Extended Spectrum β-Lactamase-Producing Enterobacterales of Shrimp and Salmon Available for Purchase by Consumers in Canada—A Risk Profile Using the Codex Framework
Abstract
:1. Introduction
2. Materials and Methods
3. Results (Headings as per the Codex Guidelines)
3.1. Description of the AMR Food Safety Issue
3.2. Information on the AMR Microorganism(s) and/or Determinant(s)
3.2.1. Characteristics of the Identified Foodborne Microorganism(s)
Sources and Transmission Routes
Pathogenicity, Virulence and Linkage to Resistance of Particular Strains
Growth, Survivability and Inactivation in Foods (e.g., D-Value, Minimum pH for Growth) of Foodborne AMR Microorganisms in the Food Commodity Production to Consumption Continuum
Distribution, Frequency and Concentrations of the AMR Hazard(s) in the Food Chain
- (i).
- Farm and harvesting levels
- (ii).
- Processing
- (iii).
- Retail
3.2.2. Characteristics of the Resistance Expressed by the AMR Microorganism(s) and/or Determinant(s)
Resistance Mechanisms and Location of AMR Determinants
Cross-Resistance and/or Co-Resistance to Other Antimicrobial Agents
Transferability of Resistance Determinants between Microorganisms
3.2.3. Summary of Data Quality and Level of Concern
3.3. Information on the Antimicrobial Agent(s) to Which Resistance Is Expressed
3.3.1. Class of the Antimicrobial Agent(s)
3.3.2. Non-Human Uses of the Antimicrobial Agent(s) (Use in Aquaculture)
3.3.3. Human Uses of the Antimicrobial Agent(s)
Spectrum of Activity, Indications for Treatment and Importance of Antimicrobial Agents including Consideration of Critically Important Antimicrobial Lists
Distribution, Cost and Availability
Availability of Alternative Antimicrobial Agents
Trends in the Use of Antimicrobial Agent(s) in Humans
3.3.4. Summary of Data Quality and Level of Concern
3.4. Information on Food Commodity(ies)
3.4.1. Sources (Domestic and Imported), Production Volume, Distribution and per Capita Consumption of Foods or Raw Material Identified with the AMR Hazard(s) of Concern
3.4.2. Characteristics of the Food Product(s) That May Impact Risk Management (e.g., Further Processed, Consumed Cooked, pH and Water Activity)
3.4.3. Description of the Food Production to Consumption Continuum (e.g., Primary Production, Processing, Storage, Handling, Distribution and Consumption) and the Risk Factors That Affect the Microbiological Safety of the Food Product of Concern
3.4.4. Summary of Data Quality of Level of Concern
3.5. Information on Adverse Public Health Effects
3.5.1. Trends, Prevalence and Nature of AMR Foodborne Disease in People
3.5.2. Epidemiological Pattern (Outbreak, Sporadic), Regional, Seasonal or Ethnic Differences in the Incidence
Regional
Seasonal
Ethnic Differences
3.5.3. Susceptible Populations and Risk Factors
3.5.4. Burden of Illness: Impact on Outcomes
3.5.5. Summary of Data Quality and Level of Concern
3.6. Risk Management Information
3.6.1. Identification of Risk Management Options to Control the AMR Hazard along the Production to Consumption Continuum
3.6.2. Utilization of WGS as a Surveillance-Based Risk Management Tool to Control the AMR Hazard along the Seafood to Fork Continuum
3.6.3. Source Attribution and Mitigation of ARGs and/or Resistant Strains and Utility of WGS
3.6.4. AMR Surveillance Using Metagenomic Analysis and WGS
3.6.5. Summary Data Quality and of Level of Concern
3.7. Evaluation of Available Information and Major Knowledge Gaps
4. Discussion
4.1. The Importance of This Risk Profile
4.2. Risk Profile Preparation Using the Codex Recommendations
4.3. Data Gaps Identified
4.4. Surveillance Considerations
4.5. Where Do We Go from Here to Evaluate Risk?
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data availability statement
Acknowledgments
Conflicts of Interest
References
- FAO. Antimicrobial Resistance; What Is It? Available online: https://www.fao.org/antimicrobial-resistance/background/what-is-it/en/ (accessed on 27 July 2023).
- Finlay, B.B.; Conly, J.; Coyte, P.C.; Dillon, J.A.R.; Douglas, G.; Goddard, E.; Greco, L.; Nicolle, L.E.; Patrick, D.; Prescott, J.F.; et al. When Antibiotics Fail. The Expert Panel on the Potential Socio-Economic Impacts of Antimicrobial Resistance in Canada; Council of Canadian Academies: Ottawa, ON, Canada, 2019; Available online: https://cca-reports.ca/reports/the-potential-socio-economic-impacts-of-antimicrobial-resistance-in-canada/ (accessed on 12 August 2023).
- Collignon, P.C.; Conly, J.M.; Andremont, A.; McEwen, S.A.; Aidara-Kane, A. World Health Organization ranking of antimicrobials according to their importance in human medicine: A critical step for developing risk management strategies to control antimicrobial resistance from food animal production. Clin. Infect. Dis. 2016, 63, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Health Canada. Categorization of Antimicrobial Drugs Based on Importance in Human Medicine. 2009. Available online: https://www.canada.ca/en/health-canada/services/drugs-health-products/veterinary-drugs/antimicrobial-resistance/categorization-antimicrobial-drugs-based-importance-human-medicine.html (accessed on 27 July 2023).
- World Health Organization. Critically Important Antimicrobials for Human Medicine—6th Revision 2018; World Health Organization: Geneva, Switzerland, 2019; Available online: https://www.who.int/publications/i/item/9789241515528 (accessed on 12 August 2023).
- Dantas Palmeira, J.; Ferreira, H.M.N. Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production—A threat around the world. Heliyon 2020, 6, e03206. [Google Scholar] [CrossRef] [PubMed]
- Sivaraman, G.; Rajan, V.; Vijayan, A.; Elangovan, R.; Prendiville, A.; Bachmann, T.T. Antibiotic resistance profiles and molecular characteristics of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae isolated from shrimp aquaculture farms in Kerala, India. Front. Microbiol. 2021, 12, 622891. [Google Scholar] [CrossRef]
- Song, J.; Oh, S.-S.; Kim, J.; Park, S.; Shin, J. Clinically relevant extended-spectrum β-lactamase–producing Escherichia coli isolates from food animals in South Korea. Front. Microbiol. 2020, 11, 604. [Google Scholar] [CrossRef]
- Kaesbohrer, A.; Bakran-Lebl, K.; Irrgang, A.; Fischer, J.; Kämpf, P.; Schiffmann, A.; Werckenthin, C.; Busch, M.; Kreienbrock, L.; Hille, K. Diversity in prevalence and characteristics of ESBL/pAmpC producing E. coli in food in Germany. Vet. Microbiol. 2019, 233, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Alegría, Á.; Arias-Temprano, M.; Fernández-Natal, I.; Rodríguez-Calleja, J.M.; García-López, M.-L.; Santos, J.A. Molecular diversity of ESBL-producing Escherichia coli from foods of animal origin and human patients. Int. J. Environ. Res. Public Health 2020, 17, 1312. [Google Scholar] [CrossRef]
- Dorado-García, A.; Smid, J.H.; van Pelt, W.; Bonten, M.J.M.; Fluit, A.C.; van den Bunt, G.; Wagenaar, J.A.; Hordijk, J.; Dierikx, C.M.; Veldman, K.T.; et al. Molecular relatedness of ESBL/AmpC-producing Escherichia coli from humans, animals, food and the environment: A pooled analysis. J. Antimicrob. Chemother. 2018, 73, 339–347. [Google Scholar] [CrossRef]
- Young, K.M.; Isada, M.J.; Reist, M.; Uhland, F.C.; Sherk, L.M.; Carson, C.A. A scoping review of the distribution and frequency of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in shrimp and salmon. Epidemiol. Infect. 2023, 151, e1. [Google Scholar] [CrossRef]
- Codex Alimentarius. Guidelines for Risk Analysis of Foodborne Antimicrobial Resistance; CXG 77-2011; World Health Organization: Geneva, Switzerland, 2021; pp. 1–28. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXG%2B77-2011%252FCXG_077e.pdf (accessed on 12 August 2023).
- Carson, C.; Li, X.-Z.; Agunos, A.; Loest, D.; Chapman, B.; Finley, R.; Mehrotra, M.; Sherk, L.M.; Gaumond, R.; Irwin, R. Ceftiofur-resistant Salmonella enterica serovar Heidelberg of poultry origin—A risk profile using the Codex framework. Epidemiol. Infect. 2019, 147, e296. [Google Scholar] [CrossRef]
- Loest, D.; Uhland, F.C.; Young, K.M.; Li, X.-Z.; Mulvey, M.R.; Reid-Smith, R.; Sherk, L.M.; Carson, C.A. Carbapenem-resistant Escherichia coli from shrimp and salmon available for purchase by consumers in Canada—A risk profile using the Codex framework. Epidemiol. Infect. 2022, 150, e148. [Google Scholar] [CrossRef]
- Koonse, B.; Burkhardt, W.; Chirtel, S.; Hoskin, G.P. Salmonella and the sanitary quality of aquacultured shrimp. J. Food Prot. 2016, 68, 2527–2532. [Google Scholar] [CrossRef] [PubMed]
- Economou, V.; Gousia, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist. 2015, 8, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Greig, J.D.; Ravel, A. Analysis of foodborne outbreak data reported internationally for source attribution. Int. J. Food Microbiol. 2009, 130, 77–87. [Google Scholar] [CrossRef]
- Mascarenhas, M. Enteric Foodborne Outbreaks from 1998 onwards in Canada and the USA Associated with Fish and Fish Products; Public Health Agency of Canada: Guelph, ON, Canada, 2019. [Google Scholar]
- Sheng, L.; Wang, L. The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies. Compr. Rev. Food Sci. Food Saf. 2021, 20, 738–786. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Salmonella Outbreak Linked to Frozen Cooked Shrimp. Available online: https://www.cdc.gov/salmonella/weltevreden-06-21/index.html (accessed on 27 July 2023).
- Public Health Agency of Canada. Foodbook Report; Public Health Agency of Canada: Ottawa, ON, Canada, 2015; pp. 1–64. Available online: https://www.canada.ca/content/dam/canada/health-canada/migration/healthy-canadians/publications/eating-nutrition/foodbook-2015/alt/pub-eng.pdf (accessed on 12 August 2023).
- Cai, J.; Zhou, X.; Xue, Y.; Lucentea, D.; Laganaa, C. Top 10 Species Groups in Global Aquaculture 2017; FAO: Rome, Italy, 2019; pp. 1–12. Available online: https://www.fao.org/3/ca5224en/ca5224en.pdf (accessed on 12 August 2023).
- Rico, A.; Phu, T.M.; Satapornvanit, K.; Min, J.; Shahabuddin, A.M.; Henriksson, P.J.G.; Murray, F.J.; Little, D.C.; Dalsgaard, A.; Van den Brink, P.J. Use of veterinary medicines, feed additives and probiotics in four major internationally traded aquaculture species farmed in Asia. Aquaculture 2013, 412–413, 231–243. [Google Scholar] [CrossRef]
- Health Canada. List of Veterinary Drugs that Are Authorized for Sale by Health Canada for Use in Food-Producing Aquatic Animals—Health Canada. 2010. Available online: https://www.canada.ca/en/health-canada/services/drugs-health-products/veterinary-drugs/legislation-guidelines/policies/list-veterinary-drugs-that-authorized-sale-health-canada-use-food-producing-aquatic-animals.html (accessed on 27 July 2023).
- World Health Organization. WHO List of Critically Important Antimicrobials for Human Medicine (WHO CIA List). Available online: https://medbox.org/document/who-list-of-critically-important-antimicrobials-for-human-medicine-who-cia-list#GO (accessed on 27 July 2023).
- World Health Organization. The 2019 WHO AWaRe Classification of Antibiotics for Evaluation and Monitoring of Use. Available online: https://apps.who.int/iris/handle/10665/327957 (accessed on 27 July 2023).
- Janecko, N.; Martz, S.-L.; Avery, B.P.; Daignault, D.; Desruisseau, A.; Boyd, D.; Irwin, R.J.; Mulvey, M.R.; Reid-Smith, R.J. Carbapenem-resistant Enterobacter spp. in retail seafood imported from Southeast Asia to Canada. Emerg. Infect. Dis. 2016, 22, 1675–1677. [Google Scholar] [CrossRef]
- Resende, J.A.; Silva, V.L.; Fontes, C.O.; Souza-Filho, J.A.; Rocha de Oliveira, T.L.; Coelho, C.M.; César, D.E.; Diniz, C.G. Multidrug-resistance and toxic metal tolerance of medically important bacteria isolated from an aquaculture system. Microbes Environ. 2012, 27, 449–455. [Google Scholar] [CrossRef]
- Singh, A.S.; Lekshmi, M.; Prakasan, S.; Nayak, B.B.; Kumar, S. Multiple antibiotic-resistant, extended spectrum-β-lactamase (ESBL)-producing enterobacteria in fresh seafood. Microorganisms 2017, 5, 53. [Google Scholar] [CrossRef]
- Peirano, G.; Ahmed-Bentley, J.; Fuller, J.; Rubin, J.E.; Pitout, J.D.D. Travel-related carbapenemase-producing Gram-negative bacteria in Alberta, Canada: The first 3 years. J. Clin. Microbiol. 2014, 52, 1575–1581. [Google Scholar] [CrossRef]
- Berthe, T.; Ratajczak, M.; Clermont, O.; Denamur, E.; Petit, F. Evidence for coexistence of distinct Escherichia coli populations in various aquatic environments and their survival in estuary water. Appl. Environ. Microbiol. 2013, 79, 4684–4693. [Google Scholar] [CrossRef]
- Martin, P.; Abou Chakra, C.N.; Williams, V.; Bush, K.; Dyck, M.; Hirji, Z.; Kiss, A.; Larios, O.E.; McGeer, A.; Moore, C.; et al. Prevalence of antibiotic-resistant organisms in Canadian Hospitals. Comparison of point-prevalence survey results from 2010, 2012, and 2016. Infect. Control Hosp. Epidemiol. 2019, 40, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Miget, R.J. Microbiology of crustacean processing: Shrimp, crawfish, and prawns. In Microbiology of Marine Food Products; Ward, D.R., Hackney, C., Eds.; Springer Science+Bussiness Media: New York, NY, USA, 1991; pp. 65–87. [Google Scholar]
- Adelowo, O.O.; Caucci, S.; Banjo, O.A.; Nnanna, O.C.; Awotipe, E.O.; Peters, F.B.; Fagade, O.E.; Berendonk, T.U. Extended spectrum beta-lactamase (ESBL)-producing bacteria isolated from hospital wastewaters, rivers and aquaculture sources in Nigeria. Environ. Sci. Pollut. Res. 2018, 25, 2744–2755. [Google Scholar] [CrossRef] [PubMed]
- Croxen, M.A.; Law, R.J.; Scholz, R.; Keeney, K.M.; Wlodarska, M.; Finlay, B.B. Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev. 2013, 26, 822–880. [Google Scholar] [CrossRef]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L.T. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Brahmi, S.; Dunyach-Rémy, C.; Touati, A.; Lavigne, J.P. CTX-M-15-producing Escherichia coli and the pandemic clone O25b-ST131 isolated from wild fish in Mediterranean Sea. Clin. Microbiol. Infect. 2015, 21, e18–e20. [Google Scholar] [CrossRef] [PubMed]
- Brahmi, S.; Touati, A.; Dunyach-Remy, C.; Sotto, A.; Pantel, A.; Lavigne, J.P. High prevalence of extended-spectrum β-lactamase-producing Enterobacteriaceae in wild fish from the Mediterranean Sea in Algeria. Microb. Drug Resist. 2018, 24, 290–298. [Google Scholar] [CrossRef]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 2013, 5, 58–65. [Google Scholar] [CrossRef]
- Vitas, A.I.; Naik, D.; Pérez-Etayo, L.; González, D. Increased exposure to extended-spectrum β-lactamase-producing multidrug-resistant Enterobacteriaceae through the consumption of chicken and sushi products. Int. J. Food Microbiol. 2018, 269, 80–86. [Google Scholar] [CrossRef]
- Said, L.B.; Hamdaoui, M.; Jouini, A.; Boudabous, A.; Slama, K.B.; Torres, C.; Klibi, N. First detection of CTX-M-1 in extended-spectrum β-lactamase-producing Escherichia coli in seafood from Tunisia. J. Food Prot. 2017, 80, 1877–1881. [Google Scholar] [CrossRef]
- Maluta, R.P.; Leite, J.L.; Rojas, T.C.G.; Scaletsky, I.C.A.; Guastalli, E.A.L.; Ramos, M.d.C.; da Silveira, W.D. Variants of ast A gene among extra-intestinal Escherichia coli of human and avian origin. FEMS Microbiol. Lett. 2016, 364, fnw285. [Google Scholar] [CrossRef]
- Le, P.Q.; Awasthi, S.P.; Hatanaka, N.; Hinenoya, A.; Hassan, J.; Ombarak, R.A.; Iguchi, A.; Tran, N.T.T.; Dao, K.V.T.; Vien, M.Q.; et al. Prevalence of mobile colistin resistance (mcr) genes in extended-spectrum β-lactamase-producing Escherichia coli isolated from retail raw foods in Nha Trang, Vietnam. Int. J. Food Microbiol. 2021, 346, 109164. [Google Scholar] [CrossRef]
- Baniga, Z.; Hounmanou, Y.M.G.; Kudirkiene, E.; Kusiluka, L.J.M.; Mdegela, R.H.; Dalsgaard, A. Genome-based analysis of extended-spectrum β-lactamase-producing Escherichia coli in the aquatic environment and Nile perch (Lates niloticus) of Lake Victoria, Tanzania. Front. Microbiol. 2020, 11, 108. [Google Scholar] [CrossRef] [PubMed]
- Roschanski, N.; Guenther, S.; Vu, T.T.T.; Fischer, J.; Semmler, T.; Huehn, S.; Alter, T.; Roesler, U. VIM-1 carbapenemase-producing Escherichia coli isolated from retail seafood, Germany 2016. Eurosurveillance 2017, 22, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Manges, A.R.; Harel, J.; Masson, L.; Edens, T.J.; Portt, A.; Reid-Smith, R.J.; Zhanel, G.G.; Kropinski, A.M.; Boerlin, P. Multilocus sequence typing and virulence gene profiles associated with Escherichia coli from human and animal sources. Foodborne Pathog. Dis. 2015, 12, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Sivaraman, G.K.; Sudha, S.; Muneeb, K.H.; Shome, B.; Holmes, M.; Cole, J. Molecular assessment of antimicrobial resistance and virulence in multi drug resistant ESBL-producing Escherichia coli and Klebsiella pneumoniae from food fishes, Assam, India. Microb. Pathog. 2020, 149, 104581. [Google Scholar] [CrossRef]
- Ranjan, A.; Scholz, J.; Semmler, T.; Wieler, L.H.; Ewers, C.; Müller, S.; Pickard, D.J.; Schierack, P.; Tedin, K.; Ahmed, N.; et al. ESBL-plasmid carriage in E. coli enhances in vitro bacterial competition fitness and serum resistance in some strains of pandemic sequence types without overall fitness cost. Gut Pathog. 2018, 10, 24. [Google Scholar] [CrossRef]
- Hansen, D.L.; Clark, J.J.; Ishii, S.; Sadowsky, M.J.; Hicks, R.E. Sources and sinks of Escherichia coli in benthic and pelagic fish. J. Great Lakes Res. 2008, 34, 228–234. [Google Scholar] [CrossRef]
- Sourabh Kumar, B.M.; Dona Bhattacharya, D.; Chand, B.K. Significance of cross-contamination on bacteriological quality of black tiger shrimp (Penaeus monodon Fabricius 1798) for export trade produced in fish processing plant. J. Aquac. Res. Dev. 2015, 6, 12. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Fish and Fishery Products Hazards and Controls Guidance—June 2022 Edition; US Food and Drug Administration: Silver Spring, MD, USA, 2022; pp. 1–553. Available online: https://www.fda.gov/media/80637/download (accessed on 12 August 2023).
- Cwiková, O. Microbiological evaluation of fish. Potravinarstvo 2016, 10, 407–412. [Google Scholar] [CrossRef]
- Kumar, R.; Datta, T.K.; Lalitha, K.V. Salmonella grows vigorously on seafood and expresses its virulence and stress genes at different temperature exposure. BMC Microbiol. 2015, 15, 254. [Google Scholar] [CrossRef]
- Li, H.; Gänzle, M. Some Like It Hot: Heat resistance of Escherichia coli in food. Front. Microbiol. 2016, 7, 1763. [Google Scholar] [CrossRef] [PubMed]
- Rajkowski, K.T. Thermal inactivation of Escherichia coli O157:H7 and Salmonella on catfish and tilapia. Food Microbiol. 2012, 30, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Sharma, L.; Nagpal, R.; Jackson, C.R.; Patel, D.; Singh, P. Antibiotic-resistant bacteria and gut microbiome communities associated with wild-caught shrimp from the United States versus imported farm-raised retail shrimp. Sci. Rep. 2021, 11, 3356. [Google Scholar] [CrossRef]
- Glover, K.A.; Otterå, H.; Olsen, R.E.; Slinde, E.; Taranger, G.L.; Skaala, Ø. A comparison of farmed, wild and hybrid Atlantic salmon (Salmo salar L.) reared under farming conditions. Aquaculture 2009, 286, 203–210. [Google Scholar] [CrossRef]
- Okpala, C.O.R. The physicochemical changes of farm-raised Pacific white shrimp (Litopenaeus vannamei) as influenced by iced storage. Food Nutr. Sci. 2015, 6, 906–922. [Google Scholar] [CrossRef]
- Rizo, A.; Mañes, V.; Fuentes, A.; Fernández-Segovia, I.; Barat, J.M. Physicochemical and microbial changes during storage of smoke-flavoured salmon obtained by a new method. Food Control 2015, 56, 195–201. [Google Scholar] [CrossRef]
- Schmidt, S.J.; Fontana, A.J. Appendix E: Water Activity Values of Select Food Ingredients and Products; Blackwell Publishing Ltd.: Oxford, UK, 2008; Volume 2, pp. 407–420. [Google Scholar]
- US Food and Drug Administration. Water Activity (aw) in Foods. 2014. Available online: https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/inspection-technical-guides/water-activity-aw-foods (accessed on 12 August 2023).
- Dahms, C.; Hübner, N.-O.; Kossow, A.; Mellmann, A.; Dittmann, K.; Kramer, A. Occurrence of ESBL-producing Escherichia coli in livestock and farm workers in Mecklenburg-Western Pomerania, Germany. PLoS ONE 2015, 10, e0143326. [Google Scholar] [CrossRef]
- Singh, A.S.; Nayak, B.B.; Kumar, S.H. High prevalence of multiple antibiotic-resistant, extended-spectrum β-lactamase (ESBL)-producing Escherichia coli in fresh seafood sold in retail markets of Mumbai, India. Vet. Sci. 2020, 7, 46. [Google Scholar] [CrossRef]
- Rhodes, M.W.; Kator, H. Survival of Escherichia coli and Salmonella spp. in estuarine environments. Appl. Environ. Microbiol. 1988, 54, 2902–2907. [Google Scholar] [CrossRef]
- Wang, G.; Doyle, M.P. Survival of enterohemorrhagic Escherichia coli O157:H7 in water. J. Food Prot. 1998, 61, 662–667. [Google Scholar] [CrossRef]
- Hooban, B.; Joyce, A.; Fitzhenry, K.; Chique, C.; Morris, D. The role of the natural aquatic environment in the dissemination of extended spectrum beta-lactamase and carbapenemase encoding genes: A scoping review. Water Res. 2020, 180, 115880. [Google Scholar] [CrossRef]
- Shaban, S.S. Prevalence of Extended Spectrum Beta Lactamase Producing Escherichia coli in Integrated Agro-Aquaculture in Morogoro, Tanzania. Master’s Thesis, Sokoine University of Agriculture, Morogoro, Tanzania, 2017. Available online: https://www.suaire.sua.ac.tz/handle/123456789/2306 (accessed on 12 August 2023).
- Hamza, D.; Dorgham, S.; Ismael, E.; El-Moez, S.I.A.; Elhariri, M.; Rehab, E.; Hamza, E. Emergence of β-lactamase- and carbapenemase-producing Enterobacteriaceae at integrated fish farms. Antimicrob. Resist. Infect. Control 2020, 9, 67. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Lv, Z.; Shen, Y.; Liu, D.; Fu, Y.; Zhou, L.; Liu, W.; Chen, K.; Ye, H.; Xia, X.; et al. Metagenomic insights into differences in environmental resistome profiles between integrated and monoculture aquaculture farms in China. Environ. Int. 2020, 144, 106005. [Google Scholar] [CrossRef]
- Lalitha, K.V.; Surendran, P.K. Bacterial microflora associated with farmed freshwater prawn Macrobrachium rosenbergii (de Man) and the aquaculture environment. Aquac. Res. 2004, 35, 629–635. [Google Scholar] [CrossRef]
- Faridullah, M.; Roy, V.C.; Lithi, U.J. Prevalence of Salmonella and Escherichia coli contamination in shrimp (Penaeus monodon) farms, depots and processing plants in different areas of Bangladesh. Asian J. Med. Biol. Res. 2016, 2, 171–176. [Google Scholar] [CrossRef]
- Hassen, B.; Abbassi, M.S.; Benlabidi, S.; Ruiz-Ripa, L.; Mama, O.M.; Ibrahim, C.; Hassen, A.; Hammami, S.; Torres, C. Genetic characterization of ESBL-producing Escherichia coli and Klebsiella pneumoniae isolated from wastewater and river water in Tunisia: Predominance of CTX-M-15 and high genetic diversity. Environ. Sci. Pollut. Res. 2020, 27, 44368–44377. [Google Scholar] [CrossRef] [PubMed]
- Zarfel, G.; Lipp, M.; Gürtl, E.; Folli, B.; Baumert, R.; Kittinger, C. Troubled water under the bridge: Screening of River Mur water reveals dominance of CTX-M harboring Escherichia coli and for the first time an environmental VIM-1 producer in Austria. Sci. Total Environ. 2017, 593–594, 399–405. [Google Scholar] [CrossRef]
- Zhou, Z.-C.; Feng, W.-Q.; Han, Y.; Zheng, J.; Chen, T.; Wei, Y.-Y.; Gillings, M.; Zhu, Y.-G.; Chen, H. Prevalence and transmission of antibiotic resistance and microbiota between humans and water environments. Environ. Int. 2018, 121, 1155–1161. [Google Scholar] [CrossRef]
- Hoa, T.T.T.; Nakayama, T.; Huyen, H.M.; Harada, K.; Hinenoya, A.; Phuong, N.T.; Yamamoto, Y. Extended-spectrum beta-lactamase-producing Escherichia coli harbouring sul and mcr-1 genes isolates from fish gut contents in the Mekong Delta, Vietnam. Lett. Appl. Microbiol. 2020, 71, 78–85. [Google Scholar] [CrossRef]
- Nakayama, T.; Tuyet Hoa, T.T.; Harada, K.; Warisaya, M.; Asayama, M.; Hinenoya, A.; Lee, J.W.; Phu, T.M.; Ueda, S.; Sumimura, Y.; et al. Water metagenomic analysis reveals low bacterial diversity and the presence of antimicrobial residues and resistance genes in a river containing wastewater from backyard aquacultures in the Mekong Delta, Vietnam. Environ. Pollut. 2017, 222, 294–306. [Google Scholar] [CrossRef]
- Moremi, N.; Manda, E.V.; Falgenhauer, L.; Ghosh, H.; Imirzalioglu, C.; Matee, M.; Chakraborty, T.; Mshana, S.E. Predominance of CTX-M-15 among ESBL producers from environment and fish gut from the shores of Lake Victoria in Mwanza, Tanzania. Front. Microbiol. 2016, 7, 1862. [Google Scholar] [CrossRef]
- Sellera, F.P.; Fernandes, M.R.; Moura, Q.; Carvalho, M.P.N.; Lincopan, N. Extended-spectrum-β-lactamase (CTX-M)-producing Escherichia coli in wild fishes from a polluted area in the Atlantic Coast of South America. Mar. Pollut. Bull. 2018, 135, 183–186. [Google Scholar] [CrossRef]
- Abd-El-Aziz, N.A.; Moharram, Y.G. Microbiological quality of imported frozen shrimp in Egypt. Ann. Agric. Sci. 2016, 61, 35–40. [Google Scholar] [CrossRef]
- Dewanti-Hariyadi, R.; Suliantari, L.N.; Fardiaz, S. Determination of contamination profiles of human bacterial pathogens in shrimp obtained from Java, Indonesia. In Proceedings of the Determination of Human Pathogen Profiles in Food by Quality Assured Microbial Assays, Mexico City, Mexico, 22–26 July 2002; International Atomic Energy Agency: Vienna, Austria, 2005; pp. 63–70. Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/46/015/46015383.pdf?r=1 (accessed on 12 August 2023).
- Keeratipibul, S.; Techaruwichit, P.; Chaturongkasumrit, Y. Contamination sources of coliforms in two different types of frozen ready-to-eat shrimps. Food Control 2009, 20, 289–293. [Google Scholar] [CrossRef]
- Tate, H.; Ayers, S.; Nyirabahizi, E.; Li, C.; Borenstein, S.; Young, S.; Rice-Trujillo, C.; Saint Fleurant, S.; Bodeis-Jones, S.; Li, X.; et al. Prevalence of antimicrobial resistance in select bacteria from retail seafood—United States, 2019. Front. Microbiol. 2022, 13, 928509. [Google Scholar] [CrossRef] [PubMed]
- Tamber, S.; Dougherty, B.; Nguy, K. Salmonella enterica serovars associated with bacteremia in Canada, 2006–2019. Can. Commun. Dis. Rep. 2021, 47, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Hatha, A.A.; Lakshmanaperumalsamy, P. Prevalence of Salmonella in fish and crustaceans from markets in Coimbatore, South India. Food Microbiol. 1997, 14, 111–116. [Google Scholar] [CrossRef]
- Bakr, W.M.K.; Hazzah, W.A.; Abaza, A.F. Detection of Salmonella and Vibrio species in some seafood in Alexandria. J. Am. Sci. 2011, 7, 663–668. [Google Scholar]
- Kumar, R.; Surendran, P.K.; Thampuran, N. Distribution and genotypic characterization of Salmonella serovars isolated from tropical seafood of Cochin, India. J. Appl. Microbiol. 2009, 106, 515–524. [Google Scholar] [CrossRef]
- Bradford, P.A. Extended-spectrum β-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 2001, 14, 933–951. [Google Scholar] [CrossRef]
- Gawish, M.F.; Ahmed, A.M.; Torky, H.A.; Shimamoto, T. Prevalence of extended-spectrum β-lactamase (ESBL)-producing Salmonella enterica from retail fishes in Egypt: A major threat to public health. Int. J. Food Microbiol. 2021, 351, 109268. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, R.; Zheng, Z.; Chen, K.; Xie, M.; Chan, E.W.-C.; Geng, S.; Chen, S. Molecular characterization of Escherichia coli isolates carrying mcr-1, fosA3, and extended-spectrum-β-lactamase genes from food samples in China. Antimicrob. Agents Chemother. 2017, 61, e00064-17. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Simner, P.J.; Bradford, P.A. Extended-spectrum β-lactamases: An update on their characteristics, epidemiology and detection. JAC Antimicrob. Resist. 2021, 3, dlab092. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Z.; Mehrotra, M.; Ghimire, S.; Adewoye, L. β-Lactam resistance and β-lactamases in bacteria of animal origin. Vet. Microbiol. 2007, 121, 197–214. [Google Scholar] [CrossRef]
- Cerdeira, L.; Monte, D.F.M.; Fuga, B.; Sellera, F.P.; Neves, I.; Rodrigues, L.; Landgraf, M.; Lincopan, N. Genomic insights of Klebsiella pneumoniae isolated from a native Amazonian fish reveal wide resistome against heavy metals, disinfectants, and clinically relevant antibiotics. Genomics 2020, 112, 5143–5146. [Google Scholar] [CrossRef]
- Liu, M.; Wong, M.H.Y.; Chen, S. Molecular characterisation of a multidrug resistance conjugative plasmid from Vibrio parahaemolyticus. Int. J. Antimicrob. Agents 2013, 42, 575–579. [Google Scholar] [CrossRef]
- Mani, Y.; Mansour, W.; Lupo, A.; Saras, E.; Bouallegue, O.; Madec, J.-Y.; Haenni, M. Spread of blaCTX-M-15-producing Enterobacteriaceae and OXA-23-producing Acinetobacter baumannii sequence type 2 in Tunisian seafood. Antimicrob. Agents Chemother. 2018, 62, e00727-18. [Google Scholar] [CrossRef]
- Meng, X.; Liu, S.; Duan, J.; Huang, X.; Zhou, P.; Xiong, X.; Gong, R.; Zhang, Y.; Liu, Y.; Fu, C.; et al. Risk factors and medical costs for healthcare-associated carbapenem-resistant Escherichia coli infection among hospitalized patients in a Chinese teaching hospital. BMC Infect. Dis. 2017, 17, 82. [Google Scholar] [CrossRef]
- Nadimpalli, M.; Fabre, L.; Yith, V.; Sem, N.; Gouali, M.; Delarocque-Astagneau, E.; Sreng, N.; Le Hello, S. CTX-M-55-type ESBL-producing Salmonella enterica are emerging among retail meats in Phnom Penh, Cambodia. J. Antimicrob. Chemother. 2019, 74, 342–348. [Google Scholar] [CrossRef]
- Nadimpalli, M.; Vuthy, Y.; de Lauzanne, A.; Fabre, L.; Criscuolo, A.; Gouali, M.; Huynh, B.-T.; Naas, T.; Phe, T.; Borand, L.; et al. Meat and fish as sources of extended-spectrum β-lactamase–producing Escherichia coli, Cambodia. Emerg. Infect. Dis. 2019, 25, 126–131. [Google Scholar] [CrossRef]
- Nguyen, D.T.A.; Kanki, M.; Nguyen, P.D.; Le, H.T.; Ngo, P.T.; Tran, D.N.M.; Le, N.H.; Dang, C.V.; Kawai, T.; Kawahara, R.; et al. Prevalence, antibiotic resistance, and extended-spectrum and AmpC β-lactamase productivity of Salmonella isolates from raw meat and seafood samples in Ho Chi Minh City, Vietnam. Int. J. Food Microbiol. 2016, 236, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Sapugahawatte, D.N.; Li, C.; Zhu, C.; Dharmaratne, P.; Wong, K.T.; Lo, N.; Ip, M. Prevalence and characteristics of extended-spectrum-β-lactamase-producing and carbapenemase-producing Enterobacteriaceae from freshwater fish and pork in wet markets of Hong Kong. mSphere 2020, 5, e00107-19. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Nunes, J.; Gomes, A.; Capita, R.; Alonso-Calleja, C.; Pereira, J.E.; Torres, C.; Igrejas, G.; Poeta, P. Detection of antibiotic resistance in Escherichia coli strains: Can fish commonly used in raw preparations such as sushi and sashimi constitute a public health problem? J. Food Prot. 2019, 82, 1130–1134. [Google Scholar] [CrossRef] [PubMed]
- Sousa, M.; Torres, C.; Barros, J.; Somalo, S.; Igrejas, G.; Poeta, P. Gilthead seabream (Sparus aurata) as carriers of SHV-12 and TEM-52 extended-spectrum beta-lactamases-containing Escherichia coli isolates. Foodborne Pathog. Dis. 2011, 8, 1139–1141. [Google Scholar] [CrossRef] [PubMed]
- Thongkao, K.; Sudjaroen, Y. Screening of antibiotic resistance genes in pathogenic bacteria isolated from tiny freshwater shrimp (Macrobrachium lanchesteri) and “Kung Ten”, the uncooked Thai food. J. Adv. Vet. Anim. Res. 2020, 7, 83. [Google Scholar] [CrossRef]
- Vu, T.T.T.; Alter, T.; Roesler, U.; Roschanski, N.; Huehn, S. Investigation of extended-spectrum and AmpC β-lactamase–producing Enterobacteriaceae from retail seafood in Berlin, Germany. J. Food Prot. 2018, 81, 1079–1086. [Google Scholar] [CrossRef]
- Livermore, D.M. Defining an extended-spectrum β-lactamase. Clin. Microbiol. Infect. 2008, 14, 3–10. [Google Scholar] [CrossRef]
- Stange, C.; Yin, D.; Xu, T.; Guo, X.; Schäfer, C.; Tiehm, A. Distribution of clinically relevant antibiotic resistance genes in Lake Tai, China. Sci. Total Environ. 2019, 655, 337–346. [Google Scholar] [CrossRef]
- Naik, O.A.; Shashidhar, R.; Rath, D.; Bandekar, J.R.; Rath, A. Characterization of multiple antibiotic resistance of culturable microorganisms and metagenomic analysis of total microbial diversity of marine fish sold in retail shops in Mumbai, India. Environ. Sci. Pollut. Res. 2018, 25, 6228–6239. [Google Scholar] [CrossRef]
- Cabello, F.C.; Millanao, A.; Dölz, H.; Godfrey, H.P.; Buschmann, A.H.; Ivanova, L.; Tomova, A. Antimicrobial use in aquaculture re-examined: Its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol. 2013, 15, 1917–1942. [Google Scholar] [CrossRef]
- Heuer, O.E.; Kruse, H.; Grave, K.; Collignon, P.; Karunasagar, I.; Angulo, F.J. Human health consequences of use of antimicrobial agents in aquaculture. Clin. Infect. Dis. 2009, 49, 1248–1253. [Google Scholar] [CrossRef] [PubMed]
- Gibson, J.S.; Wai, H.; Oo, S.S.M.L.; Hmwe, E.M.M.; Wai, S.S.; Htun, L.L.; Lim, H.P.; Latt, Z.M.; Henning, J. Antimicrobials use and resistance on integrated poultry-fish farming systems in the Ayeyarwady Delta of Myanmar. Sci. Rep. 2020, 10, 16149. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lu, S.; Guo, W.; Xi, B.; Wang, W. Antibiotics in the aquatic environments: A review of lakes, China. Sci. Total Environ. 2018, 627, 1195–1208. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Song, W.; Lin, H.; Wang, W.; Du, L.; Xing, W. Antibiotics and antibiotic resistance genes in global lakes: A review and meta-analysis. Environ. Int. 2018, 116, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Dang, S.T.T.; Petersen, A.; Van Truong, D.; Chu, H.T.T.; Dalsgaard, A. Impact of medicated feed on the development of antimicrobial resistance in bacteria at integrated pig-fish farms in Vietnam. Appl. Environ. Microbiol. 2011, 77, 4494–4498. [Google Scholar] [CrossRef]
- Franz, E.; Veenman, C.; Van Hoek, A.H.A.M.; Husman, A.D.R.; Blaak, H. Pathogenic Escherichia coli producing extended-spectrum β-lactamases isolated from surface water and wastewater. Sci. Rep. 2015, 5, 14372. [Google Scholar] [CrossRef]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef]
- Watts, J.E.M.; Schreier, H.J.; Lanska, L.; Hale, M.S. The rising tide of antimicrobial resistance in aquaculture: Sources, sinks and solutions. Mar. Drugs 2017, 15, 158. [Google Scholar] [CrossRef]
- Carattoli, A. Resistance plasmid families in Enterobacteriaceae. Antimicrob. Agents Chemother. 2009, 53, 2227–2238. [Google Scholar] [CrossRef]
- Papp-Wallace, K.M.; Endimiani, A.; Taracila, M.A.; Bonomo, R.A. Carbapenems: Past, present, and future. Antimicrob. Agents Chemother. 2011, 55, 4943–4960. [Google Scholar] [CrossRef]
- Bush, K.; Jacoby, G.A. Updated functional classification of β-lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Pham, D.K.; Chu, J.; Do, N.T.; Brose, F.; Degand, G.; Delahaut, P.; De Pauw, E.; Douny, C.; Van Nguyen, K.; Vu, T.D.; et al. Monitoring antibiotic use and residue in freshwater aquaculture for domestic use in Vietnam. EcoHealth 2015, 12, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Chuah, L.O.; Effarizah, M.E.; Goni, A.M.; Rusul, G. Antibiotic application and emergence of multiple antibiotic resistance (MAR) in global catfish aquaculture. Curr. Environ. Health Rep. 2016, 3, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Higuera-Llantén, S.; Vásquez-Ponce, F.; Barrientos-Espinoza, B.; Mardones, F.O.; Marshall, S.H.; Olivares-Pacheco, J. Extended antibiotic treatment in salmon farms select multiresistant gut bacteria with a high prevalence of antibiotic resistance genes. PLoS ONE 2018, 13, e0203641. [Google Scholar] [CrossRef] [PubMed]
- Holmstrom, K.; Poungshompoo, S.; Kautsky, N.; Bengtsson, B.-E.; Graslund, S.; Wahlstrom, A. Antibiotic use in shrimp farming and implications for environmental impacts and human health. Int. J. Food Sci. Technol. 2003, 38, 255–266. [Google Scholar] [CrossRef]
- Manage, P.M. Heavy use of antibiotics in aquaculture: Emerging human and animal health problems—A review. Sri Lanka J. Aquat. Sci. 2018, 23, 13–27. [Google Scholar] [CrossRef]
- Miranda, C.D.; Godoy, F.A.; Lee, M.R. Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms. Front. Microbiol. 2018, 9, 1284. [Google Scholar] [CrossRef]
- Morrison, D.B.; Saksida, S. Trends in antimicrobial use in Marine Harvest Canada farmed salmon production in British Columbia (2003–2011). Can. Vet. J. 2013, 54, 1160–1163. [Google Scholar]
- World Organization for Animal Health. OIE List of Antimicrobial Agents of Veterinary Importance. Available online: https://www.oie.int/app/uploads/2021/03/a-oie-list-antimicrobials-may2018.pdf (accessed on 1 August 2023).
- Phu, T.M.; Phuong, N.T.; Dung, T.T.; Hai, D.M.; Son, V.N.; Rico, A.; Clausen, J.H.; Madsen, H.; Murray, F.; Dalsgaard, A. An evaluation of fish health-management practices and occupational health hazards associated with Pangasius catfish (Pangasianodon hypophthalmus) aquaculture in the Mekong Delta, Vietnam. Aquac. Res. 2016, 47, 2778–2794. [Google Scholar] [CrossRef]
- Song, C.; Zhang, C.; Fan, L.; Qiu, L.; Wu, W.; Meng, S.; Hu, G.; Kamira, B.; Chen, J. Occurrence of antibiotics and their impacts to primary productivity in fishponds around Tai Lake, China. Chemosphere 2016, 161, 127–135. [Google Scholar] [CrossRef]
- Health Canada. Veterinary Antimicrobial Sales Reporting (VASR). 2022. Available online: https://www.canada.ca/en/public-health/services/antibiotic-antimicrobial-resistance/animals/veterinary-antimicrobial-sales-reporting.html (accessed on 12 August 2023).
- Fisheries and Oceans Canada. National Aquaculture Public Reporting Data. 2020. Available online: https://open.canada.ca/data/en/dataset/288b6dc4-16dc-43cc-80a4-2a45b1f93383 (accessed on 12 August 2023).
- Health Canada. List A: List of Certain Antimicrobial Active Pharmaceutical Ingredients. 2023. Available online: https://www.canada.ca/en/public-health/services/antibiotic-antimicrobial-resistance/animals/veterinary-antimicrobial-sales-reporting/list-a.html (accessed on 12 August 2023).
- Arumugham, V.B.; Gujarathi, R.; Cascella, M. Third Generation Cephalosporins; StatPearls Publishing: St. Petersburg, FL, USA, 2021. [Google Scholar]
- Garau, J.; Wilson, W.; Wood, M.; Carlet, J. Fourth-generation cephalosporins: A review of in vitro activity, pharmacokinetics, pharmacodynamics and clinical utility. Clin. Microbiol. Infect. 1997, 3, S87–S101. [Google Scholar] [CrossRef]
- World Health Organization. Electronic Essential Medicines List. 2023. Available online: https://www.who.int/groups/expert-committee-on-selection-and-use-of-essential-medicines/essential-medicines-lists (accessed on 12 August 2023).
- Government of Ontario. Ontario Drug Benefit Formulary/Comparative Drug Index. Available online: https://www.formulary.health.gov.on.ca/formulary/ (accessed on 1 August 2023).
- Government of British Columbia. BC PharmaCare Formulary Search. Available online: https://pharmacareformularysearch.gov.bc.ca/Search.xhtml (accessed on 1 August 2023).
- Government of Saskatchewan. Formulary Search. Available online: http://formulary.drugplan.ehealthsask.ca/SearchFormulary (accessed on 1 August 2023).
- Government of Alberta. Alberta Health Care Insurance Plan. Interactive Drug Benefit List. Available online: https://idbl.ab.bluecross.ca/idbl/load.do (accessed on 1 August 2023).
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; Van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the treatment of extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2021, 72, 1109–1116. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States 2019; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed on 12 August 2023).
- Son, S.K.; Lee, N.R.; Ko, J.H.; Choi, J.K.; Moon, S.Y.; Joo, E.J.; Ran Peck, K.; Park, D.A. Clinical effectiveness of carbapenems versus alternative antibiotics for treating ESBL-producing Enterobacteriaceae bacteraemia: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2018, 73, 2631–2642. [Google Scholar] [CrossRef] [PubMed]
- Rupp, M.E.; Fey, P.D. Extended spectrum β-lactamase (ESBL)-producing Enterobacteriaceae: Considerations for diagnosis, prevention and drug treatment. Drugs 2003, 63, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Berruti, M.; Giacobbe, D.R.; Vena, A.; Bassetti, M. Recent molecules in the treatment of severe infections caused by ESBL-producing bacteria. Expert Rev. Anti-Infect. Ther. 2021, 19, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Dhami, R.; Baxter, M.; Kosar, J.; Cervera, C.; Irfan, N.; Zvonar, R.; Borgia, S.; Tessier, J.F.; Dow, G.; et al. Real-life experience with ceftolozane/tazobactam in Canada: Results from the CLEAR (Canadian LEadership on Antimicrobial Real-life usage) registry. J. Glob. Antimicrob. Resist. 2021, 25, 346–350. [Google Scholar] [CrossRef]
- Public Health Agency of Canada. Canadian Antimicrobial Resistance Surveillance System (CARSS): Update 2020; Public Health Agency of Canada: Ottawa, ON, Canada, 2020; Available online: https://www.canada.ca/content/dam/hc-sc/documents/services/drugs-health-products/canadian-antimicrobial-resistance-surveillance-system-2020-report/CARSS-2020-report-2020-eng.pdf (accessed on 12 August 2023).
- Public Health Agency of Canada. Canadian Antimicrobial Resistance Surveillance System (CARSS)—Report 2017; Public Health Agency of Canada: Ottawa, ON, Canada, 2018; Available online: https://www.canada.ca/content/dam/phac-aspc/documents/services/publications/drugs-health-products/canadian-antimicrobial-resistance-surveillance-system-2017-report-executive-summary/CARSS-Report-2017-En.pdf (accessed on 12 August 2023).
- Rudnick, W.; Science, M.; Thirion, D.J.G.; Abdesselam, K.; Choi, K.B.; Pelude, L.; Amaratunga, K.; Comeau, J.L.; Dalton, B.; Delport, J.; et al. Antimicrobial use among adult inpatients at hospital sites within the Canadian Nosocomial Infection Surveillance Program: 2009 to 2016. Antimicrob. Resist. Infect. Control 2020, 9, 32. [Google Scholar] [CrossRef]
- Liang, J.J.; Rudnick, W.; Mitchell, R.; Brooks, J.; Bush, K.; Conly, J.; Ellison, J.; Frenette, C.; Johnston, L.; Lavallée, C.; et al. Antimicrobial use in Canadian acute-care hospitals: Findings from three national point-prevalence surveys between 2002 and 2017. Infect. Control Hosp. Epidemiol. 2022, 43, 1558–1564. [Google Scholar] [CrossRef]
- Rudnick, W.; Conly, J.; Thirion, D.J.G.; Choi, K.; Pelude, L.; Cayen, J.; Bautista, J.; Beique, L.; Comeau, J.L.; Dalton, B.; et al. Antimicrobial use among paediatric inpatients at hospital sites within the Canadian Nosocomial Infection Surveillance Program, 2017/2018. Antimicrob. Resist. Infect. Control 2023, 12, 35. [Google Scholar] [CrossRef]
- Fisheries and Oceans Canada. Canada’s Fisheries Fast Facts. 2021. Available online: https://waves-vagues.dfo-mpo.gc.ca/Library/41039634.pdf? (accessed on 1 August 2023).
- Fisheries and Oceans Canada. Seafisheries Landed Quantity by Province. 2020. Available online: https://www.dfo-mpo.gc.ca/stats/commercial/land-debarq/sea-maritimes/s2020pq-eng.htm (accessed on 1 August 2023).
- Fisheries and Oceans Canada. Aquaculture Production and Value. 2020. Available online: https://www.dfo-mpo.gc.ca/stats/aqua/aqua20-eng.htm (accessed on 1 August 2023).
- Fisheries and Oceans Canada. Canada’s Fish and Seafood Trade in 2020: Overview; Fisheries and Oceans Canada: Ottawa, ON, Canada, 2022; Available online: https://waves-vagues.dfo-mpo.gc.ca/library-bibliotheque/41037005.pdf (accessed on 1 August 2023).
- Fisheries and Oceans Canada. Outlook to 2027 for Canadian Fish and Seafood; Fisheries and Oceans Canada: Ottawa, ON, Canada, 2018; Available online: https://waves-vagues.dfo-mpo.gc.ca/library-bibliotheque/40732836.pdf (accessed on 1 August 2023).
- Agriculture Agrifood Canada. Sector Trend Analysis—Fish and Seafood Trends in Canada. Available online: https://agriculture.canada.ca/en/international-trade/market-intelligence/reports/sector-trend-analysis-fish-and-seafood-trends-canada (accessed on 1 August 2023).
- Hu, X.F.; Chan, H.M. Seafood consumption and its contribution to nutrients intake among Canadians in 2004 and 2015. Nutrients 2021, 13, 77. [Google Scholar] [CrossRef]
- Huss, H.H.; Reilly, A.; Embarek, K.B.P. Prevention and control of hazards in seafood. Food Control 2000, 11, 149–156. [Google Scholar] [CrossRef]
- Agriculture Agrifood Canada. Canadian Salmon, the Emperor of Fish. Available online: https://www.agr.gc.ca/eng/food-products/explore-canadian-food-products/canadian-salmon/?id=1426173887466 (accessed on 24 July 2020).
- Centers for Disease Control and Prevention. Outbreak of Salmonella Infections Linked to Frozen Raw Tuna. Available online: https://www.cdc.gov/salmonella/newport-04-19/index.html#:~:text=Fifteen (accessed on 27 July 2023).
- Bandekar, J.R.; Kamat, A.S.; Karani, M.; Dhokane, V.; Shashidhar, R.; Kakatkar, A.; Ghadge, N.; Bhat, A.; Venugopal, V.; Warrier, S.B. Bacteriological quality of farmed freshwater fish and shellfish meant for export. Fish. Technol. 2004, 41, 57–62. [Google Scholar]
- Møretrø, T.; Moen, B.; Heir, E.; Hansen, A.Å.; Langsrud, S. Contamination of salmon fillets and processing plants with spoilage bacteria. Int. J. Food Microbiol. 2016, 237, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Canadian Food Inspection, A. Bacteriological Guidelines for Fish and Fish Products (End Product). 2019. Available online: https://inspection.canada.ca/food-safety-for-industry/food-safety-standards-guidelines/bacteriological-guidelines/eng/1558757049068/1558757132060 (accessed on 12 August 2023).
- Livermore, D.M.; Canton, R.; Gniadkowski, M.; Nordmann, P.; Rossolini, G.M.; Arlet, G.; Ayala, J.; Coque, T.M.; Kern-Zdanowicz, I.; Luzzaro, F.; et al. CTX-M: Changing the face of ESBLs in Europe. J. Antimicrob. Chemother. 2006, 59, 165–174. [Google Scholar] [CrossRef]
- Mineau, S.; Kozak, R.; Kissoon, M.; Paterson, A.; Oppedisano, A.; Douri, F.; Gogan, K.; Willey, B.M.; McGeer, A.; Poutanen, S.M. Emerging antimicrobial resistance among Escherichia coli strains in bloodstream infections in Toronto, 2006–2016: A retrospective cohort study. CMAJ Open 2018, 6, E580–E586. [Google Scholar] [CrossRef] [PubMed]
- Chong, Y.; Ito, Y.; Kamimura, T. Genetic evolution and clinical impact in extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Infect. Genet. Evol. 2011, 11, 1499–1504. [Google Scholar] [CrossRef]
- Pitout, J.D.D.; Nordmann, P.; Laupland, K.B.; Poirel, L. Emergence of Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs) in the community. J. Antimicrob. Chemother. 2005, 56, 52–59. [Google Scholar] [CrossRef]
- Lagacé-Wiens, P.R.S.; Adam, H.J.; Poutanen, S.; Baxter, M.R.; Denisuik, A.J.; Golden, A.R.; Nichol, K.A.; Walkty, A.; Karlowsky, J.A.; Mulvey, M.R.; et al. Trends in antimicrobial resistance over 10 years among key bacterial pathogens from Canadian hospitals: Results of the CANWARD study 2007-16. J. Antimicrob. Chemother. 2019, 74, iv22–iv31. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Walkty, A.; Golden, A.R.; Baxter, M.R.; Denisuik, A.J.; McCracken, M.; Mulvey, M.R.; Adam, H.J.; Zhanel, G.G. ESBL-positive Escherichia coli and Klebsiella pneumoniae isolates from across Canada: CANWARD surveillance study, 2007–2018. J. Antimicrob. Chemother. 2021, 76, 2815–2824. [Google Scholar] [CrossRef]
- Chong, Y.; Shimoda, S.; Shimono, N. Current epidemiology, genetic evolution and clinical impact of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Infect. Genet. Evol. 2018, 61, 185–188. [Google Scholar] [CrossRef]
- Peirano, G.; Pitout, J.D.D. Extended-spectrum β-lactamase-producing Enterobacteriaceae: Update on molecular epidemiology and treatment options. Drugs 2019, 79, 1529–1541. [Google Scholar] [CrossRef] [PubMed]
- BC Centre for Disease Control. Antimicrobial Resistance Trends in the Province of British Columbia 2014; BC Centre for Disease Control: Vancouver, BC, Canada, 2015; Available online: http://www.bccdc.ca/resource-gallery/Documents/AMR%202014%20Report-3NOV2015_FINAL.pdf (accessed on 12 August 2023).
- Public Health Ontario. Antimicrobial Resistance in Common Hospital Pathogens in Ontario: Annual Laboratory and Hospital Survey Report 2018; Public Health Ontario: Toronto, ON, Canada, 2020; Available online: https://www.publichealthontario.ca/-/media/Documents/A/2020/aro-survey-2018.ashx?rev=-1&la=fr (accessed on 12 August 2023).
- Mitchell, R.; Taylor, G.; Rudnick, W.; Alexandre, S.; Bush, K.; Forrester, L.; Frenette, C.; Granfield, B.; Gravel-Tropper, D.; Happe, J.; et al. Trends in health care-associated infections in acute care hospitals in Canada: An analysis of repeated point-prevalence surveys. CMAJ 2019, 191, E981–E988. [Google Scholar] [CrossRef] [PubMed]
- Garner, M.J.; Carson, C.; Lingohr, E.J.; Fazil, A.; Edge, V.L.; Trumble Waddell, J. An assessment of antimicrobial resistant disease threats in Canada. PLoS ONE 2015, 10, e0125155. [Google Scholar] [CrossRef] [PubMed]
- Bush, K. Extended-spectrum β-lactamases in North America, 1987–2006. Clin. Microbiol. Infect. 2008, 14, 134–143. [Google Scholar] [CrossRef]
- Bevan, E.R.; Jones, A.M.; Hawkey, P.M. Global epidemiology of CTX-M β-lactamases: Temporal and geographical shifts in genotype. J. Antimicrob. Chemother. 2017, 72, 2145–2155. [Google Scholar] [CrossRef]
- Valentin, L.; Sharp, H.; Hille, K.; Seibt, U.; Fischer, J.; Pfeifer, Y.; Michael, G.B.r.; Nickel, S.; Schmiedel, J.; Falgenhauer, L.; et al. Subgrouping of ESBL-producing Escherichia coli from animal and human sources: An approach to quantify the distribution of ESBL types between different reservoirs. Int. J. Med. Microbiol. 2014, 304, 805–816. [Google Scholar] [CrossRef]
- Patrick, D.; Grant, J.; Saxinger, L. Surveillance of Antimicrobial Resistance and Antimicrobial Utilization in Canada; National Collaborating Centre for Infectious Diseases: Winnipeg, MB, Canada, 2014; Available online: https://nccid.ca/wp-content/uploads/sites/2/2015/03/AMR-Surveillance-Report-2014.pdf (accessed on 12 August 2023).
- Wielders, C.C.H.; Van Duijkeren, E.; Van Den Bunt, G.; Meijs, A.P.; Dierikx, C.M.; Bonten, M.J.M.; Van Pelt, W.; Franz, E.; De Greeff, S.C. Seasonality in carriage of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in the general population: A pooled analysis of nationwide cross-sectional studies. Epidemiol. Infect. 2020, 148, e68. [Google Scholar] [CrossRef]
- Sun, L.; Klein, E.Y.; Laxminarayan, R. Seasonality and temporal correlation between community antibiotic use and resistance in the United States. Clin. Infect. Dis. 2012, 55, 687–694. [Google Scholar] [CrossRef]
- Martínez, E.P.; van Rosmalen, J.; Bustillos, R.; Natsch, S.; Mouton, J.W.; Verbon, A.; Cohen Stuart, J.W.T.; Weersink, A.J.L.; Notermans, D.W.; van Dijk, K.; et al. Trends, seasonality and the association between outpatient antibiotic use and antimicrobial resistance among urinary bacteria in the Netherlands. J. Antimicrob. Chemother. 2020, 75, 2314–2325. [Google Scholar] [CrossRef]
- Schmiege, D.; Zacharias, N.; Sib, E.; Falkenberg, T.; Moebus, S.; Evers, M.; Kistemann, T. Prevalence of multidrug-resistant and extended-spectrum beta-lactamase-producing Escherichia coli in urban community wastewater. Sci. Total Environ. 2021, 785, 147269. [Google Scholar] [CrossRef]
- Caucci, S.; Karkman, A.; Cacace, D.; Rybicki, M.; Timpel, P.; Voolaid, V.; Gurke, R.; Virta, M.; Berendonk, T.U. Seasonality of antibiotic prescriptions for outpatients and resistance genes in sewers and wastewater treatment plant outflow. FEMS Microbiol. Ecol. 2016, 92, fiw060. [Google Scholar] [CrossRef]
- Gopal Rao, G.; Batura, D.; Batura, N.; Nielsen, P.B. Key demographic characteristics of patients with bacteriuria due to extended spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in a multiethnic community, in North West London. Infect. Dis. 2015, 47, 719–724. [Google Scholar] [CrossRef]
- Lübbert, C.; Straube, L.; Stein, C.; Makarewicz, O.; Schubert, S.; Mössner, J.; Pletz, M.W.; Rodloff, A.C. Colonization with extended-spectrum beta-lactamase-producing and carbapenemase-producing Enterobacteriaceae in international travelers returning to Germany. Int. J. Med. Microbiol. 2015, 305, 148–156. [Google Scholar] [CrossRef] [PubMed]
- van den Bunt, G.; van Pelt, W.; Hidalgo, L.; Scharringa, J.; de Greeff, S.C.; Schürch, A.C.; Mughini-Gras, L.; Bonten, M.J.M.; Fluit, A.C. Prevalence, risk factors and genetic characterisation of extended-spectrum beta-lactamase and carbapenemase-producing Enterobacteriaceae (ESBL-E and CPE): A community-based cross-sectional study, the Netherlands, 2014 to 2016. Eurosurveillance 2019, 24, 1800594. [Google Scholar] [CrossRef]
- Iwamoto, M.; Ayers, T.; Mahon, B.E.; Swerdlow, D.L. Epidemiology of seafood-associated infections in the United States. Clin. Microbiol. Rev. 2010, 23, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Todd, E.C.D. Seafood-associated diseases and control in Canada. Rev. Sci. Et Tech. De L'oie 1997, 16, 661–672. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Salmonella Outbreak Linked to Eating Seafood. Available online: https://www.cdc.gov/salmonella/thompson-10-21/details.html (accessed on 27 July 2023).
- Centers for Disease Control and Prevention. Multistate Outbreak of Salmonella Paratyphi B Variant L(+) Tartrate(+) and Salmonella Weltevreden Infections Linked to Frozen Raw Tuna (Final Update). Available online: https://www.cdc.gov/salmonella/paratyphi-b-05-15/index.html (accessed on 27 July 2023).
- Cardwell, S.M.; Crandon, J.L.; Nicolau, D.P.; McClure, M.H.; Nailor, M.D. Epidemiology and economics of adult patients hospitalized with urinary tract infections. Hosp. Pract. 2016, 44, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Laupland, K.B.; Church, D.L.; Vidakovich, J.; Mucenski, M.; Pitout, J.D.D. Community-onset extended-spectrum β-lactamase (ESBL) producing Escherichia coli: Importance of international travel. J. Infect. 2008, 57, 441–448. [Google Scholar] [CrossRef]
- Lautenbach, E.; Patel, J.B.; Bilker, W.B.; Edelstein, P.H.; Fishman, N.O. Extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae: Risk factors for infection and impact of resistance on outcomes. Clin. Infect. Dis. 2001, 32, 1162–1171. [Google Scholar] [CrossRef]
- Flokas, M.E.; Karanika, S.; Alevizakos, M.; Mylonakis, E. Prevalence of ESBL-producing Enterobacteriaceae in pediatric bloodstream infections: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0171216. [Google Scholar] [CrossRef]
- Flokas, M.E.; Alevizakos, M.; Shehadeh, F.; Andreatos, N.; Mylonakis, E. Extended-spectrum β-lactamase-producing Enterobacteriaceae colonisation in long-term care facilities: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2017, 50, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Ofner-Agostini, M.; Simor, A.; Mulvey, M.; McGeer, A.; Hirji, Z.; McCracken, M.; Gravel, D.; Boyd, D.; Bryce, E. Risk factors for and outcomes associated with clinical isolates of Escherichia coli and Klebsiella species resistant to extended-spectrum cephalosporins among patients admitted to Canadian hospitals. Can. J. Infect. Dis. Med. Microbiol. 2009, 20, e43–e48. [Google Scholar] [CrossRef] [PubMed]
- MacKinnon, M.C.; Sargeant, J.M.; Pearl, D.L.; Reid-Smith, R.J.; Carson, C.A.; Parmley, E.J.; McEwen, S.A. Evaluation of the health and healthcare system burden due to antimicrobial-resistant Escherichia coli infections in humans: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2020, 9, 200. [Google Scholar] [CrossRef] [PubMed]
- Naylor, N.R.; Atun, R.; Zhu, N.; Kulasabanathan, K.; Silva, S.; Chatterjee, A.; Knight, G.M.; Robotham, J.V. Estimating the burden of antimicrobial resistance: A systematic literature review. Antimicrob. Resist. Infect. Control 2018, 7, 58. [Google Scholar] [CrossRef] [PubMed]
- Sakellariou, C.; Gürntke, S.; Steinmetz, I.; Kohler, C.; Pfeifer, Y.; Gastmeier, P.; Schwab, F.; Kola, A.; Deja, M.; Leistner, R. Sepsis caused by extended-spectrum beta-lactamase (ESBL)-positive K. pneumoniae and E. coli: Comparison of severity of sepsis, delay of anti-infective therapy and ESBL genotype. PLoS ONE 2016, 11, e0158039. [Google Scholar] [CrossRef] [PubMed]
- Denkel, L.A.; Maechler, F.; Schwab, F.; Kola, A.; Weber, A.; Gastmeier, P.; Pfäfflin, F.; Weber, S.; Werner, G.; Pfeifer, Y.; et al. Infections caused by extended-spectrum β-lactamase-producing Enterobacterales after rectal colonization with ESBL-producing Escherichia coli or Klebsiella pneumoniae. Clin. Microbiol. Infect. 2020, 26, 1046–1051. [Google Scholar] [CrossRef]
- Gudiol, C.; Calatayud, L.; Garcia-Vidal, C.; Lora-Tamayo, J.; Cisnal, M.; Duarte, R.; Arnan, M.; Marin, M.; Carratala, J.; Gudiol, F. Bacteraemia due to extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) in cancer patients: Clinical features, risk factors, molecular epidemiology and outcome. J. Antimicrob. Chemother. 2010, 65, 333–341. [Google Scholar] [CrossRef]
- Maslikowska, J.A.; Walker, S.A.N.; Elligsen, M.; Mittmann, N.; Palmay, L.; Daneman, N.; Simor, A. Impact of infection with extended-spectrum β-lactamase-producing Escherichia coli or Klebsiella species on outcome and hospitalization costs. J. Hosp. Infect. 2016, 92, 33–41. [Google Scholar] [CrossRef]
- Melzer, M.; Petersen, I. Mortality following bacteraemic infection caused by extended spectrum beta-lactamase (ESBL) producing E. coli compared to non-ESBL producing E. coli. J. Infect. 2007, 55, 254–259. [Google Scholar] [CrossRef]
- Peralta, G.; Sánchez, M.B.; Garrido, J.C.; De Benito, I.; Cano, M.E.; Martínez-Martínez, L.; Roiz, M.P. Impact of antibiotic resistance and of adequate empirical antibiotic treatment in the prognosis of patients with Escherichia coli bacteraemia. J. Antimicrob. Chemother. 2007, 60, 855–863. [Google Scholar] [CrossRef]
- Rottier, W.C.; Ammerlaan, H.S.M.; Bonten, M.J.M. Effects of confounders and intermediates on the association of bacteraemia caused by extended-spectrum β-lactamase-producing Enterobacteriaceae and patient outcome: A meta-analysis. J. Antimicrob. Chemother. 2012, 67, 1311–1320. [Google Scholar] [CrossRef] [PubMed]
- Schwaber, M.J.; Carmeli, Y. Mortality and delay in effective therapy associated with extended-spectrum β-lactamase production in Enterobacteriaceae bacteraemia: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2007, 60, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Trecarichi, E.M.; Tumbarello, M.; Spanu, T.; Caira, M.; Fianchi, L.; Chiusolo, P.; Fadda, G.; Leone, G.; Cauda, R.; Pagano, L. Incidence and clinical impact of extended-spectrum-β-lactamase (ESBL) production and fluoroquinolone resistance in bloodstream infections caused by Escherichia coli in patients with hematological malignancies. J. Infect. 2009, 58, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Tumbarello, M.; Spanu, T.; Di Bidino, R.; Marchetti, M.; Ruggeri, M.; Trecarichi, E.M.; De Pascale, G.; Proli, E.M.; Cauda, R.; Cicchetti, A.; et al. Costs of bloodstream infections caused by Escherichia coli and influence of extended-spectrum-β-lactamase production and inadequate initial antibiotic therapy. Antimicrob. Agents Chemother. 2010, 54, 4085–4091. [Google Scholar] [CrossRef]
- Chaulk, J.; Carbonneau, M.; Qamar, H.; Keough, A.; Chang, H.J.; Ma, M.; Kumar, D.; Tandon, P. Third-generation cephalosporin-resistant spontaneous bacterial peritonitis: A single-centre experience and summary of existing studies. Can. J. Gastroenterol. Hepatol. 2014, 28, 83–88. [Google Scholar] [CrossRef]
- Barnett, A.G.; Beyersmann, J.; Allignol, A.; Rosenthal, V.D.; Graves, N.; Wolkewitz, M. The time-dependent bias and its effect on extra length of stay due to nosocomial infection. Value Health 2011, 14, 381–386. [Google Scholar] [CrossRef]
- Stewart, S.; Robertson, C.; Pan, J.; Kennedy, S.; Haahr, L.; Manoukian, S.; Mason, H.; Kavanagh, K.; Graves, N.; Dancer, S.J.; et al. Impact of healthcare-associated infection on length of stay. J. Hosp. Infect. 2021, 114, 23–31. [Google Scholar] [CrossRef]
- Leistner, R.; Gürntke, S.; Sakellariou, C.; Denkel, L.A.; Bloch, A.; Gastmeier, P.; Schwab, F. Bloodstream infection due to extended-spectrum beta-lactamase (ESBL)-positive K. pneumoniae and E. coli: An analysis of the disease burden in a large cohort. Infection 2014, 42, 991–997. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kotapati, S.; Kuti, J.L.; Nightingale, C.H.; Nicolau, D.P. Impact of extended-spectrum β-lactamase–producing Escherichia coli and Klebsiella species on clinical outcomes and hospital costs: A matched cohort study. Infect. Control Hosp. Epidemiol. 2006, 27, 1226–1232. [Google Scholar] [CrossRef]
- MacVane, S.H.; Tuttle, L.O.; Nicolau, D.P. Impact of extended-spectrum β-lactamase-producing organisms on clinical and economic outcomes in patients with urinary tract infection. J. Hosp. Med. 2014, 9, 232–238. [Google Scholar] [CrossRef]
- Kola, A.; Maciejewski, O.; Sohr, D.; Ziesing, S.; Gastmeier, P. Clinical impact of infections caused by ESBL-producing E. coli and K. pneumoniae. Scand. J. Infect. Dis. 2007, 39, 975–982. [Google Scholar] [CrossRef]
- McDonald, K.L.; Garland, S.; Carson, C.A.; Gibbens, K.; Parmley, E.J.; Finley, R.; MacKinnon, M.C. Measures used to assess the burden of ESBL-producing Escherichia coli infections in humans: A scoping review. JAC-Antimicrob. Resist. 2021, 3, dlaa104. [Google Scholar] [CrossRef]
- Esteve-Palau, E.; Solande, G.; Sánchez, F.; Sorlí, L.; Montero, M.; Güerri, R.; Villar, J.; Grau, S.; Horcajada, J.P. Clinical and economic impact of urinary tract infections caused by ESBL-producing Escherichia coli requiring hospitalization: A matched cohort study. J. Infect. 2015, 71, 667–674. [Google Scholar] [CrossRef]
- Park, S.H.; Choi, S.-M.; Lee, D.-G.; Cho, S.-Y.; Lee, H.-J.; Choi, J.-k.; Choi, J.-H.; Yoo, J.-H. Impact of extended-spectrum β-lactamase production on treatment outcomes of acute pyelonephritis caused by Escherichia coli in patients without health care-associated risk factors. Antimicrob. Agents Chemother. 2015, 59, 1962–1968. [Google Scholar] [CrossRef]
- Food Standards Australia New Zealand. Imported Food Risk Assessment Guidelines; Food Standards Australia New Zealand: Wellington, New Zealand, 2018; pp. 1–17. Available online: https://www.foodstandards.gov.au/publications/Documents/Imported%20food%20risk%20assessment%202022.pdf (accessed on 12 August 2023).
- Amarasiri, M.; Sano, D.; Suzuki, S. Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2016–2059. [Google Scholar] [CrossRef]
- Zhang, X.-X.; Zhang, T.; Fang, H.H.P. Antibiotic resistance genes in water environment. Appl. Microbiol. Biotechnol. 2009, 82, 397–414. [Google Scholar] [CrossRef]
- Lekunberri, I.; Balcázar, J.L.; Borrego, C.M. Metagenomic exploration reveals a marked change in the river resistome and mobilome after treated wastewater discharges. Environ. Pollut. 2018, 234, 538–542. [Google Scholar] [CrossRef]
- Public Health Agency of Canada. Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) 2019: Figures and Tables; Public Health Agency of Canada: Guelph, ON, Canada, 2022; Available online: https://publications.gc.ca/collections/collection_2022/aspc-phac/HP2-4-2019-eng-4.pdf (accessed on 12 August 2023).
- Ekwanzala, M.D.; Dewar, J.B.; Momba, M.N.B. Environmental resistome risks of wastewaters and aquatic environments deciphered by shotgun metagenomic assembly. Ecotoxicol. Environ. Saf. 2020, 197, 110612. [Google Scholar] [CrossRef]
- Lee, K.; Kim, D.-W.; Lee, D.-H.; Kim, Y.-S.; Bu, J.-H.; Cha, J.-H.; Thawng, C.N.; Hwang, E.-M.; Seong, H.J.; Sul, W.J.; et al. Mobile resistome of human gut and pathogen drives anthropogenic bloom of antibiotic resistance. Microbiome 2020, 8, 2. [Google Scholar] [CrossRef]
- Runcharoen, C.; Raven, K.E.; Reuter, S.; Kallonen, T.; Paksanont, S.; Thammachote, J.; Anun, S.; Blane, B.; Parkhill, J.; Peacock, S.J.; et al. Whole genome sequencing of ESBL-producing Escherichia coli isolated from patients, farm waste and canals in Thailand. Genome Med. 2017, 9, 81. [Google Scholar] [CrossRef]
- Waddington, C.; Carey, M.E.; Boinett, C.J.; Higginson, E.; Veeraraghavan, B.; Baker, S. Exploiting genomics to mitigate the public health impact of antimicrobial resistance. Genome Med. 2022, 14, 15. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. GLASS Whole-Genome Sequencing for Surveillance of Antimicrobial Resistance: Global Antimicrobial Resistance and Use Surveillance System (GLASS); World Health Organization: Geneva, Switzerland, 2020; p. 72. Available online: https://www.who.int/publications/i/item/9789240011007 (accessed on 12 August 2023).
- Cantón, R.; González-Alba, J.M.; Galán, J.C. CTX-M enzymes: Origin and diffusion. Front. Microbiol. 2012, 3, 110. [Google Scholar] [CrossRef]
- Orlek, A.; Stoesser, N.; Anjum, M.F.; Doumith, M.; Ellington, M.J.; Peto, T.; Crook, D.; Woodford, N.; Walker, A.S.; Phan, H.; et al. Plasmid classification in an era of whole-genome sequencing: Application in studies of antibiotic resistance epidemiology. Front. Microbiol. 2017, 8, 182. [Google Scholar] [CrossRef]
- Coque, T.M.; Novais, Â.; Carattoli, A.; Poirel, L.; Pitout, J.; Peixe, L.; Baquero, F.; Cantón, R.; Nordmann, P. Dissemination of clonally related Escherichia coli strains expressing extended-spectrum β-lactamase CTX-M-15. Emerg. Infect. Dis. 2008, 14, 195–200. [Google Scholar] [CrossRef]
- NIHR Global Health Research Unit on Genomic Surveillance of AMR. Whole-genome sequencing as part of national and international surveillance programmes for antimicrobial resistance: A roadmap. BMJ Glob. Health 2020, 5, e002244. [Google Scholar] [CrossRef] [PubMed]
- Quince, C.; Walker, A.W.; Simpson, J.T.; Loman, N.J.; Segata, N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 2017, 35, 833–844. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, S.F.; Stewart, G.S.A.B.; Dodd, C.E.R.; Booth, I.R.; Power, E.G.M. The viable but non-culturable phenomenon explained? Microbiology 1998, 144, 1–3. [Google Scholar] [CrossRef]
- Amann, R.I.; Ludwig, W.; Schleifer, K.H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 1995, 59, 143–169. [Google Scholar] [CrossRef]
- Takasu, H.; Suzuki, S.; Reungsang, A.; Viet, P.H. Fluoroquinolone (FQ) contamination does not correlate with occurrence of FQ-resistant bacteria in aquatic environments of Vietnam and Thailand. Microbes Environ. 2011, 26, 135–143. [Google Scholar] [CrossRef]
- Ebmeyer, S.; Kristiansson, E.; Larsson, D.G.J. The mobile FOX AmpC beta-lactamases originated in Aeromonas allosaccharophila. Int. J. Antimicrob. Agents 2019, 54, 798–802. [Google Scholar] [CrossRef]
- Rossolini, G.M.; D'Andrea, M.M.; Mugnaioli, C. The spread of CTX-M-type extended-spectrum β-lactamases. Clin. Microbiol. Infect. 2008, 14, 33–41. [Google Scholar] [CrossRef] [PubMed]
- van der Werf, M.J.; Ködmön, C. Whole-genome sequencing as tool for investigating international tuberculosis outbreaks: A systematic review. Front. Public Health 2019, 7, 87. [Google Scholar] [CrossRef] [PubMed]
- Canadian Veterinary Medical Association. Veterinary Oversight of Antimicrobial Use; A Pan-Canadian Framework of Professional Standards for Veterinarians; Canadian Veterinary Medical Association: Ottawa, ON, Canada, 2017; pp. 1–34. Available online: https://www.canadianveterinarians.net/media/zvtlw03q/veterinary-oversight-of-antimicrobial-use-a-pan-canadian-framework-for-professional-standards-for-veterinarians-pdf.pdf (accessed on 12 August 2023).
- Fisheries and Oceans Canada. Aquaculture Activities Regulations. Available online: https://www.dfo-mpo.gc.ca/aquaculture/management-gestion/aar-raa-eng.htm (accessed on 1 August 2023).
- Cabello, F.C. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environ. Microbiol. 2006, 8, 1137–1144. [Google Scholar] [CrossRef]
- Hernandez-Serrano, P. Responsible Use of Antibiotics in Aquaculture; FAO: Rome, Italy, 2005; p. 97. Available online: https://www.fao.org/3/a0282e/a0282e.pdf (accessed on 12 August 2023).
- Santos, L.; Ramos, F. Antimicrobial resistance in aquaculture: Current knowledge and alternatives to tackle the problem. Int. J. Antimicrob. Agents 2018, 52, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Mughini-Gras, L.; Dorado-García, A.; van Duijkeren, E.; van den Bunt, G.; Dierikx, C.M.; Bonten, M.J.M.; Bootsma, M.C.J.; Schmitt, H.; Hald, T.; Evers, E.G.; et al. Attributable sources of community-acquired carriage of Escherichia coli containing β-lactam antibiotic resistance genes: A population-based modelling study. Lancet Planet. Health 2019, 3, e357–e369. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Tyson, G.H.; Hsu, C.H.; Harrison, L.; Strain, E.; Tran, T.T.; Tillman, G.E.; Dessai, U.; McDermott, P.F.; Zhao, S. Long-read sequencing reveals evolution and acquisition of antimicrobial resistance and virulence genes in Salmonella enterica. Front. Microbiol. 2021, 12, 777817. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.S.R.; Röder, T.; Van Gompel, L.; Petersen, T.N.; Hansen, R.B.; Hansen, I.M.; Bossers, A.; Aarestrup, F.M.; Wagenaar, J.A.; Hald, T. Metagenomics-based approach to source-attribution of antimicrobial resistance determinants—Identification of reservoir resistome signatures. Front. Microbiol. 2021, 11, 601407. [Google Scholar] [CrossRef]
- Wang, F.; Jiang, L.; Yang, Q.; Han, F.; Chen, S.; Pu, S.; Vance, A.; Ge, B. Prevalence and antimicrobial susceptibility of major foodborne pathogens in imported seafood. J. Food Prot. 2011, 74, 1451–1461. [Google Scholar] [CrossRef]
- Shabarinath, S.; Sanath Kumar, H.; Khushiramani, R.; Karunasagar, I.; Karunasagar, I. Detection and characterization of Salmonella associated with tropical seafood. Int. J. Food Microbiol. 2007, 114, 227–233. [Google Scholar] [CrossRef]
- Zwe, Y.H.; Chin, S.F.; Kohli, G.S.; Aung, K.T.; Yang, L.; Yuk, H.-G. Whole genome sequencing (WGS) fails to detect antimicrobial resistance (AMR) from heteroresistant subpopulation of Salmonella enterica. Food Microbiol. 2020, 91, 103530. [Google Scholar] [CrossRef]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- Ellington, M.J.; Ekelund, O.; Aarestrup, F.M.; Canton, R.; Doumith, M.; Giske, C.; Grundman, H.; Hasman, H.; Holden, M.T.G.; Hopkins, K.L.; et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: Report from the EUCAST Subcommittee. Clin. Microbiol. Infect. 2017, 23, 2–22. [Google Scholar] [CrossRef]
- EFSA. Technical specifications on a randomisation of sampling for the purpose of antimicrobial resistance monitoring from food-producing animals and food as from 2021. EFSA J. 2020, 18, 6364. [Google Scholar] [CrossRef]
- Fisheries and Oceans Canada. Aquaculture Activities Regulations Guidance Document. Available online: http://www.dfo-mpo.gc.ca/aquaculture/management-gestion/aar-raa-gd-eng.htm#annex1 (accessed on 1 August 2023).
- Otto, S.J.G.; Haworth-Brockman, M.; Miazga-Rodriguez, M.; Wierzbowski, A.; Lynora; Saxinger, M. Integrated surveillance of antimicrobial resistance and antimicrobial use: Evaluation of the status in Canada (2014–2019). Can. J. Public Health 2022, 63, 11–22. [Google Scholar] [CrossRef]
- Huss, H.H. Assurance of Seafood Quality; Food and Agriculture Organization: Rome, Italy, 1994; pp. 1–169. [Google Scholar]
- Dabadé, S. Shrimp Quality and Safety Management along the Supply Chain in Benin; Wageningen University and Research: Wageningen, The Netherlands, 2015. [Google Scholar]
- Chakravarty, M.S.; Ganesh, P.R.C.; Amaranth, D.; Sudha, B.S.; Subhashini, M. Escherichia coli-occurrence in the meat of shrimp, fish, chicken and mutton and its antibiotic resistance. Eur. J. Exp. Biol. 2015, 5, 41–48. [Google Scholar]
- Ali, R.; Gupta, N.; Siraj, S.M.S.; Chhanda, M.S.; Ahsan, N. Bacterial microflora on freshwater prawn (Macrobrachium rosenbergii) and culture water associated with public health concern. Res. Ecol. 2019, 1, 45–51. [Google Scholar] [CrossRef]
- Bello-Olusoji, O. Bacteriological Studies of Some Prawns, Parapeneopsis atlantica and Macrobrachium vollenhovenii, under different processing methods. Adv. Food Sci. 2008, 30, 6–10. [Google Scholar]
- Rahimi, E.; Shakerian, A.; Falavarjani, A.G. Prevalence and antimicrobial resistance of Salmonella isolated from fish, shrimp, lobster, and crab in Iran. Comp. Clin. Pathol. 2013, 22, 59–62. [Google Scholar] [CrossRef]
- Boonyasiri, A.; Tangkoskul, T.; Seenama, C.; Saiyarin, J.; Tiengrim, S.; Thamlikitkul, V. Prevalence of antibiotic resistant bacteria in healthy adults, foods, food animals, and the environment in selected areas in Thailand. Pathog. Glob. Health 2014, 108, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Lekshmy, S.; Soumya, W.; Mole, A.N.; Raj, R.V.V.; Raju, B.; Sruthi, S.; Devi, T.V.G.; Radhakrishnan, T. Incidence of E. coli in extensive shrimp culture systems of Kerala. Indian J. Sci. Res. 2014, 9, 117–126. [Google Scholar]
- Mohamed Hatha, A.A.; Maqbool, T.K.; Suresh Kumar, S. Microbial quality of shrimp products of export trade produced from aquacultured shrimp. Int. J. Food Microbiol. 2003, 82, 213–221. [Google Scholar] [CrossRef]
- Mohamed Hatha, A.A.; Paul, N.; Rao, B. Bacteriological quality of individually quick-frozen (IQF) raw and cooked ready-to-eat shrimp produced from farm raised black tiger shrimp (Penaeus monodon). Food Microbiol. 1998, 15, 177–183. [Google Scholar] [CrossRef]
- Kumar, H.S.; Parvathi, A.; Karunasagar, I.; Karunasagar, I. Prevalence and antibiotic resistance of Escherichia coli in tropical seafood. World J. Microbiol. Biotechnol. 2005, 21, 619–623. [Google Scholar] [CrossRef]
- Greenwood, M.H.; Coetzee, E.F.C.; Ford, B.M.; Gill, P.; Hooper, W.L.; Matthews, S.C.; Patrick, S. The microbiology of cooked prawns and shrimps on retail sale. J. Hyg. 1985, 94, 319–326. [Google Scholar] [CrossRef]
- Rahim, Z.; Azsis, K.M.S.A. Enterotoxigenicity, hemolytic activity and antibiotic resistance of Aeromonas spp. isolated from freshwater prawn marketed in Dhaka, Bangladesh. Microbiol. Immunol. 1994, 38, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Ayulo, A.M.; Machado, R.A.; Scussel, V.M. Enterotoxigenic Escherichia coli and Staphylococcus aureus in fish and seafood from the southern region of Brazil. Int. J. Food Microbiol. 1994, 24, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Maramarque Nespolo, N.; Mioto Martineli, T.; Durival Rossi, O. Microbiological quality of salmon (Salmo salar) sold in cities of the state of São Paulo, Brazil. Braz. J. Microbiol. 2012, 43, 1393–1400. [Google Scholar] [CrossRef]
- Pao, S.; Ettinger, M.R.; Khalid, M.F.; Reid, A.O.; Nerrie, B.L. Microbial quality of raw aquacultured fish fillets procured from Internet and local retail markets. J. Food Prot. 2008, 71, 1544–1549. [Google Scholar] [CrossRef]
- Almeida, M.V.A.; Cangussu, I.M.; Carvalho, A.L.S.; Brito, I.L.P.; Costa, R.A. Drug resistance, AmpC-β-lactamase and extended-spectrum β-lactamase-producing Enterobacteriaceae isolated from fish and shrimp. Rev. Inst. Med. Trop. Sao Paulo 2017, 59, e70. [Google Scholar] [CrossRef]
- Atanassova, V.; Reich, F.; Klein, G. Microbiological quality of sushi from sushi bars and retailers. J. Food Prot. 2008, 71, 860–864. [Google Scholar] [CrossRef]
- Surendraraj, A.; Thampuran, N.; Joseph, T.C. Molecular screening, isolation, and characterization of enterohemorrhagic Escherichia coli O157:H7 from retail shrimp. J. Food Prot. 2010, 73, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Prakash, M.; Karmagam, N. A study on bacterial flora associated with fresh water prawn, Macrobrachium rosenbergii. Int. J. Curr. Res. Acad. Rev. 2013, 1, 1–16. [Google Scholar]
- Duran, G.M.; Marshall, D.L. Ready-to-eat shrimp as an international vehicle of antibiotic-resistant bacteria. J. Food Prot. 2005, 68, 2395–2401. [Google Scholar] [CrossRef]
- Singh, A.S.; Lekshmi, M.; Nayak, B.B.; Kumar, S.H. Isolation of Escherichia coli harboring blaNDM-5 from fresh fish in India. J. Microbiol. Immunol. Infect. 2016, 49, 822–823. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.X.; Tang, D.; Liu, Y.H.; Zhang, X.H.; Zeng, Z.L.; Xu, L.; Hawkey, P.M. Prevalence and characteristics of β-lactamase and plasmid-mediated quinolone resistance genes in Escherichia coli isolated from farmed fish in China. J. Antimicrob. Chemother. 2012, 67, 2350–2353. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.; Chen, H.; Goh, S.G.; Haller, L.; Wu, Z.; Charles, F.R.; Trottet, A.; Gin, K. Microbial water quality and the detection of multidrug resistant E. coli and antibiotic resistance genes in aquaculture sites of Singapore. Mar. Pollut. Bull. 2018, 135, 475–480. [Google Scholar] [CrossRef]
Measures to Reduce the Risk Related to the Selection and Dissemination of Foodborne AMR Microorganisms | |||
---|---|---|---|
Goal | Risk Management Option | Action | Effect |
Decreased the need for AMU |
| reduce (↓) stress
|
|
|
|
| |
|
|
| |
Measures to minimize the contamination and cross-contamination of food by AMR microorganisms | |||
Decreased propagation of AMR in the seafood to fork continuum |
|
|
|
Seafood to Fork Nodes | WGS Applications |
---|---|
Aquatic environment |
|
Aquaculture |
|
Harvest/Transportation |
|
Processing |
|
Retail |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uhland, F.C.; Li, X.-Z.; Mulvey, M.R.; Reid-Smith, R.; Sherk, L.M.; Ziraldo, H.; Jin, G.; Young, K.M.; Reist, M.; Carson, C.A. Extended Spectrum β-Lactamase-Producing Enterobacterales of Shrimp and Salmon Available for Purchase by Consumers in Canada—A Risk Profile Using the Codex Framework. Antibiotics 2023, 12, 1412. https://doi.org/10.3390/antibiotics12091412
Uhland FC, Li X-Z, Mulvey MR, Reid-Smith R, Sherk LM, Ziraldo H, Jin G, Young KM, Reist M, Carson CA. Extended Spectrum β-Lactamase-Producing Enterobacterales of Shrimp and Salmon Available for Purchase by Consumers in Canada—A Risk Profile Using the Codex Framework. Antibiotics. 2023; 12(9):1412. https://doi.org/10.3390/antibiotics12091412
Chicago/Turabian StyleUhland, F. Carl, Xian-Zhi Li, Michael R. Mulvey, Richard Reid-Smith, Lauren M. Sherk, Hilary Ziraldo, Grace Jin, Kaitlin M. Young, Mark Reist, and Carolee A. Carson. 2023. "Extended Spectrum β-Lactamase-Producing Enterobacterales of Shrimp and Salmon Available for Purchase by Consumers in Canada—A Risk Profile Using the Codex Framework" Antibiotics 12, no. 9: 1412. https://doi.org/10.3390/antibiotics12091412
APA StyleUhland, F. C., Li, X. -Z., Mulvey, M. R., Reid-Smith, R., Sherk, L. M., Ziraldo, H., Jin, G., Young, K. M., Reist, M., & Carson, C. A. (2023). Extended Spectrum β-Lactamase-Producing Enterobacterales of Shrimp and Salmon Available for Purchase by Consumers in Canada—A Risk Profile Using the Codex Framework. Antibiotics, 12(9), 1412. https://doi.org/10.3390/antibiotics12091412