, W. d. S., Castro, V. S., Cunha-Neto, A., Carvalho, R. C. T., Savay-da-Silva, L. K., Figueiredo, E. E. d. S., & Motheo, T. F. (2025). Microbiological Monitoring and Microbial Susceptibility of Salmonella from Aquacultured Tambaqui Hybrids (Colossoma macropomum): Implications for Food Safety. Antibiotics, 14(10), 1047. https://doi.org/10.3390/antibiotics14101047