Infection Prevention and Control Strategies According to the Type of Multidrug-Resistant Bacteria and Candida auris in Intensive Care Units: A Pragmatic Resume including Pathogens R0 and a Cost-Effectiveness Analysis
Abstract
:1. Introduction
2. Methodology
3. Outbreaks Genesis
4. Risk Factors for Outbreak
- It is defined by the presence of an MDRO without the evidence of tissue invasion or associated symptoms:
- ○
- Regular sites: Respiratory secretions (nostrils, pharynx, and endotracheal aspirates), wounds, skin, urine, and the rectum. More than one site could be affected by the same colonization.
- ○
- Sterile sites (not interpretable as colonization): Blood, liquor, pleural, peritoneal, and synovial liquids.
- A colonized patient always represents a potential source of transmission.
- It requires contact and/or respiratory isolation beyond routine IPC procedures.
- Decolonization is not currently recommended in the ICU setting.
5. Strategies
6. Nurse-to-Patient Ratio
7. Physician/Patient Ratio
8. Education
- Printed educational materials
- Educational meetings
- Educational outreach
- Local opinion leaders
- Audit and feedback
- Computerized reminders
- Tailored interventions
- IPC programs
- IPC guidelines (both at the national level and facility level)
- IPC education and training
- Healthcare-associated infection (HCAI) surveillance
- Multimodal strategies for implementing IPC
- IPC monitoring, evaluation, and feedback
- Workload, staffing, and bed occupancy (at the facility level)
- Built environment, materials, and equipment for IPC (at the facility level)
9. Isolation
9.1. Respiratory Isolation
- A negative-pressure room for patients who were colonized or infected by potential air-spreading pathogens (i.e., coronaviruses, Mycobacterium tuberculosis, varicella zoster virus, and measles);
- A positive-pressure room for patients who are likely more susceptible to acquiring an infection, such as solid-organ transplant (SOT) recipients, hematopoietic stem cell transplant (HSCT) patients, patients with the presence of hematological disorders, and patients with chronic use of corticosteroids, calcineurin inhibitors, anti-metabolites, and other immunosuppressants.
9.2. Contact Isolation
10. MDRO Decolonization
10.1. Gram-Negative Bacteria (GNB)
10.2. Gram Positive Bacteria (GPB)
10.3. Candida auris
11. Hand Hygiene
12. Shoe and Medical Equipment Hygiene
13. Screening
- Use of risk-assessment scores for MDRO acquisition and infection development;
- Active screening for MDROs through weekly sample collection (skin, rectal, and/or respiratory according to the pathogen);
- Periodical environmental sample surveillance on high-touch surfaces (no standardized period has been proposed, but it would be advisable to perform this procedure at least once a week);
- Whole genome sequencing (WGS) whenever an MDRO is identified to identify putative transmission chains and to stratify patients.;
- Isolation, contact precautions, hand hygiene, and environmental cleaning should be performed in conformity with actual guidelines (see Environmental Cleaning and Hand Hygiene Sections).
- a.
- Risk-assessment scores
Type of MDRO | Type of Risk | Risk-Assessment Score | Description | Performance |
---|---|---|---|---|
Candida spp. [92] | Colonization | Candida Colonization Index [93] | Ratio of number of (non-blood) sites colonized with Candida spp. /total number of sites cultured Threshold = 0.5 | PPV = 66% NPV = 100% |
Infection | Candida score [94] | Candida Score = TPN (1 point), surgery (1 point), severe sepsis (2 points), multifocal Candida colonization (1 point); threshold = 2.5 | Sensitivity = 81% Specificity = 74% PPV = 16% NPV = 98% | |
Ostrosky-Zeichner Clinical Prediction Rule [95] | Mechanical ventilation ≥48 h AND systemic antibiotic AND CVP (on any day in day 1–3 period of ICU admission) plus ≥1 of the following: any major surgery (days 7–0), pancreatitis (days 7–0), use of steroids/other immunosuppressive agents (days 7–0), use of TPN (days 1–3), or dialysis (days 1–3) | Sensitivity = 50% Specificity = 83% PPV = 10% NPV = 97% | ||
ESBL-producing Enterobacteriacae | Colonization | Tumbarello et al. [96] | Recent (≤12 months before admission) hospitalization, transfer from another healthcare facility, Charlson comorbidity score ≥ 4, recent (≤3 months before admission) β-lactam and/or fluoroquinolone treatment, recent urinary catheterization, and age ≥70 years | With cutoff score ≥ 3: Sensitivity = 94% Specificity = 41% PPV = 44% NPV = 93% |
Infection (BSI) | ESBL Prediction Score (ESBL-PS) [97] | Outpatient procedures within 1 month, prior infections or colonization with ESBL-E within 12 months, and number of prior courses of β-lactams and/or fluoroquinolones used within 3 months of BSI | With cutoff score ≥ 1: Sensitivity = 88% Specificity = 77% PPV = 16% NPV = 99% With cutoff score ≥ 3: Sensitivity = 43% Specificity = 96% PPV = 33% NPV = 97% | |
CPE | Colonization | Papafotiou et al. [98] | Karnofsky score, previous hospitalization, stay in a long-term care facility, history of ≥2 different interventional procedures, previous CPE colonization or infection, renal replacement therapy, and diabetes with end-organ damage | With cutoff score ≥ 27: Sensitivity = 72% Specificity = 81% PPV = 15% NPV = 98% |
CRAB | Infection | Cogliati Dezza et al. [99] | CRAB colonization, higher CCI, multisite colonization, and the need for mechanical ventilation | Unknown |
XDR A. baumanii | Colonization | Moghnieh et al. [100] | Urinary catheter placement >6 days, ICU contact pressure for >4 days, presence of gastrostomy tube, and previous use of carbapenems or piperacillin/tazobactam | Unknown |
MRSA | Colonization | Torres et Sampathkumar [101] | Nursing home residence, diabetes, hospitalization in the past year, and chronic skin condition/infection | With cutoff score ≥ 8: Sensitivity = 54% Specificity = 80% |
VRE | Colonization | PREVENT score [102] | Age of ≥60 years, hemato-oncological disease, cumulative antibiotic treatment for >4 weeks, and VRE infection | Sensitivity = 82% Specificity = 77% PPV = 57% NPV = 92% |
MDROs | Colonization | AutoRAS- MDRO [103] | Electronic health records (EHRs) | Sensitivity = 81% Specificity = 79% PPV = 49% NPV = 94% |
- b.
- CRAB screening
- c.
- Rectal screening for carbapenem-resistant Gram-negative bacteria (CR-GNB)
- -
- Single-use gloves and gowns should be worn during assistance (worn at the moment of entering the room of the patient with CR-GNB colonization and removed at the moment of exiting the patient’s room);
- -
- Gloves and gowns should be used individually for every patient with CR-GNB colonization, since the CR-GNB could vary in species and resistance profile;
- -
- Gloves and gowns should be changed according to the WHO’s guidelines regarding the ‘Five moments’ and ‘six movements’ [59].
- d.
- Skin screening for MRSA
- e.
- Environmental samples surveillance
- f.
- Whole genome sequencing (WGS)
14. Environmental Cleaning
14.1. Air Cleaning
14.2. Surface Cleaning
15. Antimicrobial Stewardship Program
- -
- Whenever an infectious disease is suspected;
- -
- When the patient presents fever;
- -
- Whenever a new cultural or serological positivity is released by the microbiological laboratory;
- -
- For antimicrobic therapy initiation, monitoring, and discontinuation.
16. Outbreak Reporting
17. CRE Prevention among Special Populations
17.1. Hematological Patients
17.2. Neutropenic Patients
17.3. Hemodialysis Patients
18. Cost-Effectiveness and MDRO Reproduction Number (R0)
18.1. CRE
18.2. VRE
18.3. MRSA
18.4. CRAB
18.5. Candida auris
19. New Experimental Strategies
- Proactive reinforcement of all routine IPC practices among HCWs:
- Improving HH compliance with direct observations of the WHO’s ‘5 moments’ for HH performed by IPC nurses followed by individualized verbal feedback;
- Establishing an ‘improvement group’ with medical and nursing staff to analyze critical issues regarding HH compliance;
- Monitoring compliance with contact precautions performed by IPC nurses using two specific checklists;
- Meetings with radiology and transport personnel to reinforce compliance with IPC measures.
- Extended CRAB screening:
- For all patients with an expected ICU length of stay > 24 h in ICU;
- At admission and weekly thereafter;
- Swabs should be performed in axilla, groin, trachea, and rectum.
- Contact precaution measures:
- For all patients until discharge, independently of CRAB status;
- Single-use gloves and gowns should be worn before entering each single-patient unit, and gloves should be changed according to the WHO’s 5 moments for HH [59]).
- Environmental sampling:
- By means of pre-moistened sterile gauze pads, suggested by Corbella et al., as it showed an increased sensitivity for A. baumanii [181];
- After rubbing all ICU surfaces vigorously, moistened gauze pads should be firstly put in incubation for 24 h at 37 °C in a screw-cap container with 10 mL of brain heart infusion medium (BHI), and secondly sampled into MacConkey agar plates and incubated aerobically at 37 °C for 48 h.
- Cycling radical cleaning and disinfection:
- Performed for all rooms, common areas, and patients;
- Use of 10% sodium hypochlorite for environmental surfaces;
- Use of hydrogen peroxide in wipes for medical devices;
- Cleaning and disinfection should be performed from upper corner to opposite lower corner starting from a transitory unit, and disinfection should be checked by IPC nurses through fluorescein spray with an UV torch, with special attention to hard-to-reach areas, and if not effectively cleaned, disinfection should be repeated;
- All disinfected surfaces should dry completely before re-using them;
- After common area sanitization, the colonized patient is moved from their original unit to a transitory unit, where the patient’s disinfection is performed with 2% leave-on chlorhexidine disposable cloths while the patient’s original unit becomes disinfected, and once the bed is cleaned, the disinfected patient can come back to their original room, and the transitory room becomes cleaned thereafter;
- The whole cycle process takes around 6 h to be completed;
- The process requires the recruitment of two people dedicated to cleaning and an additional nursing shift.
20. Future Perspectives of IPC
- The most effective IPC strategy remains unknown, as a multimodal approach does not identify the most effective strategy, given that all strategies are applied simultaneously [105].
- Any outbreak should be a reason to intensify IPC (infection prevention and control) measures [52].
- A single CRE patient could be responsible for up to 11 contagions.
- Further studies are needed to strengthen ideas in favor or against MDRO decolonization in the ICU setting.
- A standardized, universal, pragmatic protocol for HCW education should be elaborated.
- A rapid outbreak recognition tool (i.e., an easy-to-use mathematical model) should be proposed to improve early diagnosis and prevent spreading.
- Standard cleaning with self-monitoring is insufficient to control MDRO environmental spread.
- Weekly rectal, pharyngeal, and tracheal swabs for CR-GNB should be performed [104].
- IPC strategies proved their cost-effectiveness independently to the country, pathogen, or type of strategy.
- New promising strategies are emerging and need to be tested in the field.
21. Limitations
22. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Blot, S.; Ruppé, E.; Harbarth, S.; Asehnoune, K.; Poulakou, G.; Luyt, C.-E.; Rello, J.; Klompas, M.; Depuydt, P.; Eckmann, C.; et al. Healthcare-associated infections in adult intensive care unit patients: Changes in epidemiology, diagnosis, prevention and contributions of new technologies. Intensiv. Crit. Care Nurs. 2022, 70, 103227. [Google Scholar] [CrossRef] [PubMed]
- WHO Launches First Ever Global Report on Infection Prevention and Control. Available online: https://www.who.int/news/item/06-05-2022-who-launches-first-ever-global-report-on-infection-prevention-and-control (accessed on 1 July 2024).
- New World Bank Country Classifications by Income Level: 2022–2023. Available online: https://blogs.worldbank.org/en/opendata/new-world-bank-country-classifications-income-level-2022-2023 (accessed on 1 July 2024).
- Markwart, R.; Saito, H.; Harder, T.; Tomczyk, S.; Cassini, A.; Fleischmann-Struzek, C.; Reichert, F.; Eckmanns, T.; Allegranzi, B. Epidemiology and burden of sepsis acquired in hospitals and intensive care units: A systematic review and meta-analysis. Intensiv. Care Med. 2020, 46, 1536–1551. [Google Scholar] [CrossRef]
- Jiang, H.; Pu, H.; Huang, N. Risk predict model using multi-drug resistant organism infection from Neuro-ICU patients: A retrospective cohort study. Sci. Rep. 2023, 13, 1–7. [Google Scholar] [CrossRef]
- Al-Sunaidar, K.A.; Aziz, N.A.; Hassan, Y.; Jamshed, S.; Sekar, M. Association of Multidrug Resistance Bacteria and Clinical Outcomes of Adult Patients with Sepsis in the Intensive Care Unit. Trop. Med. Infect. Dis. 2022, 7, 365. [Google Scholar] [CrossRef]
- Zahar, J.-R.; Blot, S. Dilemmas in infection control in the intensive care unit. Intensiv. Crit. Care Nurs. 2018, 46, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Bixler, D. Outbreak Investigation. 2014. Available online: https://oeps.wv.gov/hai/documents/lhd/hai-protocol.pdf (accessed on 1 July 2024).
- World Health Organization. World Health Organization Outbreak Communication Planning Guide; Guide de l’OMS sur la planification de la communication lors des flambées de maladies; World Health Organization: Geneva, Switzerland, 2008; Volume 30, Available online: https://www.afro.who.int/sites/default/files/2017-06/outbreak_com_plan_guide.pdf (accessed on 1 July 2024).
- Al-Dorzi, H.M.; Arabi, Y.M. Outbreaks in the adult ICUs. Curr. Opin. Infect. Dis. 2017, 30, 432–439. [Google Scholar] [CrossRef]
- Jackson, K.C.; Short, C.T.; Toman, K.R.; Mietchen, M.S.; Lofgren, E.; Program, f.t.C.M.-H. Transient dynamics of infection transmission in a simulated intensive care unit. PLoS ONE 2022, 17, e0260580. [Google Scholar] [CrossRef]
- Tacconelli, E.; Cataldo, M.A.; Dancer, S.J.; De Angelis, G.; Falcone, M.; Frank, U.; Kahlmeter, G.; Pan, A.; Petrosillo, N.; Rodríguez-Baño, J.; et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clin. Microbiol. Infect. 2014, 20, 1–55. [Google Scholar] [CrossRef]
- Langford, D.; Williams, V. What Does ESBL Mean, and Why Does My Patient Require Contact Isolation? Crit. Care Nurs. Q. 2011, 34, 46–51. [Google Scholar] [CrossRef]
- Kovacic, A.; Music, M.S.; Dekic, S.; Tonkic, M.; Novak, A.; Rubic, Z.; Hrenovic, J.; Goic-Barisic, I. Transmission and survival of carbapenem-resistant Acinetobacter baumannii outside hospital setting. Int. Microbiol. 2017, 20, 165–169. [Google Scholar] [CrossRef]
- Popovich, K.J.; Aureden, K.; Ham, D.C.; Harris, A.D.; Hessels, A.J.; Huang, S.S.; Maragakis, L.L.; Milstone, A.M.; Moody, J.; Yokoe, D.; et al. SHEA/IDSA/APIC Practice Recommendation: Strategies to prevent methicillin-resistant Staphylococcus aureus transmission and infection in acute-care hospitals: 2022 Update. Infect. Control. Hosp. Epidemiol. 2023, 44, 1039–1067. [Google Scholar] [CrossRef] [PubMed]
- Dancer, S.J. Hospital cleaning in the 21st century. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 1473–1481. [Google Scholar] [CrossRef] [PubMed]
- Giovagnorio, F.; Geremia, N.; Scarparo, C.; Panese, S.; Bradariolo, S.; Berti, C.; Solinas, M.; Sanguinetti, M.; Selle, V.; Cozza, A.; et al. Successful control measures to treat the transmission of Candida auris in Northern Italian Hospital. New Microbiol. 2024, 46, 395–399. [Google Scholar] [PubMed]
- Luplertlop, N. Pseudallescheria/Scedosporium complex species: From saprobic to pathogenic fungus. J. Med. Mycol. 2018, 28, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Beam, E.L.; Schwedhelm, M.M.; Boulter, K.C.; Vasa, A.M.; Larson, L.; Cieslak, T.J.; Lowe, J.J.; Herstein, J.J.; Kratochvil, C.J.; Hewlett, A.L. Ebola Virus Disease. Nurs. Clin. North Am. 2019, 54, 169–180. [Google Scholar] [CrossRef]
- Kanamori, H.; Weber, D.J.; Rutala, W.A. Healthcare Outbreaks Associated With a Water Reservoir and Infection Prevention Strategies. Clin. Infect. Dis. 2016, 62, 1423–1435. [Google Scholar] [CrossRef]
- Hoenigl, M.; Salmanton-García, J.; Walsh, T.J.; Nucci, M.; Neoh, C.F.; Jenks, J.D.; Lackner, M.; Sprute, R.; Al-Hatmi, A.M.S.; Bassetti, M.; et al. Global guideline for the diagnosis and management of rare mould infections: An initiative of the European Confederation of Medical Mycology in cooperation with the International Society for Human and Animal Mycology and the American Society for Microbiology. Lancet Infect. Dis. 2021, 21, e246–e257. [Google Scholar] [CrossRef]
- Adams, C.E.; Dancer, S.J. Dynamic Transmission of Staphylococcus Aureus in the Intensive Care Unit. Int. J. Environ. Res. Public Health 2020, 17, 2109. [Google Scholar] [CrossRef]
- Demuyser, T.; De Cock, E.; Sermijn, E. Airborne Aspergillus fumigatus contamination in an intensive care unit: Detection, management and control. J. Infect. Public Health 2019, 12, 904–906. [Google Scholar] [CrossRef]
- Fiore, V.; De Vito, A.; Fanelli, C.; Geremia, N.; Princic, E.; Nivoli, A.; Maida, I.; Lorettu, L.; Madeddu, G.; Babudieri, S. Mood Reactive Disorders among COVID-19 Inpatients: Experience from a Monocentric Cohort. Med Princ. Pr. 2021, 30, 535–541. [Google Scholar] [CrossRef]
- Fragkou, P.C.; Moschopoulos, C.D.; Karofylakis, E.; Kelesidis, T.; Tsiodras, S. Update in Viral Infections in the Intensive Care Unit. Front. Med. 2021, 8. [Google Scholar] [CrossRef] [PubMed]
- Shariff, M.; Aditi, A.; Beri, K. Corynebacterium striatum: An emerging respiratory pathogen. J. Infect. Dev. Ctries 2018, 12, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, H.; Chen, D.; Du, P.; Lan, R.; Qiu, X.; Hou, X.; Liu, Z.; Sun, L.; Xu, S.; et al. Whole-Genome Sequencing Reveals a Prolonged and Persistent Intrahospital Transmission of Corynebacterium striatum, an Emerging Multidrug-Resistant Pathogen. J. Clin. Microbiol. 2019, 57, e00683-19. [Google Scholar] [CrossRef] [PubMed]
- Elliott, T.M.; Harris, P.N.; Roberts, L.W.; Doidge, M.; Hurst, T.; Hajkowicz, K.; Forde, B.; Paterson, D.L.; Gordon, L.G. Cost-effectiveness analysis of whole-genome sequencing during an outbreak of carbapenem-resistant Acinetobacter baumannii. Antimicrob. Steward. Health Epidemiol. 2021, 1, e62. [Google Scholar] [CrossRef] [PubMed]
- Righi, E.; Mutters, N.T.; Guirao, X.; del Toro, M.D.; Eckmann, C.; Friedrich, A.W.; Giannella, M.; Kluytmans, J.; Presterl, E.; Christaki, E.; et al. ESCMID/EUCIC clinical practice guidelines on perioperative antibiotic prophylaxis in patients colonized by multidrug-resistant Gram-negative bacteria before surgery. Clin. Microbiol. Infect. 2022, 29, 463–479. [Google Scholar] [CrossRef]
- Gordin, F.M.; Schultz, M.E.; Huber, R.; Zubairi, S.; Stock, F.; Kariyil, J. A Cluster of Hemodialysis-Related Bacteremia Linked to Artificial Fingernails. Infect. Control. Hosp. Epidemiol. 2007, 28, 743–744. [Google Scholar] [CrossRef]
- Moolenaar, R.L.; Crutcher, J.M.; Joaquin, V.H.S.; Sewell, L.V.; Hutwagner, L.C.; Carson, L.A.; Robison, D.A.; Smithee, L.M.; Jarvis, W.R. A Prolonged Outbreak ofPseudomonas Aeruginosain a Neonatal Intensive Care Unit Did Staff Fingernails Play a Role in Disease Transmission? Infect. Control. Hosp. Epidemiol. 2000, 21, 80–85. [Google Scholar] [CrossRef]
- Price, A.M.; Sarween, N.; Gupta, I.; Baharani, J. Risk factors and Short-term Outcomes for Methicillin-resistant Staphylococcus aureus and Methicillin-sensitive Staphylococcus aureus Colonization among Hemodialysis Patients. Saudi J. Kidney Dis. Transplant. 2019, 30, 1351–1363. [Google Scholar] [CrossRef]
- Olsen, K.; Danielsen, K.; Wilsgaard, T.; Sangvik, M.; Sollid, J.U.E.; Thune, I.; Eggen, A.E.; Simonsen, G.S.; Furberg, A.-S. Obesity and Staphylococcus aureus Nasal Colonization among Women and Men in a General Population. PLoS ONE 2013, 8, e63716. [Google Scholar] [CrossRef]
- Dossett, L.A.; Dageforde, L.A.; Swenson, B.R.; Metzger, R.; Bonatti, H.; Sawyer, R.G.; May, A.K. Obesity and Site-Specific Nosocomial Infection Risk in the Intensive Care Unit. Surg. Infect. 2009, 10, 137–142. [Google Scholar] [CrossRef]
- WHO 2022 IPC.pdf. Available online: https://cdn.who.int/media/docs/default-source/integrated-health-services-(ihs)/ipc/ipc-global-report/who_ipc_global-report_executive-summary.pdf (accessed on 1 July 2024).
- West, E.; Barron, D.N.; Harrison, D.; Rafferty, A.M.; Rowan, K.; Sanderson, C. Nurse staffing, medical staffing and mortality in Intensive Care: An observational study. Int. J. Nurs. Stud. 2014, 51, 781–794. [Google Scholar] [CrossRef]
- Mogyoródi, B.; Skultéti, D.; Mezőcsáti, M.; Dunai, E.; Magyar, P.; Hermann, C.; Gál, J.; Hauser, B.; Iványi, Z.D. Effect of an educational intervention on compliance with care bundle items to prevent ventilator-associated pneumonia. Intensiv. Crit. Care Nurs. 2023, 75, 103342. [Google Scholar] [CrossRef] [PubMed]
- Young, L.S.; Sabel, A.L.; Price, C.S. Epidemiologic, Clinical, and Economic Evaluation of an Outbreak of Clonal Multidrug-ResistantAcinetobacter baumanniiInfection in a Surgical Intensive Care Unit. Infect. Control. Hosp. Epidemiol. 2007, 28, 1247–1254. [Google Scholar] [CrossRef] [PubMed]
- Bray, K.; Wren, I.; Baldwin, A.; Ledger, U.S.; Gibson, V.; Goodman, S.; Walsh, D. Standards for nurse staffing in critical care units determined by: The British Association of Critical Care Nurses, The Critical Care Networks National Nurse Leads, Royal College of Nursing Critical Care and In-flight Forum. Nurs. Crit. Care 2010, 15, 109–111. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Rani, R. Nurse-to-patient ratio and nurse staffing norms for hospitals in India: A critical analysis of national benchmarks. J. Fam. Med. Prim. Care 2020, 9, 2631–2637. [Google Scholar] [CrossRef]
- Falk, A. Nurse staffing levels in critical care: The impact of patient characteristics. Nurs. Crit. Care 2022, 28, 281–287. [Google Scholar] [CrossRef]
- Neuraz, A.; Guérin, C.; Payet, C.; Polazzi, S.; Aubrun, F.; Dailler, F.; Lehot, J.-J.; Piriou, V.; Neidecker, J.; Rimmelé, T.; et al. Patient Mortality Is Associated With Staff Resources and Workload in the ICU. Crit. Care Med. 2015, 43, 1587–1594. [Google Scholar] [CrossRef]
- Gershengorn, H.B.; Harrison, D.A.; Garland, A.; Wilcox, M.E.; Rowan, K.M.; Wunsch, H. Association of Intensive Care Unit Patient-to-Intensivist Ratios with Hospital Mortality. JAMA Intern. Med. 2017, 177, 388–396. [Google Scholar] [CrossRef]
- I Dara, S.; Afessa, B. Intensivist-to-Bed Ratio. Chest 2005, 128, 567–572. [Google Scholar] [CrossRef]
- Gershengorn, H.B.; Pilcher, D.V.; Litton, E.; Anstey, M.; Garland, A.; Wunsch, H. Association of patient-to-intensivist ratio with hospital mortality in Australia and New Zealand. Intensiv. Care Med. 2021, 48, 179–189. [Google Scholar] [CrossRef]
- Agarwal, A.; Chen, J.-T.; Coopersmith, C.M.; Denson, J.L.; Dickert, N.W.; Ferrante, L.E.; Gershengorn, H.B.; Gosine, A.D.; Hayward, B.J.; Kaur, N.; et al. SWEAT ICU—An Observational Study of Physician Workload and the Association of Physician Outcomes in Academic ICUs. Crit. Care Explor. 2022, 4, e0774. [Google Scholar] [CrossRef] [PubMed]
- Kahn, J.M.; Yabes, J.G.; Bukowski, L.A.; Davis, B.S. Intensivist physician-to-patient ratios and mortality in the intensive care unit. Intensiv. Care Med. 2023, 49, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Estenssoro, E.; Alegría, L.; Murias, G.; Friedman, G.; Castro, R.; Nin Vaeza, N.; Loudet, C.; Bruhn, A.; Jibaja, M.; Ospina-Tascon, G.; et al. Organizational Issues, Structure, and Processes of Care in 257 ICUs in Latin America: A Study From the Latin America Intensive Care Network. Crit. Care Med. 2017, 45, 1325–1336. [Google Scholar] [CrossRef]
- Kerlin, M.P.; Caruso, P. Towards evidence-based staffing: The promise and pitfalls of patient-to-intensivist ratios. Intensiv. Care Med. 2022, 48, 225–226. [Google Scholar] [CrossRef] [PubMed]
- Guidelines on Core Components of Infection Prevent.pdf. Available online: https://iris.who.int/bitstream/10665/251730/1/9789241549929-eng.pdf (accessed on 1 July 2024).
- Menegueti, M.G.; Ciol, M.A.; Bellissimo-Rodrigues, F.; Auxiliadora-Martins, M.; Gaspar, G.G.; Canini, S.R.M.d.S.; Basile-Filho, A.; Laus, A.M. Long-term prevention of catheter-associated urinary tract infections among critically ill patients through the implementation of an educational program and a daily checklist for maintenance of indwelling urinary catheters. Medicine 2019, 98, e14417. [Google Scholar] [CrossRef]
- Meschiari, M.; Lòpez-Lozano, J.-M.; Di Pilato, V.; Gimenez-Esparza, C.; Vecchi, E.; Bacca, E.; Orlando, G.; Franceschini, E.; Sarti, M.; Pecorari, M.; et al. A five-component infection control bundle to permanently eliminate a carbapenem-resistant Acinetobacter baumannii spreading in an intensive care unit. Antimicrob. Resist. Infect. Control. 2021, 10, 1–13. [Google Scholar] [CrossRef]
- Flodgren, G.; Hall, A.M.; Goulding, L.; Eccles, M.P.; Grimshaw, J.M.; Leng, G.C.; Shepperd, S. Tools developed and disseminated by guideline producers to promote the uptake of their guidelines. Cochrane Database Syst. Rev. 2016, 2016, CD010669. [Google Scholar] [CrossRef]
- Moghnieh, R.; Al-Maani, A.S.; Berro, J.; Ibrahim, N.; Attieh, R.; Abdallah, D.; Al-Ajmi, J.; Hamdani, D.; Abdulrazzaq, N.; Omar, A.; et al. Mapping of infection prevention and control education and training in some countries of the World Health Organization’s Eastern Mediterranean Region: Current situation and future needs. Antimicrob. Resist. Infect. Control. 2023, 12, 1–12. [Google Scholar] [CrossRef]
- McNett, M.P.; O’mathúna, D.B.; Tucker, S.P.; Roberts, H.B.; Mion, L.C.P.; Balas, M.C.P. A Scoping Review of Implementation Science in Adult Critical Care Settings. Crit. Care Explor. 2020, 2, e0301. [Google Scholar] [CrossRef]
- Barbash, I.J.; Pike, F.; Gunn, S.R.; Seymour, C.W.; Kahn, J.M. Effects of Physician-targeted Pay for Performance on Use of Spontaneous Breathing Trials in Mechanically Ventilated Patients. Am. J. Respir. Crit. Care Med. 2017, 196, 56–63. [Google Scholar] [CrossRef]
- Phan, H.T.; Tran, H.T.T.; Dinh, A.P.P.; Ngo, H.T.; Theorell-Haglow, J.; Gordon, C.J. An educational intervention to improve hand hygiene compliance in Vietnam. BMC Infect. Dis. 2018, 18, 1–6. [Google Scholar] [CrossRef] [PubMed]
- your-5-moments-for-hand-hygiene-poster.pdf. Available online: https://cdn.who.int/media/docs/default-source/integrated-health-services-(ihs)/infection-prevention-and-control/your-5-moments-for-hand-hygiene-poster.pdf?sfvrsn=83e2fb0e_21 (accessed on 1 July 2024).
- World Health Organization & WHO Patient Safety. WHO Guidelines on Hand Hygiene in Health Care; World Health Organization: Geneva, Switzerland, 2009; Volume 262. [Google Scholar]
- Verderber, S.; Gray, S.; Suresh-Kumar, S.; Kercz, D.; Parshuram, C. Intensive Care Unit Built Environments: A Comprehensive Literature Review (2005–2020). HERD: Health Environ. Res. Des. J. 2021, 14, 368–415. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y.; Hernandez-Koutoucheva, A.; Musicha, P.; Bertrand, D.; Lye, D.; Ng, O.T.; Fenlon, S.N.; Chen, S.L.; Ling, M.L.; Tang, W.Y.; et al. Duration of Carbapenemase-Producing Enterobacteriaceae Carriage in Hospital Patients. Emerg. Infect. Dis. 2020, 26, 2182–2185. [Google Scholar] [CrossRef] [PubMed]
- Shenoy, E.S.; Paras, M.L.; Noubary, F.; Walensky, R.P.; Hooper, D.C. Natural history of colonization with methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus(VRE): A systematic review. BMC Infect. Dis. 2014, 14, 177. [Google Scholar] [CrossRef] [PubMed]
- Scanvic, A.; Denic, L.; Gaillon, S.; Giry, P.; Andremont, A.; Lucet, J.-C. Duration of Colonization by Methicillin-Resistant Staphylococcus aureus after Hospital Discharge and Risk Factors for Prolonged Carriage. Clin. Infect. Dis. 2001, 32, 1393–1398. [Google Scholar] [CrossRef]
- Sanford, M.D.; Widmer, A.F.; Bale, M.J.; Jones, R.N.; Wenzel, R.P. Efficient Detection and Long-Term Persistence of the Carriage of Methicillin-Resistant Staphylococcus aureus. Clin. Infect. Dis. 1994, 19, 1123–1128. [Google Scholar] [CrossRef]
- Larsson, A.-K.; Gustafsson, E.; Nilsson, A.C.; Odenholt, I.; Ringberg, H.; Melander, E. Duration of methicillin-resistant Staphylococcus aureus colonization after diagnosis: A four-year experience from southern Sweden. Scand. J. Infect. Dis. 2011, 43, 456–462. [Google Scholar] [CrossRef]
- Yiek, W.-K.; Tromp, M.; Strik-Albers, R.; van Aerde, K.; van der Geest-Blankert, N.; Wertheim, H.F.L.; Meijer, C.; Tostmann, A.; Bleeker-Rovers, C.P. Success rates of MRSA decolonization and factors associated with failure. Antimicrob. Resist. Infect. Control. 2022, 11, 1–14. [Google Scholar] [CrossRef]
- Tacconelli, E.; Mazzaferri, F.; de Smet, A.M.; Bragantini, D.; Eggimann, P.; Huttner, B.D.; Kuijper, E.J.; Lucet, J.-C.; Mutters, N.T.; Sanguinetti, M.; et al. ESCMID-EUCIC clinical guidelines on decolonization of multidrug-resistant Gram-negative bacteria carriers. Clin. Microbiol. Infect. 2019, 25, 807–817. [Google Scholar] [CrossRef]
- Debby, B.D.; Ganor, O.; Yasmin, M.; David, L.; Nathan, K.; Ilana, T.; Dalit, S.; Smollan, G.; Galia, R. Epidemiology of carbapenem resistant Klebsiella pneumoniae colonization in an intensive care unit. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1811–1817. [Google Scholar] [CrossRef]
- Papadimitriou-Olivgeris, M.; Marangos, M.; Fligou, F.; Christofidou, M.; Sklavou, C.; Vamvakopoulou, S.; Anastassiou, E.D.; Filos, K.S. KPC-producing Klebsiella pneumoniae enteric colonization acquired during intensive care unit stay: The significance of risk factors for its development and its impact on mortality. Diagn. Microbiol. Infect. Dis. 2013, 77, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Pisney, L.M.; Barron, M.A.; Kassner, E.; Havens, D.; Madinger, N.E. Carbapenem-Resistant Enterobacteriaceae Rectal Screening during an Outbreak of New Delhi Metallo-β-Lactamase–Producing Klebsiella pneumoniae at an Acute Care Hospital. Infect. Control. Hosp. Epidemiol. 2014, 35, 434–436. [Google Scholar] [CrossRef]
- Dickstein, Y.; Edelman, R.; Dror, T.; Hussein, K.; Bar-Lavie, Y.; Paul, M. Carbapenem-resistant Enterobacteriaceae colonization and infection in critically ill patients: A retrospective matched cohort comparison with non-carriers. J. Hosp. Infect. 2016, 94, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Saidel-Odes, L.; Polachek, H.; Peled, N.; Riesenberg, K.; Schlaeffer, F.; Trabelsi, Y.; Eskira, S.; Yousef, B.; Smolykov, R.; Codish, S.; et al. A Randomized, Double-Blind, Placebo-Controlled Trial of Selective Digestive Decontamination Using Oral Gentamicin and Oral Polymyxin E for Eradication of Carbapenem-Resistant Klebsiella pneumoniae Carriage. Infect. Control. Hosp. Epidemiol. 2012, 33, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Oren, I.; Sprecher, H.; Finkelstein, R.; Hadad, S.; Neuberger, A.; Hussein, K.; Raz-Pasteur, A.; Lavi, N.; Saad, E.; Henig, I.; et al. Eradication of carbapenem-resistant Enterobacteriaceae gastrointestinal colonization with nonabsorbable oral antibiotic treatment: A prospective controlled trial. Am. J. Infect. Control. 2013, 41, 1167–1172. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.; Herwaldt, L. Nasal decolonization: What antimicrobials and antiseptics are most effective before surgery and in the ICU. Am. J. Infect. Control. 2023, 51, A64–A71. [Google Scholar] [CrossRef]
- Ridenour, G.; Lampen, R.; Federspiel, J.; Kritchevsky, S.; Wong, E.; Climo, M. Selective Use of Intranasal Mupirocin and Chlorhexidine Bathing and the Incidence of Methicillin-Resistant Staphylococcus aureus Colonization and Infection Among Intensive Care Unit Patients. Infect. Control. Hosp. Epidemiol. 2007, 28, 1155–1161. [Google Scholar] [CrossRef]
- Huang, S.S.; Septimus, E.; Kleinman, K.; Moody, J.; Hickok, J.; Avery, T.R.; Lankiewicz, J.; Gombosev, A.; Terpstra, L.; Hartford, F.; et al. Targeted versus Universal Decolonization to Prevent ICU Infection. N. Engl. J. Med. 2013, 368, 2255–2265. [Google Scholar] [CrossRef]
- Kohler, P.; Bregenzer-Witteck, A.; Rettenmund, G.; Otterbech, S.; Schlegel, M. MRSA decolonization: Success rate, risk factors for failure and optimal duration of follow-up. Infection 2012, 41, 33–40. [Google Scholar] [CrossRef]
- Safdar, N.; Bradley, E.A. The Risk of Infection after Nasal Colonization with Staphylococcus Aureus. Am. J. Med. 2008, 121, 310–315. [Google Scholar] [CrossRef]
- Samuel, P.; Kumar, Y.S.; Suthakar, B.J.; Karawita, J.; Kumar, D.S.; Vedha, V.; Shah, H.; Thakkar, K. Methicillin-Resistant Staphylococcus aureus Colonization in Intensive Care and Burn Units: A Narrative Review. Cureus 2023, 15, e47139. [Google Scholar] [CrossRef]
- Cheng, V.C.; Chen, J.H.; Tai, J.W.; Wong, S.C.; Poon, R.W.; Hung, I.F.; To, K.K.; Chan, J.F.; Ho, P.-L.; Lo, C.-M.; et al. Decolonization of gastrointestinal carriage of vancomycin-resistant Enterococcus faecium: Case series and review of literature. BMC Infect. Dis. 2014, 14, 514. [Google Scholar] [CrossRef]
- Choi, E.; Lee, S.J.; Lee, S.; Yi, J.; Lee, Y.S.; Chang, S.-Y.; Jeong, H.Y.; Joo, Y. Comprehensive, multisystem, mechanical decolonization of Vancomycin-Resistant Enterococcus and Carbapenem-Resistant Enterobacteriacease without the use of antibiotics. Medicine 2021, 100, e23686. [Google Scholar] [CrossRef] [PubMed]
- Healthcare Professionals FAQ|Candida auris | Fungal Diseases|CDC. 2023. Available online: https://www.cdc.gov/candida-auris/hcp/clinical-overview/index.html (accessed on 4 July 2024).
- Key Facts and Figures. Available online: https://www.who.int/campaigns/world-hand-hygiene-day/2021/key-facts-and-figures (accessed on 4 July 2024).
- Lambe, K.A.; Lydon, S.; Madden, C.; Vellinga, A.; Hehir, A.; Walsh, M.; O’connor, P. Hand Hygiene Compliance in the ICU: A Systematic Review. Crit. Care Med. 2019, 47, 1251–1257. [Google Scholar] [CrossRef] [PubMed]
- DalBen, M.d.F.; Mendes, E.T.; Moura, M.L.; Rahman, D.A.; Peixoto, D.; dos Santos, S.A.; de Figueiredo, W.B.; Mendes, P.V.; Taniguchi, L.U.; Coutinho, F.A.B.; et al. A Model-Based Strategy to Control the Spread of Carbapenem-Resistant Enterobacteriaceae: Simulate and Implement. Infect. Control. Hosp. Epidemiol. 2016, 37, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- Rashid, T.; VonVille, H.; Hasan, I.; Garey, K.W. Shoe soles as a potential vector for pathogen transmission: A systematic review. J. Appl. Microbiol. 2016, 121, 1223–1231. [Google Scholar] [CrossRef]
- Dee, S.; Deen, J.; Pijoan, C. Evaluation of 4 intervention strategies to prevent the mechanical transmission of porcine reproductive and respiratory syndrome virus. Can. J. Vet. Res. 2004, 68, 19–26. [Google Scholar] [PubMed]
- Funk, C.R.; Ravindranathan, S.; Matelski, A.; Zhang, H.; Taylor, C.; Chandrasekaran, S.; Arellano, M.; Langston, A.A.; Joseph, N.; Waller, E.K. Passenger pathogens on physicians. Am. J. Infect. Control. 2022, 51, 807–811. [Google Scholar] [CrossRef]
- DalBen, M.F.; Basso, M.; Garcia, C.P.; Costa, S.F.; Toscano, C.M.; Jarvis, W.R.; Lobo, R.D.; Oliveira, M.S.; Levin, A.S. Colonization pressure as a risk factor for colonization by multiresistant Acinetobacter spp and carbapenem-resistant Pseudomonas aeruginosa in an intensive care unit. Clinics 2013, 68, 1128–1133. [Google Scholar] [CrossRef]
- Tacconelli, E.; Cataldo, M.A.; De Pascale, G.; Manno, D.; Spanu, T.; Cambieri, A.; Antonelli, M.; Sanguinetti, M.; Fadda, G.; Cauda, R. Prediction models to identify hospitalized patients at risk of being colonized or infected with multidrug-resistant Acinetobacter baumannii calcoaceticus complex. J. Antimicrob. Chemother. 2008, 62, 1130–1137. [Google Scholar] [CrossRef]
- Meschiari, M.; Kaleci, S.; Orlando, G.; Selmi, S.; Santoro, A.; Bacca, E.; Menozzi, M.; Franceschini, E.; Puzzolante, C.; Bedini, A.; et al. Risk factors for nosocomial rectal colonization with carbapenem-resistant Acinetobacter baumannii in hospital: A matched case–control study. Antimicrob. Resist. Infect. Control. 2021, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Logan, C.; Martin-Loeches, I.; Bicanic, T. Invasive candidiasis in critical care: Challenges and future directions. Intensiv. Care Med. 2020, 46, 2001–2014. [Google Scholar] [CrossRef]
- Pittet, D.; Monod, M.; Suter, P.M.; Frenk, E.; Auckenthaler, R. Candida colonization and subsequent infections in critically ill surgical patients. Ann. Surg. 1994, 220, 751–758. [Google Scholar] [CrossRef]
- León, C.; Ruiz-Santana, S.; Saavedra, P.; Almirante, B.; Nolla-Salas, J.; Álvarez-Lerma, F.; Garnacho-Montero, J.; León, M.A.; EPCAN Study Group. A bedside scoring system (“Candida score”) for early antifungal treatment in nonneutropenic critically ill patients with Candida colonization. Crit. Care Med. 2006, 34, 730–737. [Google Scholar] [CrossRef]
- Ostrosky-Zeichner, L.; Pappas, P.G.; Shoham, S.; Reboli, A.; Barron, M.A.; Sims, C.; Wood, C.; Sobel, J.D. Improvement of a clinical prediction rule for clinical trials on prophylaxis for invasive candidiasis in the intensive care unit. Mycoses 2010, 54, 46–51. [Google Scholar] [CrossRef]
- Tumbarello, M.; Trecarichi, E.M.; Bassetti, M.; De Rosa, F.G.; Spanu, T.; Di Meco, E.; Losito, A.R.; Parisini, A.; Pagani, N.; Cauda, R. Identifying Patients Harboring Extended-Spectrum-β-Lactamase-Producing Enterobacteriaceae on Hospital Admission: Derivation and Validation of a Scoring System. Antimicrob. Agents Chemother. 2011, 55, 3485–3490. [Google Scholar] [CrossRef] [PubMed]
- Augustine, M.R.; Testerman, T.L.; Justo, J.A.; Bookstaver, P.B.; Kohn, J.; Albrecht, H.; Al-Hasan, M.N. Clinical Risk Score for Prediction of Extended-Spectrum β-Lactamase–Producing Enterobacteriaceae in Bloodstream Isolates. Infect. Control. Hosp. Epidemiol. 2016, 38, 266–272. [Google Scholar] [CrossRef]
- Papafotiou, C.; Roussos, S.; Sypsa, V.; Bampali, S.; Spyridopoulou, K.; Karapanou, A.; Moussouli, A.; Samarkos, M.; Daikos, G.L.; Psichogiou, M. Predictive score for patients with carbapenemase-producing enterobacterales colonization upon admission in a tertiary care hospital in an endemic area. J. Antimicrob. Chemother. 2022, 77, 3331–3339. [Google Scholar] [CrossRef] [PubMed]
- Dezza, F.C.; Covino, S.; Petrucci, F.; Sacco, F.; Viscido, A.; Gavaruzzi, F.; Ceccarelli, G.; Raponi, G.; Borrazzo, C.; Alessandri, F.; et al. Risk factors for carbapenem-resistant Acinetobacter baumannii (CRAB) bloodstream infections and related mortality in critically ill patients with CRAB colonization. JAC-Antimicrobial Resist. 2023, 5, dlad096. [Google Scholar] [CrossRef]
- Moghnieh, R.; Siblani, L.; Ghadban, D.; El Mchad, H.; Zeineddine, R.; Abdallah, D.; Ziade, F.; Sinno, L.; Kiwan, O.; Kerbaj, F.; et al. Extensively drug-resistant Acinetobacter baumannii in a Lebanese intensive care unit: Risk factors for acquisition and determination of a colonization score. J. Hosp. Infect. 2016, 92, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Torres, K.; Sampathkumar, P. Predictors of methicillin-resistant Staphylococcus aureus colonization at hospital admission. Am. J. Infect. Control. 2013, 41, 1043–1047. [Google Scholar] [CrossRef]
- Boeing, C.; Correa-Martinez, C.L.; Schuler, F.; Mellmann, A.; Karch, A.; Kampmeier, S. Development and Validation of a Tool for the Prediction of Vancomycin-Resistant Enterococci Colonization Persistence—The PREVENT Score. Microbiol. Spectr. 2021, 9, e0035621. [Google Scholar] [CrossRef] [PubMed]
- Hur, E.Y.; Jin, Y.J.; Jin, T.X.; Lee, S.M. Development and evaluation of the automated risk assessment system for multidrug-resistant organisms (autoRAS-MDRO). J. Hosp. Infect. 2018, 98, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Garnacho-Montero, J.; Dimopoulos, G.; Poulakou, G.; Akova, M.; Cisneros, J.M.; De Waele, J.; Petrosillo, N.; Seifert, H.; Timsit, J.F.; Vila, J.; et al. Task force on management and prevention of Acinetobacter baumannii infections in the ICU. Intensiv. Care Med. 2015, 41, 2057–2075. [Google Scholar] [CrossRef]
- Valencia-Martín, R.; Program, I.R.O.A.B.E.; Gonzalez-Galan, V.; Alvarez-Marín, R.; Cazalla-Foncueva, A.M.; Aldabó, T.; Gil-Navarro, M.V.; Alonso-Araujo, I.; Martin, C.; Gordon, R.; et al. A multimodal intervention program to control a long-term Acinetobacter baumannii endemic in a tertiary care hospital. Antimicrob. Resist. Infect. Control. 2019, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Nutman, A.; Lerner, A.; Schwartz, D.; Carmeli, Y. Evaluation of carriage and environmental contamination by carbapenem-resistant Acinetobacter baumannii. Clin. Microbiol. Infect. 2016, 22, 949.e5–949.e7. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for the Prevention and Control of Carbapenem-Resistant Enterobacteriaceae, Acinetobacter Baumannii and Pseudomonas Aeruginosa in Health Care Facilities; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Magiorakos, A.P.; Burns, K.; Baño, J.R.; Borg, M.; Daikos, G.; Dumpis, U.; Lucet, J.C.; Moro, M.L.; Tacconelli, E.; Simonsen, G.S.; et al. Infection prevention and control measures and tools for the prevention of entry of carbapenem-resistant Enterobacteriaceae into healthcare settings: Guidance from the European Centre for Disease Prevention and Control. Antimicrob. Resist. Infect. Control. 2017, 6, 113. [Google Scholar] [CrossRef]
- Huslage, K.; Rutala, W.A.; Sickbert-Bennett, E.; Weber, D.J. A quantitative approach to defining ‘high-touch’ surfaces in hospitals. Infect. Control Hosp. Epidemiol. 2010, 31, 850–853. [Google Scholar] [CrossRef]
- Enfield, K.B.; Huq, N.N.; Gosseling, M.F.; Low, D.J.; Hazen, K.C.; Toney, D.M.; Slitt, G.; Zapata, H.J.; Cox, H.L.; Lewis, J.D.; et al. Control of Simultaneous Outbreaks of Carbapenemase-Producing Enterobacteriaceae and Extensively Drug-Resistant Acinetobacter baumannii Infection in an Intensive Care Unit Using Interventions Promoted in the Centers for Disease Control and Prevention 2012 Carbapenemase-Resistant Enterobacteriaceae Toolkit. Infect. Control. Hosp. Epidemiol. 2014, 35, 810–817. [Google Scholar] [CrossRef]
- Mangioni, D.; Fox, V.; Chatenoud, L.; Bolis, M.; Bottino, N.; Cariani, L.; Gentiloni Silverj, F.; Matinato, C.; Monti, G.; Muscatello, A.; et al. Genomic Characterization of Carbapenem-Resistant Acinetobacter baumannii (CRAB) in Mechanically Ventilated COVID-19 Patients and Impact of Infection Control Measures on Reducing CRAB Circulation during the Second Wave of the SARS-CoV-2 Pandemic in Milan, Italy. Microbiol. Spectr. 2023, 11, e0020923. [Google Scholar]
- Bogaty, C.; Mataseje, L.; Gray, A.; Lefebvre, B.; Lévesque, S.; Mulvey, M.; Longtin, Y. Investigation of a Carbapenemase-producing Acinetobacter baumannii outbreak using whole genome sequencing versus a standard epidemiologic investigation. Antimicrob. Resist. Infect. Control. 2018, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Karakonstantis, S.; Gikas, A.; Astrinaki, E.; Kritsotakis, E.I. Excess mortality due to pandrug-resistant Acinetobacter baumannii infections in hospitalized patients. J. Hosp. Infect. 2020, 106, 447–453. [Google Scholar] [CrossRef]
- Dickstein, Y.; Lellouche, J.; Amar, M.B.D.; Schwartz, D.; Nutman, A.; Daitch, V.; Yahav, D.; Leibovici, L.; Skiada, A.; Antoniadou, A.; et al. Treatment Outcomes of Colistin- and Carbapenem-resistant Acinetobacter baumannii Infections: An Exploratory Subgroup Analysis of a Randomized Clinical Trial. Clin. Infect. Dis. 2018, 69, 769–776. [Google Scholar] [CrossRef]
- Jones, C.L.; Clancy, M.; Honnold, C.; Singh, S.; Snesrud, E.; Onmus-Leone, F.; McGann, P.; Ong, A.C.; Kwak, Y.; Waterman, P.; et al. Fatal Outbreak of an Emerging Clone of Extensively Drug-Resistant Acinetobacter baumannii with Enhanced Virulence. Clin. Infect. Dis. 2015, 61, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Eckmanns, T.; Rüden, H.; Gastmeier, P. The Influence of High-Efficiency Particulate Air Filtration on Mortality and Fungal Infection among Highly Immunosuppressed Patients: A Systematic Review. J. Infect. Dis. 2006, 193, 1408–1419. [Google Scholar] [CrossRef] [PubMed]
- Arıkan, I.; Genç, Ö.; Uyar, C.; Tokur, M.E.; Balcı, C.; Renders, D.P. Effectiveness of air purifiers in intensive care units: An intervention study. J. Hosp. Infect. 2021, 120, 14–22. [Google Scholar] [CrossRef]
- Cadnum, J.L.; Shaikh, A.A.; Piedrahita, C.T.; Sankar, T.; Jencson, A.L.; Larkin, E.L.; Ghannoum, M.A.; Donskey, C.J. Effectiveness of Disinfectants Against Candida auris and Other Candida Species. Infect. Control. Hosp. Epidemiol. 2017, 38, 1240–1243. [Google Scholar] [CrossRef]
- Rapti, V.; Iliopoulou, K.; Poulakou, G. The Gordian Knot of C. auris: If You Cannot Cut It, Prevent It. Pathogens 2023, 12, 1444. [Google Scholar] [CrossRef]
- Lerner, A.O.; Abu-Hanna, J.; Carmeli, Y.; Schechner, V. Environmental contamination by carbapenem-resistant Acinetobacter baumannii: The effects of room type and cleaning methods. Infect. Control. Hosp. Epidemiol. 2019, 41, 1–6. [Google Scholar] [CrossRef]
- Carling, P.C.; Parry, M.M.; Rupp, M.E.; Po, J.L.; Dick, B.; Von Beheren, S. Healthcare Environmental Hygiene Study Group Improving Cleaning of the Environment Surrounding Patients in 36 Acute Care Hospitals. Infect. Control. Hosp. Epidemiol. 2008, 29, 1035–1041. [Google Scholar] [CrossRef]
- CDC Environmental Checklist for Monitoring Terminal Cleaning. Available online: https://www.cdc.gov/infection-control/media/pdfs/Guidelines-Environmental-Cleaning-Checklist-2010-P.pdf (accessed on 1 July 2024).
- Molter, G.; Seifert, H.; Mandraka, F.; Kasper, G.; Weidmann, B.; Hornei, B.; Öhler, M.; Schwimmbeck, P.G.; Kröschel, P.; Higgins, P.; et al. Outbreak of carbapenem-resistant Acinetobacter baumannii in the intensive care unit: A multi-level strategic management approach. J. Hosp. Infect. 2016, 92, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Gray, A.; Allard, R.; Paré, R.; Tannenbaum, T.; Lefebvre, B.; Lévesque, S.; Mulvey, M.; Maalouf, L.; Perna, S.; Longtin, Y. Management of a hospital outbreak of extensively drug-resistant Acinetobacter baumannii using a multimodal intervention including daily chlorhexidine baths. J. Hosp. Infect. 2016, 93, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Cornistein, W.; Santonato, D.; Novau, P.A.; Fabbro, L.G.; Jorge, M.F.; Malvicini, M.A.; Vilches, V.; Iudica, F.M. Synergy between infection control and antimicrobial stewardship programs to control carbapenem-resistant Enterobacterales. Antimicrob. Steward. Heal. Epidemiol. 2023, 3, e162. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.P.; Johansson, A.C.; Schonberg, M.A.; Howell, M.D. Elements of a High-Quality Inpatient Consultation in the Intensive Care Unit. A Qualitative Study. Ann. Am. Thorac. Soc. 2013, 10, 220–227. [Google Scholar] [CrossRef]
- Guillamet, M.C.V.; Burnham, J.P.; Pérez, M.; Kollef, M.H.; Manthous, C.A.; Jeffe, D.B. Antimicrobial stewardship for sepsis in the intensive care unit: Survey of critical care and infectious diseases physicians. Infect. Control. Hosp. Epidemiol. 2022, 43, 1368–1374. [Google Scholar] [CrossRef]
- Bonaconsa, C.; Mbamalu, O.; Surendran, S.; George, A.; Mendelson, M.; Charani, E. Optimizing infection control and antimicrobial stewardship bedside discussion: A scoping review of existing evidence on effective healthcare communication in hospitals. Clin. Microbiol. Infect. 2024, 30, 336–352. [Google Scholar] [CrossRef]
- Zwerwer, L.R.; Luz, C.F.; Soudis, D.; Giudice, N.; Nijsten, M.W.N.; Glasner, C.; Renes, M.H.; Sinha, B. Identifying the need for infection-related consultations in intensive care patients using machine learning models. Sci. Rep. 2024, 14, 1–13. [Google Scholar] [CrossRef]
- Kampmeier, S.; Correa-Martinez, C.; Peters, G.; Mellmann, A.; Kahl, B. Personal microbiological consultations improve the therapeutic management of Staphylococcus aureus bacteremia. J. Infect. 2018, 77, 349–356. [Google Scholar] [CrossRef]
- Lazure, P.; Augustyniak, M.; A Goff, D.; Villegas, M.V.; Apisarnthanarak, A.; Péloquin, S. Gaps and barriers in the implementation and functioning of antimicrobial stewardship programmes: Results from an educational and behavioural mixed methods needs assessment in France, the United States, Mexico and India. JAC-Antimicrobial Resist. 2022, 4, dlac094. [Google Scholar] [CrossRef]
- Raineri, E.; Pan, A.; Mondello, P.; Acquarolo, A.; Candiani, A.; Crema, L. Role of the infectious diseases specialist consultant on the appropriateness of antimicrobial therapy prescription in an intensive care unit. Am. J. Infect. Control. 2008, 36, 283–290. [Google Scholar] [CrossRef]
- Sellier, E.; Pavese, P.; Gennai, S.; Stahl, J.-P.; Labarère, J.; François, P. Factors and outcomes associated with physicians’ adherence to recommendations of infectious disease consultations for inpatients. J. Antimicrob. Chemother. 2009, 65, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Botelho-Nevers, E.; Thuny, F.; Casalta, J.P.; Richet, H.; Gouriet, F.; Collart, F.; Riberi, A.; Habib, G.; Raoult, D. Dramatic Reduction in Infective Endocarditis–Related Mortality With a Management-Based Approach. Arch. Intern. Med. 2009, 169, 1290–1298. [Google Scholar] [CrossRef]
- Forsblom, E.; Ruotsalainen, E.; Ollgren, J.; Järvinen, A. Telephone Consultation Cannot Replace Bedside Infectious Disease Consultation in the Management of Staphylococcus aureus Bacteremia. Clin. Infect. Dis. 2012, 56, 527–535. [Google Scholar] [CrossRef] [PubMed]
- WHO AWaRe antibiotic book.pdf. Available online: https://www.who.int/publications/i/item/9789240062382 (accessed on 1 July 2024).
- Seah, V.X.F.; Ong, R.Y.L.; Lim, A.S.Y.; Chong, C.Y.; Tan, N.W.H.; Thoon, K.C. Impact of a Carbapenem Antimicrobial Stewardship Program on Patient Outcomes. Antimicrob. Agents Chemother. 2017, 61, e00736-17. [Google Scholar] [CrossRef]
- Zimmermann, N.; Allen, R.; Fink, G.; Först, G.; Kern, W.V.; Farin-Glattacker, E.; Rieg, S.; Solzbach, U.; Friedrich, H.; van Uden, C.; et al. Antimicrobial Stewardship with and without Infectious Diseases Specialist Services to Improve Quality-of-Care in Secondary and Tertiary Care Hospitals in Germany: Study Protocol of the ID ROLL OUT Study. Infect. Dis. Ther. 2021, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wieland, K.; Chhatwal, P.; Vonberg, R.-P. Outbreak reporting a decade after ORION: Where do we stand? Lancet Infect. Dis. 2017, 17, 476. [Google Scholar] [CrossRef]
- Stone, S.P.; Cooper, B.S.; Kibbler, C.C.; Cookson, B.D.; A Roberts, J.; Medley, G.F.; Duckworth, G.; Lai, R.; Ebrahim, S.; Brown, E.M.; et al. The ORION statement: Guidelines for transparent reporting of outbreak reports and intervention studies of nosocomial infection. Lancet Infect. Dis. 2007, 7, 282–288. [Google Scholar] [CrossRef]
- Wieland, K.; Chhatwal, P.; Vonberg, R.-P. Nosocomial outbreaks caused by Acinetobacter baumannii and Pseudomonas aeruginosa: Results of a systematic review. Am. J. Infect. Control. 2018, 46, 643–648. [Google Scholar] [CrossRef]
- Chen, X.; Wen, X.; Jiang, Z.; Yan, Q. Prevalence and factors associated with carbapenem-resistant Enterobacterales (CRE) infection among hematological malignancies patients with CRE intestinal colonization. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 1–10. [Google Scholar] [CrossRef]
- Ferreira, A.; Moreira, F.; Guimaraes, T.; Spadão, F.; Ramos, J.; Batista, M.; Filho, J.; Costa, S.; Rocha, V. Epidemiology, risk factors and outcomes of multi-drug-resistant bloodstream infections in haematopoietic stem cell transplant recipients: Importance of previous gut colonization. J. Hosp. Infect. 2018, 100, 83–91. [Google Scholar] [CrossRef]
- Zhang, L.; Zhai, W.; Lin, Q.; Zhu, X.; Xiao, Z.; Yang, R.; Zheng, Y.; Zhang, F.; Li, S.; Wang, C.; et al. Carbapenem-resistant Enterobacteriaceae in hematological patients: Outcome of patients with Carbapenem-resistant Enterobacteriaceae infection and risk factors for progression to infection after rectal colonization. Int. J. Antimicrob. Agents 2019, 54, 527–529. [Google Scholar] [CrossRef] [PubMed]
- WHO Launches First ever Global Report on infection.pdf. Available online: https://www.who.int/publications/i/item/9789240051164 (accessed on 1 July 2024).
- Guerra, F.M.; Bolotin, S.; Lim, G.; Heffernan, J.; Deeks, S.L.; Li, Y.; Crowcroft, N.S. The basic reproduction number (R 0 ) of measles: A systematic review. Lancet Infect. Dis. 2017, 17, e420–e428. [Google Scholar] [CrossRef] [PubMed]
- Steinig, E.; Aglua, I.; Duchene, S.; Meehan, M.T.; Yoannes, M.; Firth, C.; Jaworski, J.; Drekore, J.; Urakoko, B.; Poka, H.; et al. Phylodynamic signatures in the emergence of community-associated MRSA. Proc. Natl. Acad. Sci. USA 2022, 119. [Google Scholar] [CrossRef] [PubMed]
- van Beurden, Y.; Bomers, M.; van der Werff, S.; Pompe, E.; Spiering, S.; Vandenbroucke-Grauls, C.; Mulder, C. Cost analysis of an outbreak of Clostridium difficile infection ribotype 027 in a Dutch tertiary care centre. J. Hosp. Infect. 2017, 95, 421–425. [Google Scholar] [CrossRef]
- Zhang, S.; Palazuelos-Munoz, S.; Balsells, E.M.; Nair, H.; Chit, A.; Kyaw, M.H. Cost of hospital management of Clostridium difficile infection in United States—A meta-analysis and modelling study. BMC Infect. Dis. 2016, 16, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Otete, E.H.; Ahankari, A.S.; Jones, H.; Bolton, K.J.; Jordan, C.W.; Boswell, T.C.; Wilcox, M.H.; Ferguson, N.M.; Beck, C.R.; Puleston, R.L. Parameters for the Mathematical Modelling of Clostridium difficile Acquisition and Transmission: A Systematic Review. PLoS ONE 2013, 8, e84224. [Google Scholar] [CrossRef]
- Chen, J.; Gong, C.L.; Hitchcock, M.M.; Holubar, M.; Deresinski, S.; Hay, J.W. Cost-effectiveness of bezlotoxumab and fidaxomicin for initial Clostridioides difficile infection. Clin. Microbiol. Infect. 2021, 27, 1448–1454. [Google Scholar] [CrossRef]
- Lin, G.; Tseng, K.K.; Gatalo, O.; Martinez, D.A.; Hinson, J.S.; Milstone, A.M.; Levin, S.; Klein, E.; Program, F.T.C.M.I.D.I.H. Cost-effectiveness of carbapenem-resistant Enterobacteriaceae (CRE) surveillance in Maryland. Infect. Control. Hosp. Epidemiol. 2021, 43, 1162–1170. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; Marelli, C.; Cattardico, G.; Fanelli, C.; Signori, A.; Di Meco, G.; Di Pilato, V.; Mikulska, M.; Mazzitelli, M.; Cattelan, A.M.; et al. Mortality in KPC-producing Klebsiella pneumoniae bloodstream infections: A changing landscape. J. Antimicrob. Chemother. 2023, 78, 2505–2514. [Google Scholar] [CrossRef]
- Mac, S.; Fitzpatrick, T.; Johnstone, J.; Sander, B. Vancomycin-resistant enterococci (VRE) screening and isolation in the general medicine ward: A cost-effectiveness analysis. Antimicrob. Resist. Infect. Control. 2019, 8, 1–10. [Google Scholar] [CrossRef]
- Lloyd-Smith, P.; Younger, J.; Lloyd-Smith, E.; Green, H.; Leung, V.; Romney, M. Economic analysis of vancomycin-resistant enterococci at a Canadian hospital: Assessing attributable cost and length of stay. J. Hosp. Infect. 2013, 85, 54–59. [Google Scholar] [CrossRef]
- Vancomycin-Resistant Enterococci Isolation and Screening Strategies: Clinical Evidence and Cost-Effectiveness. Available online: https://www.cadth.ca/sites/default/files/pdf/htis/mar-2014/RA0662%20VRE%20Screening%20final.pdf (accessed on 1 July 2024).
- Satilmis, L.; Vanhems, P.; Bénet, T. Outbreaks of Vancomycin-Resistant Enterococci in Hospital Settings: A Systematic Review and Calculation of the Basic Reproductive Number. Infect. Control. Hosp. Epidemiol. 2015, 37, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Haddadin, A.S.; A Fappiano, S.; A Lipsett, P. Methicillin resistant Staphylococcus aureus (MRSA) in the intensive care unit. Postgrad. Med. J. 2002, 78, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Chaix, C.; Durand-Zaleski, I.; Alberti, C.; Brun-Buisson, C. Control of endemic methicillin-resistant Staphylococcus aureus: A cost-benefit analysis in an intensive care unit. JAMA 1999, 282, 1745–1751. [Google Scholar] [CrossRef] [PubMed]
- Coyle, J.R.; Kaye, K.S.; Taylor, T.; Tansek, R.; Campbell, M.; Hayakawa, K.; Marchaim, D. Effectiveness and cost of implementing an active surveillance screening policy for Acinetobacter baumannii: A Monte Carlo simulation model. Am. J. Infect. Control. 2014, 42, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Taori, S.K.; Khonyongwa, K.; Hayden, I.; Athukorala, G.D.A.; Letters, A.; Fife, A.; Desai, N.; Borman, A.M. Candida auris outbreak: Mortality, interventions and cost of sustaining control. J. Infect. 2019, 79, 601–611. [Google Scholar] [CrossRef]
- Otter, J.; Burgess, P.; Davies, F.; Mookerjee, S.; Singleton, J.; Gilchrist, M.; Parsons, D.; Brannigan, E.; Robotham, J.; Holmes, A. Counting the cost of an outbreak of carbapenemase-producing Enterobacteriaceae: An economic evaluation from a hospital perspective. Clin. Microbiol. Infect. 2017, 23, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Rosa, R.; Jimenez, A.; Andrews, D.; Dinh, H.; Parra, K.; Martinez, O.; Abbo, L.M. Impact of In-house Candida auris Polymerase Chain Reaction Screening on Admission on the Incidence Rates of Surveillance and Blood Cultures With C. auris and Associated Cost Savings. Open Forum Infect. Dis. 2023, 10, ofad567. [Google Scholar] [CrossRef]
- Elsaid, M.; Nasef, M.A.; Huy, N.T. R 0 of COVID-19 and its impact on vaccination coverage: Compared with previous outbreaks. Hum. Vaccines Immunother. 2021, 17, 3850–3854. [Google Scholar] [CrossRef]
- Merler, S.; Ajelli, M.; Roe, J.H.; Morreale, S.J.; Paladino, F.V.; Shillinger, G.L.; Benson, S.R.; Eckert, S.A.; Bailey, H.; Tomillo, P.S.; et al. Deciphering the relative weights of demographic transition and vaccination in the decrease of measles incidence in Italy. Proc. R. Soc. B: Biol. Sci. 2014, 281, 20132676. [Google Scholar] [CrossRef]
- Fisman, D.; Rivers, C.; Lofgren, E.; Majumder, M.S. Estimation of MERS-Coronavirus Reproductive Number and Case Fatality Rate for the Spring 2014 Saudi Arabia Outbreak: Insights from Publicly Available Data. PLoS Curr. 2014, 6. [Google Scholar] [CrossRef]
- Liu, W.; Tang, S.; Xiao, Y. Model Selection and Evaluation Based on Emerging Infectious Disease Data Sets including A/H1N1 and Ebola. Comput. Math. Methods Med. 2015, 2015, 1–14. [Google Scholar] [CrossRef]
- Menardo, F.; Biology, M. Switzerland Understanding drivers of phylogenetic clustering and terminal branch lengths distribution in epidemics of Mycobacterium tuberculosis. eLife 2022, 11. [Google Scholar] [CrossRef]
- Shrestha, S.; Winglee, K.; Hill, A.N.; Shaw, T.; Smith, J.P.; Kammerer, J.S.; Silk, B.J.; Marks, S.M.; Dowdy, D. Model-based Analysis of Tuberculosis Genotype Clusters in the United States Reveals High Degree of Heterogeneity in Transmission and State-level Differences Across California, Florida, New York, and Texas. Clin. Infect. Dis. 2022, 75, 1433–1441. [Google Scholar] [CrossRef]
- Mathis, A.D.; Clemmons, N.S.; Redd, S.B.; Pham, H.; Leung, J.; Wharton, A.K.; Anderson, R.; McNall, R.J.; Rausch-Phung, E.; Rosen, J.B.; et al. Maintenance of Measles Elimination Status in the United States for 20 Years Despite Increasing Challenges. Clin. Infect. Dis. 2021, 75, 416–424. [Google Scholar] [CrossRef]
- Villela, D.A.M.; Bastos, L.S.; DE Carvalho, L.M.; Cruz, O.G.; Gomes, M.F.C.; Durovni, B.; Lemos, M.C.; Saraceni, V.; Coelho, F.C.; Codeço, C.T. Zika in Rio de Janeiro: Assessment of basic reproduction number and comparison with dengue outbreaks. Epidemiol. Infect. 2017, 145, 1649–1657. [Google Scholar] [CrossRef]
- Chowell, G.; Fuentes, R.; Olea, A.; Aguilera, X.; Nesse, H.; Hyman, J.M. The basic reproduction number R0 and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Math. Biosci. Eng. 2013, 10, 1455–1474. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khan, M.A. Fatmawati Dengue infection modeling and its optimal control analysis in East Java, Indonesia. Heliyon 2021, 7, e06023. [Google Scholar] [CrossRef]
- Valencia, V.A.N.; Díaz, Y.; Pascale, J.M.; Boni, M.F.; Sanchez-Galan, J.E. Using compartmental models and Particle Swarm Optimization to assess Dengue basic reproduction number R0 for the Republic of Panama in the 1999-2022 period. Heliyon 2023, 9, e15424. [Google Scholar] [CrossRef]
- Muzembo, B.A.; Kitahara, K.; Mitra, D.; Ntontolo, N.P.; Ngatu, N.R.; Ohno, A.; Khatiwada, J.; Dutta, S.; Miyoshi, S.-I. The basic reproduction number (R0) of ebola virus disease: A systematic review and meta-analysis. Travel Med. Infect. Dis. 2024, 57, 102685. [Google Scholar] [CrossRef]
- Nsubuga, R.N.; White, R.G.; Mayanja, B.N.; Shafer, L.A. Estimation of the HIV Basic Reproduction Number in Rural South West Uganda: 1991–2008. PLoS ONE 2014, 9, e83778. [Google Scholar] [CrossRef] [PubMed]
- Stachel, A.; Pinto, G.; Stelling, J.; Fulmer, Y.; Shopsin, B.; Inglima, K.; Phillips, M. Implementation and evaluation of an automated surveillance system to detect hospital outbreak. Am. J. Infect. Control. 2017, 45, 1372–1377. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, F.; Doherty, A.; Lacey, G. Using Artificial Intelligence in Infection Prevention. Curr. Treat Options Infect. Dis. 2020, 12, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Piaggio, D.; Zarro, M.; Pagliara, S.; Andellini, M.; Almuhini, A.; Maccaro, A.; Pecchia, L. The use of smart environments and robots for infection prevention control: A systematic literature review. Am. J. Infect. Control. 2023, 51, 1175–1181. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.; Schwebke, I.; Kampf, G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 2006, 6, 130. [Google Scholar] [CrossRef]
- Corbella, X.; Pujol, M.; Argerich, M.J.; Ayats, J.; Sendra, M.; Peña, C.; Ariza, J. Environmental Sampling of Acinetobacter baumannii: Moistened Swabs Versus Moistened Sterile Gauze Pads. Infect. Control. Hosp. Epidemiol. 1999, 20, 458–460. [Google Scholar] [CrossRef]
- Schwab, F.; Meyer, E.; Geffers, C.; Gastmeier, P. Understaffing, overcrowding, inappropriate nurse:ventilated patient ratio and nosocomial infections: Which parameter is the best reflection of deficits? J. Hosp. Infect. 2012, 80, 133–139. [Google Scholar] [CrossRef]
- de Oliveira, A.C.; Garcia, P.C.; Nogueira, L.d.S. Nursing workload and occurrence of adverse events in intensive care: A systematic review. Rev. Esc. Enferm. USP 2016, 50, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Bracco, D.; Dubois, M.-J.; Bouali, R.; Eggimann, P. Single rooms may help to prevent nosocomial bloodstream infection and cross-transmission of methicillin-resistant Staphylococcus aureus in intensive care units. Intensiv. Care Med. 2007, 33, 836–840. [Google Scholar] [CrossRef]
- Hatfull, G.F.; Dedrick, R.M.; Schooley, R.T. Phage Therapy for Antibiotic-Resistant Bacterial Infections. Annu. Rev. Med. 2022, 73, 197–211. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Pei, J.; Yi, W.; Fan, L.; Wang, C.; Xiao, X. Isolation and identification of a novel phage targeting clinical multidrug-resistant Corynebacterium striatum isolates. Front. Cell. Infect. Microbiol. 2024, 14, 1361045. [Google Scholar] [CrossRef] [PubMed]
- Skurnik, D.; Roux, D.; Pons, S.; Guillard, T.; Lu, X.; Cywes-Bentley, C.; Pier, G.B. Extended-spectrum antibodies protective against carbapenemase-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2016, 71, 927–935. [Google Scholar] [CrossRef] [PubMed]
- Kalfopoulou, E.; Huebner, J. Advances and Prospects in Vaccine Development against Enterococci. Cells 2020, 9, 2397. [Google Scholar] [CrossRef]
- Miller, L.S.; Fowler, V.G.; Shukla, S.K.; Rose, W.E.; Proctor, R.A. Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol. Rev. 2019, 44, 123–153. [Google Scholar] [CrossRef]
- Bae, J.Y.; Yun, I.; Jun, K.I.; Kim, C.-J.; Lee, M.; Choi, H.J. Association between Pneumonia Development and Virulence Gene Expression in Carbapenem-Resistant Acinetobacter baumannii Isolated from Clinical Specimens. Can. J. Infect. Dis. Med Microbiol. 2023, 2023, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wong, F.; de la Fuente-Nunez, C.; Collins, J.J. Leveraging artificial intelligence in the fight against infectious diseases. Science 2023, 381, 164–170. [Google Scholar] [CrossRef]
- Ben-Chetrit, E.; Wiener-Well, Y.; Lesho, E.; Kopuit, P.; Broyer, C.; Bier, L.; Assous, M.V.; Benenson, S.; Cohen, M.J.; McGann, P.T.; et al. An intervention to control an ICU outbreak of carbapenem-resistant Acinetobacter baumannii: Long-term impact for the ICU and hospital. Crit. Care 2018, 22, 1–10. [Google Scholar] [CrossRef]
- Landelle, C.; Pagani, L.; Harbarth, S. Is patient isolation the single most important measure to prevent the spread of multidrug-resistant pathogens? Virulence 2013, 4, 163–171. [Google Scholar] [CrossRef]
Routes of Transmission in ICUs |
---|
Direct or indirect contact Bacteria: MDR-GNB [12] (including CRE, ESBL carriers [13], MDR-Klebsiella spp., MDR-Acinetobacter baumanii [14], and MDR-Pseudomonas aeruginosa), MRSA [15], VRE [16], and Clostridium difficile [16] Fungi: Candida auris [17] and Scedosporium spp. [18] Virus: Ebola virus [19] |
Water contamination [20] Bacteria: Legionella spp., Pseudomonas spp., Acinetobacter spp, and Serratia Fungi: Aspergillus spp., Mucor spp., Trichosporon spp., Scedosporium spp. [21], and Fusarium Virus: Norovirus |
Air contamination Bacteria [12]: CRE, Acinetobacter baumanii, Pseudomonas aeruginosa, Corynebacterium striatum *, Legionella spp., and MRSA [22] Fungi: Aspergillus spp. [23], Fusarium spp. [21], Scedosporium spp. [18,21], and Lomentospora spp. [21] Virus: human coronaviruses (including SARS-CoV-2 [24]) and Ebola virus [19] |
Droplet-spread and airborne infections [25] Bacteria: Mycobacterium tuberculosis, Bordetella spp., and Pertussis Virus: human coronaviruses (including SARS-CoV-2 [24]), Varicella zoster virus, measles virus, influenza viruses (including H1N1, H2N3, H5N1), parainfluenza viruses, respiratory syncytial virus, and adenoviruses |
Type of Study | Study Author and Year of Publishing | Country | Time Period | Sample Size | Suggested ICU PNR | Higher Ratios Were Associated with Higher Mortality |
---|---|---|---|---|---|---|
Guidelines | Bray K et al., 2010 (the British Association of Critical Care Nurses, the Critical Care Networks National Nurse Leads) [39] | UK | - | - | 1:1 | Yes |
American Nurses Association (ANA) and California Legislation (Assembly Bill No. 394) | California, USA | - | - | 2:1 | Yes | |
Narrative review | Suresh K. Sharma et Ritu Rani 2020 [40] | India | - | - | 1:1 | Yes |
Retrospective observational study | Falk AC 2023 [41] | Sweden | 15 years | 2 ICUs (9814 patients) | 1:1 | Yes |
Cross-sectional, retrospective, risk-adjusted observational study | West E et al., 2014 [36] | UK | 16 years | 65 ICUs (38,168 patients) | 0.5:1 | Yes * |
Study Author and Year of Publication | Country | Type of Study | Time Period | Sample Size | Median PIR | Higher Ratios Were Associated with Higher Mortality |
---|---|---|---|---|---|---|
Neuraz A et al., 2015 [42] | France | Multicenter observational study | 2013 | 5718 patients (8 ICUs) | 5.6 | Yes |
Gershengorn HB et al., 2017 [43] | UK | Retrospective cohort study | 2010–2013 | 49,686 patients (94 ICUs) | 8.5 | Yes |
Dara SI et al., 2005 [44] | USA | Retrospective cohort study | 2001–2003 | 2492 patients (1 ICU) | 8.4 * | No |
Gershengorn HB et al., 2022 [45] | Australia and New Zealand | Retrospective cohort study | 2016–2019 | 27,380 patients (67 ICUs) in the ‘narrow cohort’ and 91,206 patients (73 ICUs) in the ‘broad cohort’ | 10.1 | No |
Agarwal A et al., 2022 [46] | USA | Cross-sectional observational study | 2020–2021 | 1322 patients (62 ICUs) | 12 | No |
Kahn JM et al., 2023 [47] | USA | Retrospective cohort study | 2018–2020 | 51,656 patients (29 ICUs) | 11.8 | No |
Estenssoro E et al., 2017 [48] | Latin America (51% from Brazil, 17% Chile, 13% Argentina, 6% Ecuador, 5% Uruguay, 3% Colombia, and 5% between Mexico, Peru, and Paraguay) | Cross-sectional observational study | 2015–2016 | 257 ICUs | 1:1–1:3 (11%) 1:4 to 1:7 (46%) >8 (41%) | Not evaluated |
Study Author and Year of Publication | Country | Type of Infection | Most Relevant Proposed Solutions |
---|---|---|---|
Menegueti MG et al., 2019 [51] | Brazil | CAUTI |
|
McNett et al., 2020 [55] | USA | VAP |
|
Mogyoródi et al., 2023 [37] | Hungary | VAP |
|
Phan et al., 2018 [57] | Vietnam | All HCAI |
|
Moghnieh et al., 2023 [54] | Eastern Mediterranean Region (Afghanistan, Barhain, Iraq, Kuwait, Jordan, Lebanon, Oman, Pakistan, Palestine, Qatar, Sudan, Syria, United Arab Emirates, and Yemen) | All HCAI |
|
Type of Pathogen | Estimated Mean Single-Patient Cost per Hospital Length of Stay | Estimated Mean R₀ | Estimated Mean Outbreak Cost | IPC Implementation Threshold (up to) |
---|---|---|---|---|
CRE | USD 63,948 | 11 | EUR 1.1 million | USD 572,000 |
CRAB | USD 55,122–USD 60,000 | 1.5 | EUR 1.0 million | 75,000–93,822 USD/QALY |
VRE | USD 17,949 | 1.32 | EUR 60.524 | 50.000 USD/QALY |
MRSA | USD 9.275 | 0.97–1.6 [147] | USD 30.225 | USD 9.275 |
C. auris | EUR 35.818 * | Unknown | EUR 1.2 million | USD 373,048,026 |
(HO-CDI) | USD 30,049–USD 34,149 [148,149] | 0.55–7.0 [150] | EUR 1.2 million | 150,000 USD/QALY [151] |
Type of Transmission | Type of Pathogen | Estimated R₀ (Mean) | Country | References |
---|---|---|---|---|
Airborne | SARS-CoV-2 | 1.4 to 6.7 (4.1) | China, Italy, Korea, Peru | [164] |
SARS virus | 1.7 to 1.9 (1.8) | Hong Kong | [165] | |
MERS virus | 2.0 to 6.7 (4.4) | Saudi Arabia | [166] | |
H1N1 | 1.9 | China | [167] | |
Mycobacterium tuberculosis (MTB) | 0.8 to 1.2 0.2 to 0.4 (0.29) | USA | [168,169] | |
Measles virus | 0.7 to 25.3 (13) * 12–18 (15) | USA, Italy, Japan Systemic review | [146,165,170] | |
Vectorborne | Zika virus | 2.3 to 27.2 (14.9) | Brazil, Chile | [171,172] |
Dengue virus | 1.1–1.7 (1.4) | Indonesia, Brazil | [171,173,174] | |
Bloodborne/ Bodily fluid contact | Ebola virus | 1.1 to 10 (1.95) | West Africa | [175] |
HIV (viremic) | (36.8) | Uganda | [176] |
Study Author and Year of Publication | Country | Study Design | Pathogen | Experimental Period | Name of New Strategies |
---|---|---|---|---|---|
De Freitas DalBen et al., 2016 [85] | Brazil | Prospective study | CRE | Baseline period: 10 months Intervention period: 24 weeks | Educational model based on the following:
|
Stachel et al., 2017 [177] | USA | Prospective study | MDROs | 8 months | Automated surveillance system to detect hospital outbreak. |
Fitzpatrick et al., 2020 [178] | Ireland | Narrative review | All pathogens | - | Artificial intelligence in IPC: driven by ‘big data’, it could find correlations that may indicate medically relevant conditions or identify potential risk factors for outbreaks. |
Meschiari et al., 2021 [52] | Italy | Prospective study | CRAB | 6 years (2013–2019) | Cycling radical cleaning and disinfection. |
Piaggio et al., 2023 [179] | Italy | Systemic review | All pathogens | - |
|
Zwerwer et al., 2024 [129] | Netherlands | Prospective study | All pathogens | 3 years (2014–2017) | Machine learning model to predict the need for infection-related consultations in the ICU. |
First Author and Year of publication | Country | Target Pathogen | Aim of the Study | Suggested Technique |
---|---|---|---|---|
Hatfull GF et al., 2022 [185] | USA | MDRB | Fighting antibiotic resistance | Phage therapy |
Wang J et al., 2024 [186] | China | MDR-Corynebacterium striatum | Fighting antibiotic resistance | Phage therapy |
Skurnik et al., 2016 [187] | USA | CPE | Vaccine against CPE (including NDM-producers E. coli, E. cloacae, K. pneumoniae, K. pneumoniae carbapenemase (KPC)-producing and PNAG-producing P. aeruginosa) | Vaccine targeting polysaccharide poly-(β-1,6)-N-acetyl glucosamine (PNAG) in CPE |
Kalfopoulou et Huebner., 2020 [188] | Germany | VRE | Vaccine against Enterococci and VRE | Vaccine targeting capsular polysaccharides and surface-associated proteins in Enterococci |
Miller et al., 2020 [189] | USA | MRSA | Vaccine against MRSA | Vaccine targeting superantigens and pore-forming toxins in MRSA |
Meschiari et al., 2021 [52] | Italy | CRAB | IPC measures in CRAB outbreaks | Targeting inactivated adeN gene in CRAB |
Ji Yun Bae et al., 2023 [190] | Korea | CRAB | Identifying virulent CRAB genes associated with higher mortality in VAP | Targeting hisF and uspA genes in CRAB |
Choi et al., 2022 [81] | South Korea | VRE and CRE | New non-antibiotic decolonization strategy | 4-item bundle:
|
Wong et al., 2023 [191] | USA | All pathogens | Use of artificial intelligence for new anti infective drug discovery, pathogen pathophysiology and transmission understanding, and diagnostics | Artificial intelligence implementation |
Zwerwer et al., 2024 [129] | Netherlands | All pathogens | Using a machine-learning model to predict the need for infection-related consultations in ICU | Machine learning model |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanelli, C.; Pistidda, L.; Terragni, P.; Pasero, D. Infection Prevention and Control Strategies According to the Type of Multidrug-Resistant Bacteria and Candida auris in Intensive Care Units: A Pragmatic Resume including Pathogens R0 and a Cost-Effectiveness Analysis. Antibiotics 2024, 13, 789. https://doi.org/10.3390/antibiotics13080789
Fanelli C, Pistidda L, Terragni P, Pasero D. Infection Prevention and Control Strategies According to the Type of Multidrug-Resistant Bacteria and Candida auris in Intensive Care Units: A Pragmatic Resume including Pathogens R0 and a Cost-Effectiveness Analysis. Antibiotics. 2024; 13(8):789. https://doi.org/10.3390/antibiotics13080789
Chicago/Turabian StyleFanelli, Chiara, Laura Pistidda, Pierpaolo Terragni, and Daniela Pasero. 2024. "Infection Prevention and Control Strategies According to the Type of Multidrug-Resistant Bacteria and Candida auris in Intensive Care Units: A Pragmatic Resume including Pathogens R0 and a Cost-Effectiveness Analysis" Antibiotics 13, no. 8: 789. https://doi.org/10.3390/antibiotics13080789
APA StyleFanelli, C., Pistidda, L., Terragni, P., & Pasero, D. (2024). Infection Prevention and Control Strategies According to the Type of Multidrug-Resistant Bacteria and Candida auris in Intensive Care Units: A Pragmatic Resume including Pathogens R0 and a Cost-Effectiveness Analysis. Antibiotics, 13(8), 789. https://doi.org/10.3390/antibiotics13080789