Combinatory Use of hLF(1-11), a Synthetic Peptide Derived from Human Lactoferrin, and Fluconazole/Amphotericin B against Malassezia furfur Reveals a Synergistic/Additive Antifungal Effect
Abstract
:1. Introduction
2. Results
The Effectiveness of hLF(1-11) to Inhibit the Growth of 30 M. furfur Isolates of Various Origins
3. Materials and Methods
3.1. General
3.1.1. Peptide hLF (1-11)
3.1.2. Micro-Organisms
3.2. EUCAST Broth Microdilution Method
3.3. Modified Antifungal Assays for Malassezia spp.
Optimization of the Pre-Culture Step
3.4. Antifungal Efficacy Assays of hLF(1-11)
3.5. In Vitro Assays to Assess Synergism between Peptides and Antifungals: The Fractional Inhibitory Concentration (FIC) Index
Checkerboard Analysis
4. Discussion
Human Lactoferrin 1-11 and Malassezia Yeasts
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yadgar, R.J.; Bhatia, N.; Friedman, A. Cutaneous fungal infections are commonly misdiagnosed: A survey-based study. J. Am. Acad. Dermatol. 2017, 76, 562–563. [Google Scholar] [CrossRef] [PubMed]
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and Multi-National Prevalence of Fungal Diseases-Estimate Precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef]
- Borda, L.J.; Wikramanayake, T.C. Seborrheic Dermatitis and Dandruff: A Comprehensive Review. J. Clin. Investig. Dermatol. 2015, 3, 10. [Google Scholar] [CrossRef]
- Dawson, T.L., Jr. Malassezia globosa and restricta: Breakthrough understanding of the etiology and treatment of dandruff and seborrheic dermatitis through whole-genome analysis. J. Investig. Dermatol. Symp. Proc. 2007, 12, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Rusckowski, M.; Gupta, S.; Liu, G.; Dou, S.; Hnatowich, D.J. Investigations of a (99m)Tc-labeled bacteriophage as a potential infection-specific imaging agent. J. Nucl. Med. 2004, 45, 1201–1208. [Google Scholar]
- Sinclair, R.D.; Schwartz, J.R.; Rocchetta, H.L.; Dawson, T.L., Jr.; Fisher, B.K.; Meinert, K.; Wilder, E.A. Dandruff and seborrheic dermatitis adversely affect hair quality. Eur. J. Dermatol. 2009, 19, 410–411. [Google Scholar] [CrossRef] [PubMed]
- Ugochukwu, I.C.I.; Rhimi, W.; Chebil, W.; Rizzo, A.; Tempesta, M.; Giusiano, G.; Tábora, R.F.M.; Otranto, D.; Cafarchia, C. Part 1: Understanding the role of Malassezia spp. in skin disorders: Malassezia yeasts as commensal or pathogenic organisms of human and animal skin. Expert Rev. Anti-Infect. Ther. 2023, 21, 1327–1338. [Google Scholar] [CrossRef]
- Rhimi, W.; Theelen, B.; Boekhout, T.; Otranto, D.; Cafarchia, C. Malassezia spp. Yeasts of Emerging Concern in Fungemia. Front. Cell Infect. Microbiol. 2020, 10, 370. [Google Scholar] [CrossRef]
- Galzitskaya, O.V. Creation of New Antimicrobial Peptides. Int. J. Mol. Sci. 2023, 24, 9451. [Google Scholar] [CrossRef]
- Schmid-Grendelmeier, P.; Scheynius, A.; Crameri, R. The role of sensitization to Malassezia sympodialis in atopic eczema. Chem. Immunol. Allergy 2006, 91, 98–109. [Google Scholar] [CrossRef]
- Thomer, L.; Schneewind, O.; Missiakas, D. Pathogenesis of Staphylococcus aureus bloodstream infections. Ann. Rev. Pathol. 2016, 11, 343–364. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, S.; Mukhopadhyay, T. Dandruff: The most commercially exploited skin disease. Indian. J. Dermatol. 2010, 55, 130–134. [Google Scholar] [CrossRef]
- Clark, G.W.; Pope, S.M.; Jaboori, K.A. Diagnosis and treatment of seborrheic dermatitis. Am. Fam. Physician 2015, 91, 185–190. [Google Scholar] [PubMed]
- Chang, C.H.; Chovatiya, R. More yeast, more problems?: Reevaluating the role of Malassezia in seborrheic dermatitis. Arch. Dermatol. Res. 2024, 316, 100. [Google Scholar] [CrossRef] [PubMed]
- Rudramurthy, S.M.; Honnavar, P.; Dogra, S.; Yegneswaran, P.P.; Handa, S.; Chakrabarti, A. Association of Malassezia species with dandruff. Indian. J. Med. Res. 2014, 139, 431–437. [Google Scholar]
- Saunte, D.M.L.; Gaitanis, G.; Hay, R.J. Malassezia-Associated Skin Diseases, the Use of Diagnostics and Treatment. Front. Cell Infect. Microbiol. 2020, 10, 112. [Google Scholar] [CrossRef]
- Bergler-Czop, B.; Brzezińska-Wcisło, L. Dermatological problems of the puberty. Postep. Dermatol. Alergol. 2013, 30, 178–187. [Google Scholar] [CrossRef]
- Ashbee, H.R.; Evans, E.G. Immunology of diseases associated with Malassezia species. Clin. Microbiol. Rev. 2002, 15, 21–57. [Google Scholar] [CrossRef]
- Petruccelli, R.; Cosio, T.; Camicia, V.; Fiorilla, C.; Gaziano, R.; D’Agostini, C. Malassezia furfur bloodstream infection: Still a diagnostic challenge in clinical practice. Med. Mycol. Case Rep. 2024, 45, 100657. [Google Scholar] [CrossRef]
- Vijaya Chandra, S.H.; Srinivas, R.; Dawson, T.L.; Common, J.E. Cutaneous Malassezia: Commensal, Pathogen, or Protector? Front. Cell. Infect. Microbiol. 2021, 10. [Google Scholar] [CrossRef]
- Boekhout, T.; Guého, E.; Mayser, P.; Velegraki, A. Malassezia and the Skin: Science and Clinical Practice; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–319. [Google Scholar] [CrossRef]
- Barber, G.R.; Brown, A.E.; Kiehn, T.E.; Edwards, F.F.; Armstrong, D. Catheter-related Malassezia furfur fungemia in immunocompromised patients. Am. J. Med. 1993, 95, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Ren, Y.; Lu, Q.; Wang, K.; Wu, Y.; Wang, Y.; Zhang, Y.; Cui, X.S.; Yang, Z.; Chen, Z. Lactoferrin: A glycoprotein that plays an active role in human health. Front. Nutr. 2022, 9, 1018336. [Google Scholar] [CrossRef]
- Hald, M.; Arendrup, M.C.; Svejgaard, E.L.; Lindskov, R.; Foged, E.K.; Saunte, D.M. Evidence-based Danish guidelines for the treatment of Malassezia-related skin diseases. Acta Derm. Venereol. 2015, 95, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Ahtonen, P.; Lehtonen, O.P.; Kero, P.; Tunnela, E.; Havu, V. Malassezia furfur colonization of neonates in an intensive care unit. Mycoses 1990, 33, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Leeming, J.P.; Sutton, T.M.; Fleming, P.J. Neonatal skin as a reservoir of Malassezia species. Pediatr. Infect. Dis. J. 1995, 14, 719–721. [Google Scholar]
- Sparber, F.; LeibundGut-Landmann, S. Host Responses to Malassezia spp. in the Mammalian Skin. Front. Immunol. 2017, 8, 1614. [Google Scholar] [CrossRef]
- Billamboz, M.; Jawhara, S. Anti-Malassezia Drug Candidates Based on Virulence Factors of Malassezia-Associated Diseases. Microorganisms 2023, 11, 2599. [Google Scholar] [CrossRef] [PubMed]
- Leong, C.; Kit, J.C.W.; Lee, S.M.; Lam, Y.I.; Goh, J.P.Z.; Ianiri, G.; Dawson, T.L., Jr. Azole resistance mechanisms in pathogenic M. furfur. Antimicrob. Agents Chemother. 2021, 65. [Google Scholar] [CrossRef]
- Brouwer, C.; Sarda-Mantel, L.; Meulemans, A.; Le Guludec, D.; Welling, M.M. The use of technetium-99m radiolabeled human antimicrobial peptides for infection specific imaging. Mini-Rev. Med. Chem. 2008, 8, 1039–1052. [Google Scholar] [CrossRef] [PubMed]
- Lorenzon, E.N.; Piccoli, J.P.; Santos-Filho, N.A.; Cilli, E.M. Dimerization of Antimicrobial Peptides: A Promising Strategy to Enhance Antimicrobial Peptide Activity. Protein Pept. Lett. 2019, 26, 98–107. [Google Scholar] [CrossRef]
- Perez-Rodriguez, A.; Eraso, E.; Quindós, G.; Mateo, E. Antimicrobial Peptides with Anti-Candida Activity. Int. J. Mol. Sci. 2022, 23, 9264. [Google Scholar] [CrossRef]
- Hassan, M.; Flanagan, T.W.; Kharouf, N.; Bertsch, C.; Mancino, D.; Haikel, Y. Antimicrobial Proteins: Structure, Molecular Action, and Therapeutic Potential. Pharmaceutics 2022, 15, 72. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Z.; Yang, P.; Lei, J.; Zhao, J. Biological Function of Antimicrobial Peptides on Suppressing Pathogens and Improving Host Immunity. Antibiotics 2023, 12, 1037. [Google Scholar] [CrossRef]
- Xuan, J.; Feng, W.; Wang, J.; Wang, R.; Zhang, B.; Bo, L.; Chen, Z.-S.; Yang, H.; Sun, L. Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist. Updates 2023, 68, 100954. [Google Scholar] [CrossRef]
- Benfield, A.H.; Henriques, S.T. Mode-of-Action of Antimicrobial Peptides: Membrane Disruption vs. Intracellular Mechanisms. Front. Med. Technol. 2020, 2, 610997. [Google Scholar] [CrossRef] [PubMed]
- Maróti, G.; Kereszt, A.; Kondorosi, E.; Mergaert, P. Natural roles of antimicrobial peptides in microbes, plants and animals. Res. Microbiol. 2011, 162, 363–374. [Google Scholar] [CrossRef]
- Lupetti, A.; Paulusma-Annema, A.; Welling, M.M.; Dogterom-Ballering, H.; Brouwer, C.; Senesi, S.; van Dissel, J.T.; Nibbering, P.H. Synergistic activity of the N-terminal peptide of human lactoferrin and fluconazole against Candida species. Antimicrob. Agents Chemother. 2003, 47, 262–267. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Sheehan, D.J.; Hitchcock, C.A.; Ghannoum, M.A. Combination treatment of invasive fungal infections. Clin. Microbiol. Rev. 2005, 18, 163–194. [Google Scholar] [CrossRef]
- Rizzetto, G.; Gambini, D.; Maurizi, A.; Candelora, M.; Molinelli, E.; Cirioni, O.; Brescini, L.; Giacometti, A.; Offidani, A.; Simonetti, O. Our Experience over 20 Years: Antimicrobial Peptides against Gram Positives, Gram Negatives, and Fungi. Pharmaceutics 2022, 15, 40. [Google Scholar] [CrossRef]
- Fais, R.; Rizzato, C.; Franconi, I.; Tavanti, A.; Lupetti, A. Synergistic Activity of the Human Lactoferricin-Derived Peptide hLF1-11 in Combination with Caspofungin against Candida Species. Microbiol. Spectr. 2022, 10, e0124022. [Google Scholar] [CrossRef] [PubMed]
- Basavegowda, N.; Baek, K.H. Combination Strategies of Different Antimicrobials: An Efficient and Alternative Tool for Pathogen Inactivation. Biomedicines 2022, 10, 2219. [Google Scholar] [CrossRef]
- Chow, R.; Simone, C.B., 2nd; Jairam, M.P.; Swaminath, A.; Boldt, G.; Lock, M. Radiofrequency ablation vs radiation therapy vs transarterial chemoembolization vs yttrium 90 for local treatment of liver cancer—A systematic review and network meta-analysis of survival data. Acta Oncol. 2022, 61, 484–494. [Google Scholar] [CrossRef]
- Muteeb, G.; Rehman, M.T.; Shahwan, M.; Aatif, M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals 2023, 16, 1615. [Google Scholar] [CrossRef]
- Ammons, M.C.; Copié, V. Mini-review: Lactoferrin: A bioinspired, anti-biofilm therapeutic. Biofouling 2013, 29, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Cudic, M.; Condie, B.A.; Weiner, D.J.; Lysenko, E.S.; Xiang, Z.Q.; Insug, O.; Bulet, P.; Otvos, L., Jr. Development of novel antibacterial peptides that kill resistant isolates. Peptides 2002, 23, 2071–2083. [Google Scholar] [CrossRef]
- Cudic, M.; Lockatell, C.V.; Johnson, D.E.; Otvos, L., Jr. In vitro and in vivo activity of an antibacterial peptide analog against uropathogens. Peptides 2003, 24, 807–820. [Google Scholar] [CrossRef]
- Orhan, G.; Bayram, A.; Zer, Y.; Balci, I. Synergy tests by E test and checkerboard methods of antimicrobial combinations against Brucella melitensis. J. Clin. Microbiol. 2005, 43, 140–143. [Google Scholar] [CrossRef]
- Stavrou, A.A.; Pérez-Hansen, A.; Lackner, M.; Lass-Flörl, C.; Boekhout, T. Elevated minimum inhibitory concentrations to antifungal drugs prevail in 14 rare species of candidemia-causing Saccharomycotina yeasts. Med. Mycol. 2020, 58, 987–995. [Google Scholar] [CrossRef] [PubMed]
- Thappeta, K.R.V.; Vikhe, Y.S.; Yong, A.M.H.; Chan-Park, M.B.; Kline, K.A. Combined Efficacy of an Antimicrobial Cationic Peptide Polymer with Conventional Antibiotics to Combat Multidrug-Resistant Pathogens. ACS Infect. Dis. 2020, 6, 1228–1237. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, C.; Boekhout, T.; Alwasel, S.; Rahman, M.; Janga, R.; Welling, M.M. Screening sensibility and antifungal activity after topical application of a synthetic lactoferrin-derived antimicrobial peptide. Am. J. Transl. Res. 2024, 16, 669–680. [Google Scholar] [CrossRef]
- Stuckey, P.V.; Santiago-Tirado, F.H. Fungal mechanisms of intracellular survival: What can we learn from bacterial pathogens? Infect. Immun. 2023, 91, e0043422. [Google Scholar] [CrossRef]
- Brouwer, C.P.J.M.; Roscini, L.; Cardinali, G.; Corte, L.; Casagrnde Pierantoni, D.; Robert, V.; Rahman, M.; Welling, M.M. Structure-activity relationship study of synthetic variants derived from the highly potent human antimicrobial peptide hLF(1-11). Cohesive J. Microbiol. Infect. Dis. 2018, 1, 1–19. [Google Scholar] [CrossRef]
- Mercer, D.K.; Torres, M.D.T.; Duay, S.S.; Lovie, E.; Simpson, L.; von Köckritz-Blickwede, M.; de la Fuente-Nunez, C.; O’Neil, D.A.; Angeles-Boza, A.M. Antimicrobial Susceptibility Testing of Antimicrobial Peptides to Better Predict Efficacy. Front. Cell Infect. Microbiol. 2020, 10, 326. [Google Scholar] [CrossRef]
- Chung, H.J.; Reiner, T.; Budin, G.; Min, C.; Liong, M.; Issadore, D.; Lee, H.; Weissleder, R. Ubiquitous Detection of Gram-Positive Bacteria with Bioorthogonal Magnetofluorescent Nanoparticles. ACS Nano 2011, 5, 8834–8841. [Google Scholar] [CrossRef]
- Gregory, S.M.; Cavenaugh, A.; Journigan, V.; Pokorny, A.; Almeida, P.F. A quantitative model for the all-or-none permeabilization of phospholipid vesicles by the antimicrobial peptide cecropin A. Biophys. J. 2008, 94, 1667–1680. [Google Scholar] [CrossRef]
- Hossain, A.; Sil, B.C.; Iliopoulos, F.; Lever, R.; Hadgraft, J.; Lane, M.E. Preparation, Characterisation, and Topical Delivery of Terbinafine. Pharmaceutics 2019, 11, 548. [Google Scholar] [CrossRef]
- Trüeb, R.M. Shampoos: Ingredients, efficacy and adverse effects. J. Dtsch. Dermatol. Ges. 2007, 5, 356–365. [Google Scholar] [CrossRef]
- Franchesca, D.; Choi, M.L.W.J.; Natasha Atanaskova, M. Topical ketoconazole: A systematic review of current dermatological applications and future developments. J. Dermatol. Treat. 2019, 30, 760–771. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, P.; Rathi, S.K. Shampoo and Conditioners: What a Dermatologist Should Know? Indian. J. Dermatol. 2015, 60, 248–254. [Google Scholar] [CrossRef]
- Mutch, C.A.; Ordonez, A.A.; Qin, H.; Parker, M.; Bambarger, L.E.; Villanueva-Meyer, J.E.; Blecha, J.; Carroll, V.; Taglang, C.; Flavell, R.; et al. [11C]para-aminobenzoic acid: A positron emission tomography tracer targeting bacteria-specific metabolism. ACS Infect. Dis. 2018, 4, 1067–1072. [Google Scholar] [CrossRef] [PubMed]
- Pirri, G.; Giuliani, A.; Nicoletto, S.F.; Pizzuto, L.; Rinaldi, A.C. Lipopeptides as anti-infectives: A practical perspective. Cent. Eur. J. Biol. 2009, 4, 258–273. [Google Scholar] [CrossRef]
- Cohen, P.R.; Anderson, C.A. Topical Selenium Sulfide for the Treatment of Hyperkeratosis. Dermatol. Ther. 2018, 8, 639–646. [Google Scholar] [CrossRef]
- Arif, T. Salicylic acid as a peeling agent: A comprehensive review. Clin. Cosmet. Investig. Dermatol. 2015, 8, 455–461. [Google Scholar] [CrossRef]
- Makan, S.; Alexander, J.; Solomon, R.; Manasseh, A.; Mbaya, I.; Putshaka, J. Physicochemical Characterization of Coal Tar Produced by Pyrolysis of Coal from Garin Maiganga and Shankodi Deposits. J. Miner. Mater. Charact. Eng. 2017, 5, 288–297. [Google Scholar] [CrossRef]
- Sekhon, S.; Jeon, C.; Nakamura, M.; Afifi, L.; Yan, D.; Wu, J.J.; Liao, W.; Bhutani, T. Review of the mechanism of action of coal tar in psoriasis. J. Dermatol. Treat. 2018, 29, 230–232. [Google Scholar] [CrossRef] [PubMed]
- Alkeswani, A.; Cantrell, W.; Elewski, B. Treatment of Tinea Capitis. Skin. Appendage Disord. 2019, 5, 201–210. [Google Scholar] [CrossRef]
- Wu, G.D.; Bushmanc, F.D.; Lewis, J.D. Diet, the human gut microbiota, and IBD. Anaerobe 2013, 24, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Geva-Zatorsky, N.; Alvarez, D.; Hudak, J.E.; Reading, N.C.; Erturk-Hasdemir, D.; Dasgupta, S.; von Andrian, U.H.; Kasper, D.L. In vivo imaging and tracking of host–microbiota interactions via metabolic labeling of gut anaerobic bacteria. Nat. Med. 2015, 21, 1091. [Google Scholar] [CrossRef]
- Piérard-Franchimont, C.; Piérard, G.E.; Arrese, J.E.; De Doncker, P. Effect of ketoconazole 1% and 2% shampoos on severe dandruff and seborrhoeic dermatitis: Clinical, squamometric and mycological assessments. Dermatology 2001, 202, 171–176. [Google Scholar] [CrossRef]
- Kose, O.; Erbil, H.; Gur, A.R. Oral itraconazole for the treatment of seborrhoeic dermatitis: An open, noncomparative trial. J. Eur. Acad. Dermatol. Venereol. 2005, 19, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Rampersad, S.N. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 2012, 12, 12347–12360. [Google Scholar] [CrossRef] [PubMed]
- Bruni, N.; Capucchio, M.T.; Biasibetti, E.; Pessione, E.; Cirrincione, S.; Giraudo, L.; Corona, A.; Dosio, F. Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules 2016, 21, 752. [Google Scholar] [CrossRef]
- Siqueiros-Cendón, T.; Arévalo-Gallegos, S.; Iglesias-Figueroa, B.F.; García-Montoya, I.A.; Salazar-Martínez, J.; Rascón-Cruz, Q. Immunomodulatory effects of lactoferrin. Acta Pharmacol. Sin. 2014, 35, 557–566. [Google Scholar] [CrossRef]
- García-Montoya, I.A.; Cendón, T.S.; Arévalo-Gallegos, S.; Rascón-Cruz, Q. Lactoferrin a multiple bioactive protein: An overview. Biochim. Biophys. Acta 2012, 1820, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Corona, A.; Vercelli, A.; Bruni, N.; Guidi, E.; Cornegliani, L. In vitro activity of lactoferricin solution against Malassezia pachydermatis from otitis externa in dogs and cats. Vet. Dermatol. 2021, 32, e316–e386. [Google Scholar] [CrossRef]
- Fernandes, K.E.; Payne, R.J.; Carter, D.A. Lactoferrin-derived peptide lactofungin is potently synergistic with amphotericin B. Antimicrob. Agents Chemother. 2020, 64, e00842–e00920. [Google Scholar] [CrossRef] [PubMed]
- Drayton, M.; Deisinger, J.P.; Ludwig, K.C.; Raheem, N.; Müller, A.; Schneider, T.; Straus, S.K. Host Defense Peptides: Dual Antimicrobial and Immunomodulatory Action. Int. J. Mol. Sci. 2021, 22, 11172. [Google Scholar] [CrossRef]
- Diamond, G.; Beckloff, N.; Weinberg, A.; Kisich, K.O. The roles of antimicrobial peptides in innate host defense. Curr. Pharm. Des. 2009, 15, 2377–2392. [Google Scholar] [CrossRef]
- van der Velden, W.; van Iersel, T.M.P.; Blijlevens, N.M.A.; Donnelly, J.P. Safety and tolerability of the antimicrobial peptide human lactoferrin 1-11 (hLF1-11). BMC Med. 2009, 7, 44. [Google Scholar] [CrossRef]
- van der Velden, W.; Blijlevens, N.; Donnelly, J.P.; Wulferink, M.; Giannetti, B.M.; Velders, M.P. Safety and tolerability of human lactoferrin 1-11 (hLF1-11) in patients receiving an autologous HSCT after conditioning with high-dose melphalan (a phase I trial). Bone Marrow Transplant. 2007, 39, S174. [Google Scholar]
- Mangoni, M.L.; Papo, N.; Barra, D.; Simmaco, M.; Bozzi, A.; Di Giulio, A.; Rinaldi, A.C. Effects of the antimicrobial peptide temporin L on cell morphology, membrane permeability and viability of Escherichia coli. Biochem. J. 2004, 380, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, P.B.; Bolger, A.F.; Papapanou, P.N.; Osinbowale, O.; Trevisan, M.; Levison, M.E.; Taubert, K.a.; Newburger, J.W.; Gornik, H.L.; Gewitz, M.H.; et al. Periodontal disease and atherosclerotic vascular disease: Does the evidence support an independent association?: A scientific statement from the American Heart Association. Circulation 2012, 125, 2520–2544. [Google Scholar] [CrossRef] [PubMed]
- Lupetti, A.; Pauwels, E.K.J.; Nibbering, P.H.; Weling, M.M. Tc-99m-antimicrobial peptides: Promising candidates for infection imaging. Q. J. Nucl. Med. 2003, 47, 238–245. [Google Scholar]
- Duchen, M.R. Mitochondria and calcium: From cell signalling to cell death. J. Physiol. 2000, 529 Pt 1, 57–68. [Google Scholar] [CrossRef]
- Rima, M.; Rima, M.; Fajloun, Z.; Sabatier, J.M.; Bechinger, B.; Naas, T. Antimicrobial Peptides: A Potent Alternative to Antibiotics. Antibiotics 2021, 10, 1095. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, M.E.; de Vries, H.G.; Eikelboom, M.C.; Meijer, D.K.; Swart, P.J. Synergistic fungistatic effects of lactoferrin in combination with antifungal drugs against clinical Candida isolates. Antimicrob. Agents Chemother. 1999, 43, 2635–2641. [Google Scholar] [CrossRef]
- Fernandes, K.E.; Carter, D.A. The Antifungal activity of lactoferrin and its derived peptides: Mechanisms of action and synergy with drugs against fungal pathogens. Front. Microbiol. 2017, 8, 2. [Google Scholar] [CrossRef]
Species | mDA | RPMI | |||
---|---|---|---|---|---|
25% | 25% (Filtered) | 100% | 25% | 100% | |
M. furfur | + | + | + | + | + |
M. pachydermatis CBS1879 | + | + | + | + | + |
M. globosa CBS7966 | ± | ± | + | ± | + |
M. restricta CBS7877 | − | − | + | − | + |
Strain# | Strain Code | Genotype (IGS1) | Source | Geography |
---|---|---|---|---|
1 | CBS5332 | G | Infected skin, man | Canada |
2 | CBS5334 | G | Infected skin, man | Canada |
3 | CBS4169 | D | Eyelid, man | The Netherlands |
4 | CBS4170 | D | Ear of horse | Unknown |
5 | CBS14141 (JLPK23) | A2 | Catheter, blood, man | France |
6 | CBS8735 | A1 | Bronchial wash, man | Canada |
7 | CBS7019 | E | Pityriasis versicolor on the back skin of a 15-year-old girl | Finland |
8 | CBS1878 | B | Dandruff, man | Unknown |
9 | CBS9595 | H2 | Back skin, man | Greece |
10 | CBS7982 | H3 | The skin of the ear, healthy man | France |
11 | CBS7985 | H1 | Wing of Struthio camelus (ostrich) | France |
12 | CBS5101 | B | Skin scales, from tinea versicolor, man | USA |
13 | CBS4171 | B | Ear of cow | Unknown |
14 | CBS6000 | E | Dandruff, man | India |
15 | CBS6001 | E | Pityriasis versicolor, man | India |
16 | PM315 | A1 | An anal swab of a neonate | Germany |
17 | CBS14139 (JLPK13) | A2 | Urine, man | France |
18 | CBS7710 | ? | Skin of man | The Netherlands |
19 | UOA/HCPF 13236 | A1 | Central venous catheter VC, premature | Greece |
Strain# | Strain Code | Genotype (IGS) | Source (Geography Italy) | MIC Values of Antifungal Drugs (mg/L) | Rationale | ||||
---|---|---|---|---|---|---|---|---|---|
POS | VOR | ITZ | FLU | AMB | |||||
20 | MAL66 | A1 | Arm skin, neonate | 0.25 | 2 | 0.25 | 8 | 2 | all low |
21 | MAL43 | A2 | Blood from a central venous catheter, neonate | 4 | 2 | 1 | 8 | 16 | mid |
22 | MAL20 | G | Blood, neonate | 8 | 8 | 8 | 64 | 16 | all higher |
23 | MAL34 | A1 | Urine, neonate | 0.25 | 1 | 0.25 | 128 | 16 | FLU + AMB high |
24 | MAL33 | A1 | Urine, neonate | 0.25 | 2 | 0.25 | 128 | 16 | FLU + AMB high |
25 | MAL32 | A1 | Urine, neonate | 2 | 4 | 4 | 128 | 8 | FLU high and others mid |
26 | MAL11 | A2 | Blood, neonate | 0.125 | 1 | 0.125 | 16 | 16 | Low mid |
27 | MAL47 | A2 | Blood, neonate | 0.06 | 0.25 | 0.06 | 64 | 4 | low mid except FLU |
28 | CD1488 | A2 | Arm swab (col. 4), neonate | 0.06 | 1 | 0.06 | 128 | >16 | FLU + AMB high |
29 | CD1482 | A2 | Chest swab (col. 7), neonate | 0.06 | 0.5 | 0.008 | 64 | >16 | FLU + AMB high |
30 | CD1495 | A2 | Central venous catheter, neonate | 0.06 | 0.5 | 0.5 | 128 | 4 | FLU high, rest low |
Strain# | Strain Code | hLF1-11 | hLF1-11 + FLU | FICA | FLU | FLU + hLF1-11 | FICB | FIC-Index (FICA and FICB) |
---|---|---|---|---|---|---|---|---|
1 | CBS5332 | 33 | 13 | 0.4 | 107 | 11 | 0.1 | 0.5 |
2 | CBS5334 | 42 | 17 | 0.4 | 96 | 19 | 0.2 | 0.6 |
3 | CBS4169 | 33 | 13 | 0.4 | 171 | 53 | 0.3 | 0.7 |
4 | CBS4170 | 67 | 33 | 0.5 | 256 | 85 | 0.3 | 0.8 |
5 | CBS14141 | 50 | 21 | 0.4 | 256 | 85 | 0.3 | 0.8 |
6 | CBS8735 | 42 | 21 | 0.5 | 213 | 75 | 0.4 | 0.9 |
7 | CBS7019 | 75 | 17 | 0.2 | 171 | 32 | 0.2 | 0.4 |
8 | CBS1878 | 50 | 25 | 0.5 | 85 | 27 | 0.3 | 0.8 |
9 | CBS9595 | 42 | 13 | 0.3 | 85 | 32 | 0.4 | 0.7 |
10 | CBS7982 | 42 | 13 | 0.3 | 213 | 64 | 0.3 | 0.6 |
11 | CBS7985 | 42 | 17 | 0.4 | 256 | 75 | 0.3 | 0.7 |
12 | CBS5101 | 50 | 33 | 0.7 | 256 | 85 | 0.3 | 1.0 |
13 | CBS4171 | 33 | 13 | 0.4 | 85 | 32 | 0.4 | 0.8 |
14 | CBS6000 | 42 | 17 | 0.4 | 42 | 13 | 0.3 | 0.7 |
15 | CBS6001 | 50 | 25 | 0.5 | 149 | 32 | 0.2 | 0.7 |
16 | PM315 | 25 | 10 | 0.4 | 75 | 19 | 0.3 | 0.7 |
17 | CBS14139 | 33 | 17 | 0.5 | 171 | 27 | 0.2 | 0.7 |
18 | CBS7710 | 25 | 13 | 0.5 | 16 | 5 | 0.3 | 0.8 |
19 | 13236 | 50 | 25 | 0.5 | 171 | 107 | 0.6 | 1.1 |
20 | MAL66 | 42 | 21 | 0.5 | 11 | 5 | 0.5 | 1.0 |
21 | MAL43 | 50 | 25 | 0.5 | 27 | 8 | 0.3 | 0.8 |
22 | MAL20 | 42 | 29 | 0.7 | 64 | 43 | 0.7 | 1.4 |
23 | MAL34 | 29 | 17 | 0.6 | 149 | 75 | 0.5 | 1.1 |
24 | MAL33 | 42 | 21 | 0.5 | 85 | 43 | 0.5 | 1.0 |
25 | MAL32 | 33 | 17 | 0.5 | 171 | 85 | 0.5 | 1.0 |
26 | MAL11 | 33 | 13 | 0.4 | 21 | 11 | 0.5 | 0.9 |
27 | MAL47 | 67 | 25 | 0.4 | 85 | 43 | 0.5 | 0.9 |
28 | CD1488 | 50 | 25 | 0.5 | 128 | 75 | 0.6 | 1.1 |
29 | CD1482 | 29 | 23 | 0.8 | 64 | 32 | 0.5 | 1.3 |
30 | CD1495 | 33 | 10 | 0.3 | 128 | 43 | 0.3 | 0.6 |
Strain# | Strain Code | hLF1-11 | hLF1-11 + AMB | FICA | AMB | AMB + hLF1-11 | FICB | FIC-Index (FICA and FICB) |
---|---|---|---|---|---|---|---|---|
1 | CBS5332 | 42 | 21 | 0.5 | 107 | 11 | 0.1 | 0.6 |
2 | CBS5334 | 50 | 21 | 0.4 | 96 | 19 | 0.2 | 0.6 |
3 | CBS4169 | 50 | 21 | 0.4 | 171 | 53 | 0.3 | 0.7 |
4 | CBS4170 | 83 | 42 | 0.5 | 256 | 85 | 0.3 | 0.8 |
5 | CBS14141 | 50 | 17 | 0.3 | 256 | 85 | 0.3 | 0.7 |
6 | CBS8735 | 42 | 21 | 0.5 | 213 | 75 | 0.4 | 0.9 |
7 | CBS7019 | 67 | 25 | 0.4 | 171 | 32 | 0.2 | 0.6 |
8 | CBS1878 | 33 | 13 | 0.4 | 85 | 27 | 0.3 | 0.7 |
9 | CBS9595 | 42 | 15 | 0.4 | 85 | 32 | 0.4 | 0.7 |
10 | CBS7982 | 83 | 38 | 0.5 | 213 | 64 | 0.3 | 0.8 |
11 | CBS7985 | 58 | 29 | 0.5 | 256 | 75 | 0.3 | 0.8 |
12 | CBS5101 | 50 | 21 | 0.4 | 256 | 85 | 0.3 | 0.8 |
13 | CBS4171 | 33 | 13 | 0.4 | 85 | 32 | 0.4 | 0.8 |
14 | CBS6000 | 33 | 13 | 0.4 | 43 | 13 | 0.3 | 0.7 |
15 | CBS6001 | 50 | 17 | 0.3 | 149 | 32 | 0.2 | 0.5 |
16 | PM315 | 42 | 21 | 0.5 | 75 | 19 | 0.3 | 0.8 |
17 | CBS14139 | 25 | 13 | 0.5 | 171 | 27 | 0.2 | 0.7 |
18 | CBS7710 | 21 | 13 | 0.6 | 16 | 5 | 0.3 | 0.9 |
19 | 13236 | 50 | 17 | 0.3 | 19 | 9 | 0.5 | 0.8 |
20 | MAL66 | 42 | 21 | 0.5 | 3 | 1 | 0.4 | 0.9 |
21 | MAL43 | 83 | 42 | 0.5 | 27 | 8 | 0.3 | 0.8 |
22 | MAL20 | 33 | 21 | 0.6 | 21 | 7 | 0.3 | 0.9 |
23 | MAL34 | 21 | 10 | 0.5 | 19 | 5 | 0.3 | 0.8 |
24 | MAL33 | 33 | 17 | 0.5 | 16 | 5 | 0.3 | 0.8 |
25 | MAL32 | 50 | 25 | 0.5 | 13 | 8 | 0.6 | 1.1 |
26 | MAL11 | 33 | 17 | 0.5 | 21 | 8 | 0.4 | 0.9 |
27 | MAL47 | 42 | 21 | 0.5 | 7 | 3 | 0.5 | 1.0 |
28 | CD1488 | 50 | 25 | 0.5 | 27 | 8 | 0.3 | 0.8 |
29 | CD1482 | 33 | 17 | 0.5 | 32 | 11 | 0.3 | 0.8 |
30 | CD1495 | 42 | 21 | 0.5 | 9 | 5 | 0.5 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brouwer, C.P.J.M.; Theelen, B.; van der Linden, Y.; Sarink, N.; Rahman, M.; Alwasel, S.; Cafarchia, C.; Welling, M.M.; Boekhout, T. Combinatory Use of hLF(1-11), a Synthetic Peptide Derived from Human Lactoferrin, and Fluconazole/Amphotericin B against Malassezia furfur Reveals a Synergistic/Additive Antifungal Effect. Antibiotics 2024, 13, 790. https://doi.org/10.3390/antibiotics13080790
Brouwer CPJM, Theelen B, van der Linden Y, Sarink N, Rahman M, Alwasel S, Cafarchia C, Welling MM, Boekhout T. Combinatory Use of hLF(1-11), a Synthetic Peptide Derived from Human Lactoferrin, and Fluconazole/Amphotericin B against Malassezia furfur Reveals a Synergistic/Additive Antifungal Effect. Antibiotics. 2024; 13(8):790. https://doi.org/10.3390/antibiotics13080790
Chicago/Turabian StyleBrouwer, Carlo P. J. M., Bart Theelen, Youp van der Linden, Nick Sarink, Mahfuzur Rahman, Saleh Alwasel, Claudia Cafarchia, Mick M. Welling, and Teun Boekhout. 2024. "Combinatory Use of hLF(1-11), a Synthetic Peptide Derived from Human Lactoferrin, and Fluconazole/Amphotericin B against Malassezia furfur Reveals a Synergistic/Additive Antifungal Effect" Antibiotics 13, no. 8: 790. https://doi.org/10.3390/antibiotics13080790
APA StyleBrouwer, C. P. J. M., Theelen, B., van der Linden, Y., Sarink, N., Rahman, M., Alwasel, S., Cafarchia, C., Welling, M. M., & Boekhout, T. (2024). Combinatory Use of hLF(1-11), a Synthetic Peptide Derived from Human Lactoferrin, and Fluconazole/Amphotericin B against Malassezia furfur Reveals a Synergistic/Additive Antifungal Effect. Antibiotics, 13(8), 790. https://doi.org/10.3390/antibiotics13080790