Decoding Mastitis in Small Rodent Pets: Pathophysiology, Antimicrobial Resistance Profiles, and Future Directions in Treatment Strategies
Abstract
1. Introduction
2. Materials and Methods
3. A Small Glimpse into Small Rodent Mammary Gland Anatomy
4. Definition, Etiology, and Pathogenesis
5. Clinical Signs
6. Histopathology
7. Medical Management
8. Antibiotic Resistance in Small Companion Rodents with Mastitis: Current Evidence, Clinical Implications, and Management Strategies
8.1. Patterns of Antibiotic Resistance in S. aureus-Induced Mastitis
8.2. Focus on Gram-Negative Bacteria as an Etiological Agent of Mastitis in Small Companion Animals
8.3. Alternative Treatments to the Use of Antibiotics
8.4. Surveillance and Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boden, E.; Andrews, A. Black’s Veterinary Dictionary, 22nd ed.; Bloomsbury Publishing: London, UK, 2015; ISBN 978-1-4081-7572-9. [Google Scholar]
- McCready, J.E.; Barboza, T. Rodent Pediatrics. Vet. Clin. North Am. Exot. Anim. Pract. 2024, 27, 193–219. [Google Scholar] [CrossRef]
- Huerkamp, M.J.; Dillehay, D.L. Coliform mastitis in a golden Syrian hamster. Lab. Anim. Sci. 1990, 40, 325–327. [Google Scholar]
- Fu, Y.; Gao, R.; Cao, Y.; Guo, M.; Wei, Z.; Zhou, E.; Li, Y.; Yao, M.; Yang, Z.; Zhang, N. Curcumin attenuates inflammatory responses by suppressing TLR4-mediated NF-κB signaling pathway in lipopolysaccharide-induced mastitis in mice. Int. Immunopharmacol. 2014, 20, 54–58. [Google Scholar] [CrossRef]
- He, X.; Wei, Z.; Zhou, E.; Chen, L.; Kou, J.; Wang, J.; Yang, Z. Baicalein attenuates inflammatory responses by suppressing TLR4 mediated NF-κB and MAPK signaling pathways in LPS-induced mastitis in mice. Int. Immunopharmacol. 2015, 28, 470–476. [Google Scholar] [CrossRef]
- Lai, J.-L.; Liu, Y.-H.; Peng, Y.-C.; Ge, P.; He, C.-F.; Liu, C.; Chen, Y.-Y.; Guo, A.-Z.; Hu, C.-M. Indirubin Treatment of Lipopolysaccharide-Induced Mastitis in a Mouse Model and Activity in Mouse Mammary Epithelial Cells. Mediat. Inflamm. 2017, 2017, 3082805. [Google Scholar] [CrossRef]
- Li, D.; Zhang, N.; Cao, Y.; Zhang, W.; Su, G.; Sun, Y.; Liu, Z.; Li, F.; Liang, D.; Liu, B.; et al. Emodin ameliorates lipopolysaccharide-induced mastitis in mice by inhibiting activation of NF-κB and MAPKs signal pathways. Eur. J. Pharmacol. 2013, 705, 79–85. [Google Scholar] [CrossRef]
- Li, D.; Fu, Y.; Zhang, W.; Su, G.; Liu, B.; Guo, M.; Li, F.; Liang, D.; Liu, Z.; Zhang, X.; et al. Salidroside attenuates inflammatory responses by suppressing nuclear factor-κB and mitogen activated protein kinases activation in lipopolysaccharide-induced mastitis in mice. Inflamm. Res. 2013, 62, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Yang, C.; Lin, S.; Zhao, G.; Zhang, T.; Guo, S.; Jiang, K.; Wu, H.; Qiu, C.; Guo, M.; et al. Sodium houttuyfonate inhibits LPS-induced mastitis in mice via the NF-κB signalling pathway. Mol. Med. Rep. 2019, 19, 2279–2286. [Google Scholar] [CrossRef] [PubMed]
- Hughes, K.; Watson, C.J. The Mammary Microenvironment in Mastitis in Humans, Dairy Ruminants, Rabbits and Rodents: A One Health Focus. J. Mammary Gland Biol. Neoplasia 2018, 23, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.N.; Han, S.G. Bovine mastitis: Risk factors, therapeutic strategies, and alternative treatments—A review. Asian Australas. J. Anim. Sci. 2020, 33, 1699–1713. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tommasoni, C.; Fiore, E.; Lisuzzo, A.; Gianesella, M. Mastitis in Dairy Cattle: On-Farm Diagnostics and Future Perspectives. Animals 2023, 13, 2538. [Google Scholar] [CrossRef]
- Leonel, E.C.R.; Falleiros, L.R.; Campos, S.G.P.; Taboga, S.R. Histological and immunohistochemical characterization of the Mongolian gerbil’s mammary gland during gestation, lactation and involution. Acta Histochem. 2017, 119, 273–283. [Google Scholar] [CrossRef]
- Cardiff, R.D.; Jindal, S.; Treuting, P.M.; Going, J.J.; Gusterson, B.; Thompson, H.J. Mammary gland. In Comparative Anatomy and Histology: A Mouse, Rat and Human Atlas; Montine, K.S., Treuting, P.M., Dintzis, S.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; ISBN 978-0-12-802900-8. [Google Scholar]
- Cardiff, R.D.; Jindal, S.; Treuting, P.M.; Going, J.J.; Gusterson, B.; Thompson, H.J. Mammary gland. In Comparative Anatomy and Histology, 2nd ed.; Treuting, P.M., Dintzis, S.M., Montine, K.S., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 487–509. [Google Scholar] [CrossRef]
- O’Malley, B. Rats. In Clinical Anatomy and Physiology of Exotic Species; W.B. Saunders: Philadelphia, PA, USA, 2005; pp. 209–225. ISBN 978-0-7020-2782-6. [Google Scholar]
- O’Malley, B. Hamsters. In Clinical Anatomy and Physiology of Exotic Species—Structure and Function of Mammals, Birds, Reptiles and Amphibians; W.B. Saunders: Philadelphia, PA, USA, 2005; pp. 227–236. ISBN 978-0-7020-2782-6. [Google Scholar]
- Helmer, P.; Whiteside, D.P.; Lewington, J.H.; Solorza, L.F.M. Clinical Anatomy and Physiology of Exotic Species Structure and Function of Mammals, Birds, Reptiles and Amphibians, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar] [CrossRef]
- Yu, C.-M.M.; Anderson, R.R. Papillae and Galactophore Numbers in Mammae of Cricetus auratus, Meriones unguiculatus, Spermophilus tridecemlineatus, and Chinchilla laniger. J. Mammal. 1975, 56, 247–250. [Google Scholar] [CrossRef]
- Yavaş, Ö.; Akkoç, A. A new protocol for the induction of chronic mastitis with intramammary infusion of lipopolysaccharide (LPS) in Balb/c mice. Harran Üniversitesi Vet. Fakültesi Derg. 2024, 13, 113–117. [Google Scholar] [CrossRef]
- Lin, X.; Zhao, Z.; Cai, Y.; He, Y.; Wang, J.; Liu, N.; Qin, Y.; Wu, Y. MyD88 deficiency in mammary epithelial cells attenuates lipopolysaccharide (LPS)-induced mastitis in mice. Biochem. Biophys. Res. Commun. 2024, 739, 150569. [Google Scholar] [CrossRef]
- Guo, J.; Cao, Q.; Wang, Z.; Wang, P.; Liu, K.; Guo, L.; Dong, J.; Cui, L.; Li, J.; Zhu, G.; et al. Synergistic effects of heat stress and mastitis induced by K. pneumoniae on inflammation responses and blood-milk barrier in rats. J. Therm. Biol. 2025, 129, 104114. [Google Scholar] [CrossRef] [PubMed]
- Anderson, N.L. Pet rodents. In Saunders Manual of Small Animal Practice; W.B. Saunders: Philadelphia, PA, USA, 2006; pp. 1881–1909. [Google Scholar] [CrossRef]
- Johnzon, C.F.; Artursson, K.; Söderlund, R.; Guss, B.; Rönnberg, E.; Pejler, G. Mastitis pathogens with high virulence in a mouse model produce a distinct cytokine profile in vivo. Front. Immunol. 2016, 7, 368. [Google Scholar] [CrossRef] [PubMed]
- Pitt, T.L.; Barer, M.R. Classification, identification and typing of micro-organisms. In Medical Microbiology; Churchill Livingstone: London, UK, 2012; pp. 24–38. [Google Scholar] [CrossRef]
- Notebaert, S.; Meyer, E. Mouse models to study the pathogenesis and control of bovine mastitis. A review. Vet. Q. 2006, 28, 2–13. [Google Scholar] [CrossRef]
- Camperio, C.; Armas, F.; Biasibetti, E.; Frassanito, P.; Giovannelli, C.; Spuria, L.; D’Agostino, C.; Tait, S.; Capucchio, M.T.; Marianelli, C. A mouse mastitis model to study the effects of the intramammary infusion of a food-grade Lactococcus lactis strain. PLoS ONE 2017, 12, 1–11. [Google Scholar] [CrossRef]
- Breyne, K.; De Vliegher, S.; De Visscher, A.; Piepers, S.; Meyer, E. Technical note: A pilot study using a mouse mastitis model to study differences between bovine associated coagulase-negative staphylococci. J. Dairy Sci. 2015, 98, 1090–1100. [Google Scholar] [CrossRef]
- Xiang, Y.; Li, Z.; Liu, C.; Wei, Z.; Mo, X.; Zhong, Y.; He, R.; Liang, Z.; He, Y.; He, J. Pulsatilla chinensis extract alleviate Staphylococcus aureus induced mastitis in mice by regulating the inflammatory response and gut microbiota. Front. Vet. Sci. 2025, 12, 1603107. [Google Scholar] [CrossRef]
- Ingman, W.V.; Glynn, D.J.; Hutchinson, M.R. Mouse Models of Mastitis—How Physiological Are They? Int. Breastfeed. J. 2015, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Burgess, M.E.; Bishop, C.R. Reproductive physiology, normal neonatology, and neonatal disorders of the small rodents (hamsters/gerbils/rats/mice). In Management of Pregnant and Neonatal Dogs, Cats, and Exotic Pets; Lopate, C., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 2012; pp. 259–272. [Google Scholar] [CrossRef]
- Kotlarz, K.; Mielczarek, M.; Wang, Y.; Dou, J.; Suchocki, T.; Szyda, J. Identification of Functional Features Underlying Heat Stress Response in Sprague–Dawley Rats Using Mixed Linear Models. Sci. Rep. 2022, 12, 7671. [Google Scholar] [CrossRef] [PubMed]
- Meyer, T.N.; Silva, A.L.D. A Simple Experimental Model of Heat Shock Response in Rats. Acta Cir. Bras. 1998, 13, 217–221. [Google Scholar] [CrossRef]
- Dou, J.; Khan, A.; Khan, M.Z.; Mi, S.; Wang, Y.; Yu, Y.; Wang, Y. Heat Stress Impairs the Physiological Responses and Regulates Genes Coding for Extracellular Exosomal Proteins in Rat. Genes 2020, 11, 306. [Google Scholar] [CrossRef]
- Hu, X.; Guo, J.; Zhao, C.; Jiang, P.; Maimai, T.; Yanyi, L.; Cao, Y.; Fu, Y.; Zhang, N. The gut microbiota contributes to the development of Staphylococcus aureus-induced mastitis in mice. ISME J. 2020, 14, 1897–1910. [Google Scholar] [CrossRef]
- Ran, X.; Liu, J.; Fu, S.; He, F.; Li, K.; Hu, G.; Guo, W. Phytic Acid Maintains the Integrity of the Blood–Milk Barrier by Regulating Inflammatory Response and Intestinal Flora Structure. J. Agric. Food Chem. 2022, 70, 381–391. [Google Scholar] [CrossRef]
- Li, K.; Ran, X.; Zeng, Y.; Li, S.; Hu, G.; Wang, X.; Li, Y.; Yang, Z.; Liu, J.; Fu, S. Maslinic acid alleviates LPS-induced mice mastitis by inhibiting inflammatory response, maintaining the integrity of the blood-milk barrier and regulating intestinal flora. Int. Immunopharmacol. 2023, 122, 110551. [Google Scholar] [CrossRef]
- Giffen, P.S.; Turton, J.; Andrews, C.M.; Barrett, P.; Clarke, C.J.; Fung, K.-W.; Munday, M.R.; Roman, I.F.; Smyth, R.; Walshe, K.; et al. Markers of experimental acute inflammation in the Wistar Han rat with particular reference to haptoglobin and C-reactive protein. Arch. Toxicol. 2003, 77, 392–402. [Google Scholar] [CrossRef]
- Vasiu, I.; Dąbrowski, R.; Wochnik, M.; Płusa, A.; Tvarijonaviciute, A. A systematic review of mammary gland inflammations in queens (Felis catus). Anim. Reprod. Sci. 2023, 256, 107318. [Google Scholar] [CrossRef]
- Vasiu, I.; Dąbrowski, R.; Tvarijonaviciute, A. Lactation-related mammary gland pathologies-A neglected emergency in the bitch. Reprod. Domest. Anim. 2021, 56, 208–230. [Google Scholar] [CrossRef]
- Vasiu, I.; Tabaran, F.; Pop, R.A.; Brudasca, F.G.; Tvarijonaviciute, A.; Dabrowski, R. Usefulness of cytological evaluation of milk in diagnosing mastitis in bitches. Med. Weter. 2018, 74, 640–645. [Google Scholar] [CrossRef]
- Fàbrega, A.; Madurga, S.; Giralt, E.; Vila, J. Mechanism of action of and resistance to quinolones. Microb. Biotechnol. 2009, 2, 40–61. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Halawa, E.M.; Fadel, M.; Al-Rabia, M.W.; Behairy, A.; Nouh, N.A.; Abdo, M.; Olga, R.; Fericean, L.; Atwa, A.M.; El-Nablaway, M.; et al. Antibiotic action and resistance: Updated review of mechanisms, spread, influencing factors, and alternative approaches for combating resistance. Front. Pharmacol. 2024, 14, 2023. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, J.W. Exotic Animal Formulary, 4th ed.; Carpenter, J.W., Marion, C.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 978-1-4377-2264-2. [Google Scholar]
- Meredith, A.; British Small Animal Veterinary Association. Small Animal Formulary: Part B: Exotic Pets, 9th ed.; Meredith, A., Ed.; BSAVA, British Small Animal Veterinary Association: Quedgeley, UK, 2015; reprinted with corrections; ISBN 978-1-905319-82-4. [Google Scholar]
- Simonin, M.A.; Gegout-Pottie, P.; Minn, A.; Gillet, P.; Netter, P.; Terlain, B. Proteoglycan and Collagen Biochemical Variations during Fluoroquinolone-Induced Chondrotoxicity in Mice. Antimicrob. Agents. Chemother. 1999, 43, 2915–2921. [Google Scholar] [CrossRef]
- Burdet, C.; Sayah-Jeanne, S.; Nguyen, T.T.; Hugon, P.; Sablier-Gallis, F.; Saint-Lu, N.; Corbel, T.; Ferreira, S.; Pulse, M.; Weiss, W.; et al. Antibiotic-Induced Dysbiosis Predicts Mortality in an Animal Model of Clostridium difficile Infection. Antimicrob. Agents. Chemother. 2018, 62, e00925-18. [Google Scholar] [CrossRef]
- He, Z.; Li, W.; Yuan, W.; He, Y.; Xu, J.; Yuan, C.; Zhao, C.; Zhang, N.; Fu, Y.; Hu, X. Lactobacillus reuteri inhibits Staphylococcus aureus-induced mastitis by regulating oxytocin releasing and gut microbiota in mice. FASEB J. 2024, 38, e23383. [Google Scholar] [CrossRef]
- França, C.A.; Peixoto, R.M.; Cavalcante, M.B.; Melo, N.F.; Oliveira, C.J.B.; Veschi, J.L.A.; Mota, R.A.; Costa, M.M. Antimicrobial resistance of Staphylococcus spp. from small ruminant mastitis in Brazil. Pesq. Vet. Bras. 2012, 32, 747–753. [Google Scholar] [CrossRef]
- Yalcin, S.; Ozgen, A.; Simsir, M. Molecular characteristics and antimicrobial susceptibility profiles of bovine mastitis agents in western Türkiye. J. Vet. Sci. 2024, 25, e72. [Google Scholar] [CrossRef]
- Moradi, A.; Bidarian, B.; Mohammadian, F.; Akbarian, F.; Kalateh Rahmani, H.; Tashakkori, N.; Khoramian, B. Trends in Antimicrobial Resistance of Major Mastitis-Causing Pathogens: A Nine-Year Study. Vet. Med. Sci. 2025, 11, e70417. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ceniti, C.; Britti, D.; Santoro, A.M.L.; Musarella, R.; Ciambrone, L.; Casalinuovo, F.; Costanzo, N. Phenotypic antimicrobial resistance profile of isolates causing clinical mastitis in dairy animals. Ital. J. Food Saf. 2017, 6, 6612. [Google Scholar] [CrossRef]
- Sansone, J.M.; Wilsman, N.J.; Leiferman, E.M.; Conway, J.; Hutson, P.; Noonan, K.J. The effect of fluoroquinolone antibiotics on growing cartilage in the lamb model. J. Pediatr. Orthop. 2009, 29, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Banar, M.; Kamyab, H.; Torkashvand, N.; Zahraei Salehi, T.; Sepehrizadeh, Z.; Shahverdi, A.R.; Pourmand, M.R.; Yazdi, M.H. A novel broad-spectrum bacteriophage cocktail against methicillin-resistant Staphylococcus aureus: Isolation, characterization, and therapeutic potential in a mastitis mouse model. PLoS ONE 2025, 20, e0316157. [Google Scholar] [CrossRef]
- Shao, K.; Yang, Y.; Gong, X.; Chen, K.; Liao, Z.; Ojha, S.C. Staphylococcal Drug Resistance: Mechanisms, Therapies, and Nanoparticle Interventions. Infect. Drug. Resist. 2025, 18, 1007–1033. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ho, P.-L.; Lo, W.-U.; Lai, E.L.; Law, P.Y.; Leung, S.M.; Wang, Y.; Chow, K.-H. Clonal Diversity of CTX-M-Producing, Multidrug-Resistant Escherichia coli from Rodents. J. Med. Microbiol. 2015, 64, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, R.S.; Marenda, M.S.; Devlin, J.M.; Wilks, C.R. Antimicrobial Use in Laboratory Rodent Facilities in Australia and New Zealand- a Cross-Sectional Survey of Veterinarians and Facility Managers. PLoS ONE 2024, 19, e0292908. [Google Scholar] [CrossRef]
- Martinez, J.L. Environmental Pollution by Antibiotics and by Antibiotic Resistance Determinants. Environ. Pollut. 2009, 157, 2893–2902. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, Y.; Wu, L.; Huang, Y.; Christie, P. Residues and Potential Ecological Risks of Veterinary Antibiotics in Manures and Composts Associated with Protected Vegetable Farming. Environ. Sci. Pollut. Res. Int. 2015, 22, 5908–5918. [Google Scholar] [CrossRef]
- Zhao, C.; Hu, X.; Bao, L.; Wu, K.; Zhao, Y.; Xiang, K.; Li, S.; Wang, Y.; Qiu, M.; Feng, L.; et al. Gut dysbiosis induces the development of mastitis through a reduction in host anti-inflammatory enzyme activity by endotoxemia. Microbiome 2022, 10, 205. [Google Scholar] [CrossRef]
- Drugea, R.I.; Siteavu, M.I.; Pitoiu, E.; Delcaru, C.; Sârbu, E.M.; Postolache, C.; Bărăităreanu, S. Prevalence and Antibiotic Resistance of Escherichia coli Isolated from Raw Cow’s Milk. Microorganisms 2025, 13, 209. [Google Scholar] [CrossRef]
- Pascu, C.; Herman, V.; Iancu, I.; Costinar, L. Etiology of Mastitis and Antimicrobial Resistance in Dairy Cattle Farms in the Western Part of Romania. Antibiotics 2022, 11, 57. [Google Scholar] [CrossRef] [PubMed]
- Gauba, A.; Rahman, K.M. Evaluation of Antibiotic Resistance Mechanisms in Gram-Negative Bacteria. Antibiotics 2023, 12, 1590. [Google Scholar] [CrossRef] [PubMed]
- de Souza, M.M.S.; Dubenczuk, F.C.; Melo, D.A.; Holmström, T.C.N.; Mendes, M.B.; Reinoso, E.B.; Coelho, S.M.O.; Coelho, I.S. Antimicrobial therapy approaches in the mastitis control driven by one health insights. Braz. J. Vet. Med. 2024, 46, e002624. [Google Scholar] [CrossRef] [PubMed]
- Berkson, J.D.; Wate, C.E.; Allen, G.B.; Schubert, A.M.; Dunbar, K.E.; Coryell, M.P.; Sava, R.L.; Gao, Y.; Hastie, J.L.; Smith, E.M.; et al. Phage-specific immunity impairs efficacy of bacteriophage targeting Vancomycin Resistant Enterococcus in a murine model. Nat. Commun. 2024, 15, 2993. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, X.; Daniel, R.C.; Okeugo, B.; Armbrister, S.A.; Luo, M.; Taylor, C.M.; Wu, G.; Rhoads, J.M. Impact of probiotic Limosilactobacillus reuteri DSM 17938 on amino acid metabolism in the healthy newborn mouse. Amino Acids 2022, 54, 1383–1401. [Google Scholar] [CrossRef]
- Hashem, A.E.; Elmasry, I.H.; Lebda, M.A.; El-Karim, D.R.S.G.; Hagar, M.; Ebied, S.K.M.; Alotaibi, B.S.; Rizk, N.I.; Ghamry, H.I.; Shukry, M.; et al. Characterization and Antioxidant Activity of Nano-Formulated Berberine and Cyperus rotundus Extracts with Anti-Inflammatory Effects in Mastitis-Induced Rats. Sci. Rep. 2024, 14, 18462. [Google Scholar] [CrossRef]
- Yu, J.; Li, W.; Xu, R.; Liu, X.; Gao, G.; Kwok, L.-Y.; Chen, Y.; Sun, Z.; Liu, W.; Zhang, H. Probio-M9, a Breast Milk-Originated Probiotic, Alleviates Mastitis and Enhances Antibiotic Efficacy: Insights into the Gut-Mammary Axis. Imeta 2024, 3, e224. [Google Scholar] [CrossRef]
- Xie, X.; Cao, M.; Yan, S.; Gao, H.; Yang, Y.; Zeng, J.; Zhang, G.; Zhao, J. The Preventive Effect of Probiotic Lactobacillus plantarum X86 Isolated from Raw Milk on Staphylococcus aureus—Induced Mastitis in Rats. Front. Vet. Sci. 2025, 12, 1476232. [Google Scholar] [CrossRef]
- Guardabassi, L.; Prescott, J.F. Antimicrobial stewardship in small animal veterinary practice: From theory to practice. Vet. Clin. N. Am. Small Anim. Pract. 2015, 45, 361–376. [Google Scholar] [CrossRef]
- Scarborough, R.; Hardefeldt, L.; Browning, G.; Bailey, K. Pet Owners and Antibiotics: Knowledge, Opinions, Expectations, and Communication Preferences. Antibiotics 2021, 10, 1326. [Google Scholar] [CrossRef]
- Varela, K.; Brown, J.A.; Lipton, B.; Dunn, J.; Stanek, D.; Behravesh, C.B.; Chapman, H.; Conger, T.H.; Vanover, T.; Edling, T.; et al. A Review of Zoonotic Disease Threats to Pet Owners: A Compendium of Measures to Prevent Zoonotic Diseases Associated with Non-Traditional Pets: Rodents and Other Small Mammals, Reptiles, Amphibians, Backyard Poultry, and Other Selected Animals. Vector Borne Zoonotic Dis. 2022, 22, 303–360. [Google Scholar] [CrossRef] [PubMed]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6, 521–547. [Google Scholar] [CrossRef] [PubMed]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed]
- Damborg, P.; Broens, E.M.; Chomel, B.B.; Guenther, S.; Pasmans, F.; Wagenaar, J.A.; Weese, J.S.; Wieler, L.H.; Windahl, U.; Vanrompay, D.; et al. Bacterial Zoonoses Transmitted by Household Pets: State-of-the-Art and Future Perspectives for Targeted Research and Policy Actions. J. Comp. Pathol. 2016, 155, S27–S40. [Google Scholar] [CrossRef]
Anatomy and Histology Features | References | ||||
---|---|---|---|---|---|
Rat | Mice | Hamster | Gerbil | ||
Major lactiferous ducts | Single lactiferous duct or sinus forming up to 10 secondary branching ducts; single complex branching. | Single complex branching. | [13,16,17,18] | ||
Functional glandular unit | LA unit; matures only during gestation. | TDLU; matures only during gestation. | Lobules with acini and ducts that transport milk, surrounded by fat. The ducts are lined with a luminal and basal layer of epithelial cells. | Ductal system with bilayered epithelium of outer myoepithelial cells and inner luminal cells, forming ducts and alveoli surrounded by fat. | |
Premature mammary gland | No LA unit; the ducts have blunt ends. | TDLU forming. | |||
Mature mammary gland | Only adipose tissue with minimal connective tissue surrounding quiescent ducts. | Increase in epithelial cell height and acini diameter; the glandular epithelium replaces the adipose tissue; the collagen composition of the stroma changes. Alveolar lumens become distended with milk. | |||
Lactating mammary gland | Well-formed acini with intraluminal milk and nuclear atypia. |
Phylum | Morphology and Gram Staining | Milk Pathogens | References |
---|---|---|---|
Actinobacteria | High G + C Gram-positives | Corynebacterium bovis | [26] |
Trueperella pyogenes | |||
Mycobacterium bovis | |||
Mycoplasmatota | Acholeplasma laidlawii | ||
Streptococcus Firmicutes | Gram-positive bacilli | Lactococcus lactis | [27] |
Gram-positive cocci | Staphylococcus aureus | [6,24,27,28,29] | |
Staphylococcus chromogenes | [27,28] | ||
Staphylococcus epidermidis | [26] | ||
Staphyloccocus lentus | [28] | ||
Mammaliicoccus fleurettii | [28] | ||
Staphylococcus saprophyticus | [26,28] | ||
Streptococcus acidominimus | |||
Streptococcus agalactiae | |||
Streptococcus uberis | |||
Gram-negative cocci | Mycoplasmopsis agalactiae | ||
Mycoplasmopsis bovigenitalium | |||
Mycoplasmopsis bovirhinis | |||
Mesomycoplasma dispar | |||
Mycoplasma mycoides | |||
Mycoplasmopsis arginini | |||
Mesomycoplasma ovipneumoniae | |||
Mycoplasmopsis bovis | |||
Proteobacteria | Gram-negative bacilli | Pseudomonas aeruginosa | |
Mannheimia haemolytica | |||
Rodentibacter pneumotropicus | [2] | ||
Escherichia coli | [3,26] | ||
Klebsiella pneumoniae | [2,22] | ||
Gram-negative curved bacilli | Campylobacter coli | [26] | |
Fungi | Yeast-like | Candida albicans | |
Candida krusei |
Clinical Findings | Laboratory Findings | References | |
---|---|---|---|
Subclinical mastitis a | Dams—no obvious signs of inflammation. Offspring—failure to thrive; neonatal death; loss of entire litter. | Leukocytosis, anemia, alkaline milk pH, elevated levels of APPs, increased somatic cell count in milk, and the presence of milk pathogens. | |
Clinical mastitis | Dams—local signs—hypertrophy, discolored skin, nodules. Systemic signs—vaginal discharge, agalactia, septicemia, fever, weakness, tremors, KCS, purulent epiphora, and enteritis. Offspring—failure to thrive, neonatal death, and loss of the entire litter. | a Milk analyses—alkaline pH, numerous degenerated neutrophils, engulfed bacteria on milk smears, and the presence of pathogenic milk microorganisms. Hematology—normochromic microcytic anemia, neutrophilia, and lymphopenia. Biochemistry—elevated levels of Hp, IL-1β, IL-6, TNF-α or MPO, proteinuria and hemoglobinuria. | [3,4,5,6,7,8,9,22,24] |
Drug Class | Drugs | Dosages * |
---|---|---|
Penicillin | Amoxicillin a | 100–150 mg kg IM SC BID |
Amphenicols | Chloramphenicol | 30–50 mg/kg IV IM SC PO SID/BID |
Fluoroquinolones | Enrofloxacin b | 5–20 mg/kg SC PO SID/BID |
Sulfonamides | Trimethoprim c | 50–100 mg/kg PO SC SID |
NSAIDs | Meloxicam d | 1–2 mg/kg SC PO SID |
Opioid analgesic | Buprenorphine | 0.01–0.05 mg/kg IM SC BID TID |
Species | Bacterial Species Isolated | Resistance Profile | Clinical Treatment |
---|---|---|---|
Hamster | Staphylococcus aureus, Escherichia coli, Pasteurellaceae, Rodentibacter pneumotropicus | Resistance to penicillin; fluoroquinolones contraindicated (growth cartilage defects); variable resistance to enrofloxacin, chloramphenicol, and trimethoprim | Enrofloxacin, chloramphenicol, trimethoprim; NSAIDs (meloxicam); warm compresses; debridement in severe cases |
Mouse | Staphylococcus aureus (including MRSA), Escherichia coli, Staphylococcaceae, Pasteurellaceae | MRSA strains with mecA gene; high resistance to clindamycin (79%) and trimethoprim-sulfamethoxazole (35%); low resistance to linezolid and doxycycline | Bacteriophages; antibiotics based on susceptibility testing; probiotics; botanical extracts |
Rat | Klebsiella pneumoniae, Staphylococcus aureus, Escherichia coli | Resistance data limited; concern for antibiotic resistance, especially under heat stress | Cautious antibiotic use; supportive care; experimental therapeutics under study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pop, R.A.; Vasiu, I.; Dejescu, C.-A.; Martino, P.A.; Wochnik, M.; Dąbrowski, R. Decoding Mastitis in Small Rodent Pets: Pathophysiology, Antimicrobial Resistance Profiles, and Future Directions in Treatment Strategies. Antibiotics 2025, 14, 1000. https://doi.org/10.3390/antibiotics14101000
Pop RA, Vasiu I, Dejescu C-A, Martino PA, Wochnik M, Dąbrowski R. Decoding Mastitis in Small Rodent Pets: Pathophysiology, Antimicrobial Resistance Profiles, and Future Directions in Treatment Strategies. Antibiotics. 2025; 14(10):1000. https://doi.org/10.3390/antibiotics14101000
Chicago/Turabian StylePop, Raul Alexandru, Iosif Vasiu, Cosmina-Andreea Dejescu, Piera Anna Martino, Marco Wochnik, and Roman Dąbrowski. 2025. "Decoding Mastitis in Small Rodent Pets: Pathophysiology, Antimicrobial Resistance Profiles, and Future Directions in Treatment Strategies" Antibiotics 14, no. 10: 1000. https://doi.org/10.3390/antibiotics14101000
APA StylePop, R. A., Vasiu, I., Dejescu, C.-A., Martino, P. A., Wochnik, M., & Dąbrowski, R. (2025). Decoding Mastitis in Small Rodent Pets: Pathophysiology, Antimicrobial Resistance Profiles, and Future Directions in Treatment Strategies. Antibiotics, 14(10), 1000. https://doi.org/10.3390/antibiotics14101000