Antimicrobial Resistance Surveillance: Data Harmonisation and Data Selection within Secondary Data Use
Abstract
:1. Introduction
2. Results
2.1. General Data Collection
2.2. One Health Use Case “Colistin-Resistant E. coli Isolates”
3. Discussion
3.1. Intrinsic and Extrinsic Quality of Information
3.2. Use Cases Defined
3.3. Antibiotic Resistance Outcome
4. Material and Methods
4.1. Data Acquisition
4.2. Data Structure
- -
- meta data, which contains epidemiological and clinical information about the original samples
- -
- bacterial typing data, which contains information about the identification and differentiation of bacterial strains
- -
- phenotypic data, which contains information related to phenotypic resistance
- -
- genotypic data, which contains genetic resistance information.
4.3. Data Quality and Harmonisation Methods
- Pillar Meta Data
- -
- Date of sampling
- -
- Date of isolation
- -
- Regional Code
- -
- City
- -
- State
- -
- Data Source
- -
- Reasons for data collection
- -
- Sample location origin (with separated catalogues by source)
- -
- Matrix/Material (with separated catalogues by source)
- Pillar Bacterial Typing
- -
- Identified bacterial species
- -
- MLST
- -
- Plasmid replicons (data not shown in the result section)
- -
- pMLST (data not shown in the result section)
- -
- Determination method of bacterial species identification
- Pillar Phenotypic AMR Data
- -
- Method
- -
- Interpretation norm
- -
- Tested AM
- -
- Measured value (of MIC/ADD)
- -
- Interpretation result
- Pillar Genomic AMR Data
- -
- Method
- -
- Resistance determinants
- -
- data not documented
- -
- data documented insufficiently or with low quality and
- -
- data documented as wrong or not plausible.
4.4. Definition of Use Cases for One Health Data Analysis
4.5. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADD | Agar disc diffusion |
ARS | Antimicrobial Resistance Surveillance |
AMR | Antimicrobial resistance |
AST | Antimicrobial susceptibility testing |
BMD | Broth microdilution |
CLSI | Clinical and laboratory standards institute |
CRE | Carbapenem-resistant Enterobacteriaceae |
CPE | Carbapenemase producing Enterobacteriaceae |
CV | Coefficient of variance |
EARS-Net | European Antimicrobial Resistance Surveillance Network |
EUCAST | European Committee on Antimicrobial Susceptibility Testing |
GLASS | Global Antimicrobial Resistance and Use Surveillance System |
MDR | Multidrug-resistant |
MIC | Minimum inhibitory concentration |
(p)MLST | (plasmid) Multi-locus sequence typing |
MOSS | Monitoring or surveillance system |
PCR | Polymerase Chain Reaction |
STD | Standard deviation |
WHO | World Health Organisation |
WGS | Whole Genome Sequencing |
References
- Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 10 August 2021).
- Ventola, C.L. The Antibiotic Resistance Crisis. Pharm Ther. 2015, 40, 277–283. [Google Scholar]
- The antibiotic alarm. Nature 2013, 495, 141. Available online: https://www.nature.com/articles/495141a (accessed on 10 August 2021). [CrossRef]
- Luyt, C.E.; Bréchot, N.; Trouillet, J.L.; Chastre, J. Antibiotic stewardship in the intensive care unit. Crit Care. 2014, 18, 480. [Google Scholar] [CrossRef]
- Bartlett, J.G.; Gilbert, D.N.; Spellberg, B. Seven Ways to Preserve the Miracle of Antibiotics. Clin. Infect. Dis. 2013, 56, 1445–1450. [Google Scholar] [CrossRef]
- DART 2020—Deutsche Antibiotika-Resistenzstrategie. Available online: https://www.bundesgesundheitsministerium.de/themen/praevention/antibiotika-resistenzen/antibiotika-resistenzstrategie.html (accessed on 5 January 2022).
- ARS—Antibiotika Resistenz Surveillance. Available online: https://ars.rki.de/Content/Database/Main.aspx (accessed on 7 December 2021).
- WHO Regional Office for Europe and European Centre for Disease Prevention and Control. Surveillance of Antimicrobial Resistance in Europe, 2020 Data; Executive Summary; WHO Regional Office for Europe: Copenhagen, Denmark, 2021. [Google Scholar]
- Suwono, B.; Eckmanns, T.; Kaspar, H.; Tenhagen, B.A. A Joint Regional Analysis of Resistance Combinations in Escherichia coli in Humans and Different Food-Producing Animal Populations in Germany between 2014 and 2017. Front. Public Health 2022, 10, 823613. Available online: https://www.frontiersin.org/articles/10.3389/fpubh.2022.823613 (accessed on 16 August 2023). [CrossRef] [PubMed]
- Kaesbohrer, A.; Schroeter, A.; Tenhagen, B.A.; Alt, K.; Guerra, B.; Appel, B. Emerging Antimicrobial Resistance in Commensal Escherichia coli with Public Health Relevance. Zoonoses Public Health 2012, 59, 158–165. [Google Scholar] [CrossRef]
- Nuanmuang, N.; Leekitcharoenphon, P.; Njage, P.M.K.; Gmeiner, A.; Aarestrup, F.M. An Overview of Antimicrobial Re-sistance Profiles of Publicly Available Salmonella Genomes with Sufficient Quality and Metadata. Foodborne Pathog Dis. 2023, 20, 405–413. [Google Scholar] [CrossRef]
- Doherr, M.G.; Audige, L. Monitoring and surveillance for rare health-related events: A review from the veterinary perspective. Philos. Trans. R Soc Lond B Biol. Sci. 2001, 356, 1097–1106. [Google Scholar] [CrossRef]
- Tumbarello, M.; Viale, P.; Viscoli, C.; Trecarichi, E.M.; Tumietto, F.; Marchese, A.; Spanu, T.; Ambretti, S.; Ginocchio, F.; Cristini, F.; et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: Importance of combination therapy. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2012, 55, 943–950. [Google Scholar] [CrossRef]
- Iovleva, A.; Doi, Y. Carbapenem-Resistant Enterobacteriaceae. Clin. Lab. Med. 2017, 37, 303–315. [Google Scholar] [CrossRef]
- Wendt, A.; Kreienbrock, L.; Campe, A. Zoonotic disease surveillance--inventory of systems integrating human and animal disease information. Zoonoses Public Health. 2015, 62, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Nordmann, P. Emerging plasmid-encoded colistin resistance: The animal world as the culprit? J. Antimicrob. Chemother. 2016, 71, 2326–2327. [Google Scholar] [CrossRef]
- Reference Gene Catalog—Pathogen Detection—NCBI. Available online: https://www.ncbi.nlm.nih.gov/pathogens/refgene/ (accessed on 16 September 2022).
- Swart, E.; Ihle, P.; Gothe, H.; Matusiewicz, D. Routinedaten im Gesundheitswesen: Handbuch Sekundärdatenanalyse: Grundlagen, Methoden und Perspektiven. Hogrefe AG. 2014. (Hans Huber Programmbereich Gesundheit). Available online: https://books.google.de/books?id=xQz-oAEACAAJ (accessed on 1 November 2021).
- Perestrelo, S.; Amaro, A.; Brouwer, M.S.M.; Clemente, L.; Ribeiro Duarte, A.S.; Kaesbohrer, A.; Karpíšková, R.; Lopez-Chavarrias, V.; Morris, D.; Prendergast, D.; et al. Building an International One Health Strain Level Database to Characterise the Epidemiology of AMR Threats: ESBL—AmpC Producing E. coli as An Example—Challenges and Perspectives. Antibiotics 2023, 12, 552. [Google Scholar] [CrossRef] [PubMed]
- Hendriksen, R.S.; Munk, P.; Njage, P.; Van Bunnik, B.; McNally, L.; Lukjancenko, O.; Röder, T.; Nieuwenhuijse, D.; Pedersen, S.K.; Kjeldgaard, J.; et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 2019, 10, 1124. [Google Scholar] [CrossRef] [PubMed]
- McArthur, A.G.; Tsang, K.K. Antimicrobial resistance surveillance in the genomic age. Ann. N. Y. Acad. Sci. 2017, 1388, 78–91. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, N.B.; Arieti, F.; Mena-Benítez, C.A.; Galia, L.; Tebon, M.; Alvarez, J.; Gladstone, B.P.; Collineau, L.; De Angelis, G.; Duro, R.; et al. EPI-Net One Health reporting guideline for antimicrobial consumption and resistance surveillance data: A Delphi approach. Lancet Reg. Health—Eur. 2023, 26, 100563. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, E.; Dooley, D.; Graham, M.; Van Domselaar, G.; Brinkman, F.S.L.; Hsiao, W.W.L. Context Is Everything: Harmonization of Critical Food Microbiology Descriptors and Metadata for Improved Food Safety and Surveillance. Front. Microbiol. 2017, 6, 1068. Available online: https://www.frontiersin.org/articles/10.3389/fmicb.2017.01068/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field&journalName=Frontiers_in_Microbiology&id=260759 (accessed on 12 August 2021). [CrossRef] [PubMed]
- Umair, M.; Mohsin, M.; Sönksen, U.W.; Walsh, T.R.; Kreienbrock, L.; Laxminarayan, R. Measuring Antimicrobial Use Needs Global Harmonization. Glob. Chall. 2021, 5, 2100017. [Google Scholar] [CrossRef]
- Apostolakos, I.; Piccirillo, A. A review on the current situation and challenges of colistin resistance in poultry production. Avian Pathol. 2018, 47, 546–558. [Google Scholar] [CrossRef]
- Rossolini, G.M.; Arena, F.; Pecile, P.; Pollini, S. Update on the Antibiotic Resistance Crisis|Elsevier Enhanced Reader. Curr. Opin. Pharmacol. 2014, 10, 56–60. [Google Scholar] [CrossRef]
- El-Sayed Ahmed, M.A.E.G.; Zhong, L.L.; Shen, C.; Yang, Y.; Doi, Y.; Tian, G.B. Colistin and its role in the Era of antibiotic resistance: An extended review (2000–2019). Emerg. Microbes Infect. 2020, 9, 868–885. [Google Scholar] [CrossRef] [PubMed]
- Collineau, L.; Bourély, C.; Rousset, L.; Berger-Carbonne, A.; Ploy, M.-C.; Pulcini, C.; Colomb-Cotinat, M. Towards One Health surveillance of antibiotic resistance: Characterisation and mapping of existing programmes in humans, animals, food and the environment in France, 2021. Eurosurveillance 2023, 28, 2200804. [Google Scholar] [CrossRef] [PubMed]
- Chokkakula, S.; Chen, Z.; Wang, L.; Jiang, H.; Chen, Y.; Shi, Y.; Zhang, W.; Gao, W.; Yang, J.; Li, J.; et al. Molecular surveillance of antimicrobial resistance and transmission pattern of Mycobacterium leprae in Chinese leprosy patients. Emerg. Microbes Infect. 2019, 8, 1479–1489. [Google Scholar] [CrossRef] [PubMed]
- Menezes, J.; da Silva, J.M.; Frosini, S.M.; Loeffler, A.; Weese, S.; Perreten, V.; Pomba, C. mcr-1 colistin resistance gene sharing between Escherichia coli from cohabiting dogs and humans, Lisbon, Portugal, 2018 to 2020. Eurosurveillance 2022, 27, 2101144. [Google Scholar] [CrossRef] [PubMed]
- Ćwiek, K.; Woźniak-Biel, A.; Karwańska, M.; Siedlecka, M.; Lammens, C.; Rebelo, A.R.; Hendriksen, R.S.; Kuczkowski, M.; Chmielewska-Władyka, M.; Wieliczko, A. Phenotypic and genotypic characterization of mcr-1-positive multidrug-resistant Escherichia coli ST93, ST117, ST156, ST10, and ST744 isolated from poultry in Poland. Braz. J. Microbiol. 2021, 52, 1597–1609. [Google Scholar] [CrossRef] [PubMed]
- Bojesen, A.M.; Ahmed, U.; Skaarup, H.; Espinosa-Gongora, C. Recurring outbreaks by the same Escherichia coli ST10 clone in a broiler unit during 18 months. Vet. Res. 2022, 53, 2. [Google Scholar] [CrossRef]
- Soliman, A.M.; Ramadan, H.; Yu, L.; Hisatsune, J.; Sugai, M.; Elnahriry, S.S.; Nariya, H.; El-Domany, R.A.; Shimamoto, T.; Jackson, C.R.; et al. Complete genome sequences of two Escherichia coli clinical isolates from Egypt carrying mcr-1 on IncP and IncX4 plasmids. Front. Microbiol. 2022, 13, 989045. Available online: https://www.frontiersin.org/articles/10.3389/fmicb.2022.989045 (accessed on 25 July 2023). [CrossRef]
- Mantengoli, E.; Luzzaro, F.; Pecile, P.; Cecconi, D.; Cavallo, A.; Attala, L.; Rossolini, G.M. Escherichia coli ST131 Producing Extended-Spectrum β-Lactamases Plus VIM-1 Carbapenemase: Further Narrowing of Treatment Options. Clin. Infect. Dis. 2011, 52, 690–691. [Google Scholar] [CrossRef]
- German Federal Office of Consumer Protection and Food Safety. Zoonoses Monitoring 2020—Summary of Findings and Conclusions. 2020. Available online: https://www.bvl.bund.de/EN/Tasks/01_Food/01_tasks/02_OfficialFoodControl/06_ZoonosesMonitoring/ZoonosesMonitoring_node.html (accessed on 3 November 2021).
- bioMérieux Deutschland. VITEK® 2. Available online: https://www.biomerieux.de/klinische-diagnostik/vitekr-2 (accessed on 7 December 2021).
- Cusack, T.; Ashley, E.; Ling, C.; Rattanavong, S.; Roberts, T.; Turner, P.; Wangrangsimakul, T.; Dance, D. Impact of CLSI and EUCAST breakpoint discrepancies on reporting of antimicrobial susceptibility and AMR surveillance. Clin. Microbiol. Infect. 2019, 25, 910–911. [Google Scholar] [CrossRef]
- Bundesamt für Verbraucherschutz und Lebensmittelsicherheit. Kodierkatalog für die Übermittlung von Daten aus der amtlichen Lebensmittel-und Veterinärüberwachung Sowie dem Monitoring. Katalog Nr. 003 (Version 144.00): Matrixkodes. 2022. Available online: https://katalogportal.bvl.bund.de/katalogportal/KatalogExportieren.html?catalogId=31&versionId=2251 (accessed on 4 October 2022).
- Baron, E.J. Classification. In Medical Microbiology, 4th ed.; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996. Available online: http://www.ncbi.nlm.nih.gov/books/NBK8406/ (accessed on 4 October 2022).
- EUCAST: EUCAST. Available online: https://www.eucast.org/ (accessed on 22 March 2022).
- Clinical & Laboratory Standards Institute. Clinical & Laboratory Standards Institute: CLSI Guidelines. Available online: https://clsi.org/ (accessed on 22 March 2022).
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar]
- Ruddat, I.; Schwarz, S.; Tietze, E.; Ziehm, D.; Kreienbrock, L. A quantitative approach to analyse linkages between antimicrobial resistance properties in Salmonella Typhimurium isolates. Epidemiol. Infect. 2012, 140, 157–167. [Google Scholar] [CrossRef] [PubMed]
Provider * | |||
---|---|---|---|
RKI | RUB | BfR | |
Isolates total | 353 | 2147 | 83 |
Meta Data | |||
Data source | 353 | 2147 | 83 |
Isolation date | 338 | 2147 | 83 |
State | 206 | 2146 | 0 |
City | 0 | 2147 | 68 |
Regional code | 264 | 1571 | 0 |
Matrix | 292 | 2145 | 83 |
Sample location origin | 212 | 222 | 83 |
Bacterial Typing | |||
MALDI Bacterial species identification | 353 | 2146 | 83 |
WGS Confirmation of bacterial species | 127 | 2146 | 83 |
MLST data | 282 | 319 | 83 |
Phenotypic Data | |||
Phenotypic AMR testing | 353 | 2147 | 83 |
Genotypic Data | |||
WGS data | 147 | 222 | 83 |
PCR data | 353 | 2147 | 83 |
Antimicrobial | Human | Animal | Food | |||
---|---|---|---|---|---|---|
n * | % | n * | % | n * | % | |
Aminoglycosides | ||||||
Amikacin | 234 | 9.44 | 1 | 1.89 | 8 | 15.69 |
Gentamicin | 315 | 12.71 | 44 | 83.02 | 48 | 94.12 |
Kanamycin | 270 | 10.89 | 11 | 20.75 | 22 | 43.14 |
Tobramycin | 45 | 1.82 | 0 | 0.00 | 0 | 0.00 |
Beta-lactams | ||||||
Ampicillin | 270 | 10.89 | 44 | 83.02 | 48 | 94.12 |
Aztreonam | 45 | 1.82 | 0 | 0.00 | 0 | 0.00 |
Cefepime | 45 | 1.82 | 12 | 22.64 | 15 | 29.41 |
Cefotaxime | 315 | 12.71 | 44 | 83.02 | 48 | 94.12 |
Cefotaxime/Clavulanic Acid | 0 | 0.00 | 16 | 30.19 | 15 | 29.41 |
Cefotiam | 68 | 2.74 | 44 | 83.02 | 44 | 86.27 |
Cefoxitin | 270 | 10.89 | 13 | 24.53 | 23 | 45.10 |
Ceftazidime | 315 | 12.71 | 44 | 83.02 | 48 | 94.12 |
Ceftazidime/Clavulanic Acid | 0 | 0.00 | 16 | 30.19 | 15 | 29.41 |
Ertapenem | 1889 | 76.20 | 12 | 22.64 | 15 | 29.41 |
Imipenem | 2192 | 88.42 | 12 | 22.64 | 15 | 29.41 |
Meropenem | 2458 | 99.15 | 36 | 67.92 | 29 | 56.86 |
Mezlocillin | 68 | 2.74 | 1 | 1.89 | 6 | 11.76 |
Mezlocillin/Sulbactam | 68 | 2.74 | 1 | 1.89 | 6 | 11.76 |
Piperacillin | 45 | 1.82 | 0 | 0.00 | 0 | 0.00 |
Piperacillin/Tazobactam | 45 | 1.82 | 0 | 0.00 | 0 | 0.00 |
Temocillin | 0 | 0.00 | 16 | 30.19 | 15 | 29.41 |
Quinolones | ||||||
Ciprofloxacin | 315 | 12.71 | 44 | 83.02 | 48 | 94.12 |
Moxifloxacin | 45 | 1.82 | 0 | 0.00 | 0 | 0.00 |
Nalidixic acid | 270 | 10.89 | 44 | 83.02 | 48 | 94.12 |
Diaminopyrimidins | ||||||
Sulfamethoxazole/Trimethoprim | 315 | 12.71 | 1 | 1.89 | 6 | 11.76 |
Sulfamethoxazole | 0 | 0.00 | 43 | 81.13 | 44 | 86.27 |
Trimethoprim | 0 | 0.00 | 43 | 81.13 | 44 | 86.27 |
Macrolides | ||||||
Azithromycin | 0 | 0.00 | 37 | 69.81 | 26 | 50.98 |
Polymyxins | ||||||
Colistin | 1570 | 63.33 | 53 | 100.00 | 49 | 96.08 |
Others | ||||||
Chloramphenicol | 267 | 10.77 | 44 | 83.02 | 48 | 94.12 |
Fosfomycin | 45 | 1.82 | 6 | 11.32 | 14 | 27.45 |
Tetracycline | 79 | 3.19 | 43 | 81.13 | 40 | 78.43 |
Tigecycline | 45 | 1.82 | 36 | 67.92 | 25 | 49.02 |
Oxytetracycline | 190 | 7.66 | 1 | 1.89 | 8 | 15.69 |
Streptomycin | 191 | 7.70 | 11 | 20.75 | 22 | 43.14 |
Tests total | 2479 | 53 | 51 |
n | Mean | Med. | Std. | Cv | Min | 5%-Perc. | 95%-Perc. | Max | |
---|---|---|---|---|---|---|---|---|---|
data source | |||||||||
Human | 66 | 0.61 | 0.54 | 0.19 | 30.48 | 0.23 | 0.38 | 0.92 | 0.92 |
Animal | 44 | 0.50 | 0.46 | 0.15 | 29.66 | 0.31 | 0.31 | 0.85 | 0.85 |
Food | 44 | 0.55 | 0.54 | 0.13 | 24.30 | 0.38 | 0.38 | 0.77 | 0.85 |
data supplier | |||||||||
RKI | 71 | 0.60 | 0.54 | 0.18 | 29.51 | 0.23 | 0.38 | 0.92 | 0.92 |
RUB | 2 | 0.42 | 0.42 | 0.05 | 12.86 | 0.38 | 0.38 | 0.46 | 0.46 |
BfR | 81 | 0.52 | 0.46 | 0.15 | 28.14 | 0.31 | 0.38 | 0.85 | 0.85 |
region | |||||||||
North | 24 | 0.53 | 0.46 | 0.15 | 28.19 | 0.31 | 0.38 | 0.85 | 0.85 |
South | 13 | 0.53 | 0.46 | 0.16 | 29.17 | 0.38 | 0.38 | 0.85 | 0.85 |
West | 72 | 0.61 | 0.54 | 0.18 | 29.04 | 0.31 | 0.38 | 0.92 | 0.92 |
East | 19 | 0.56 | 0.54 | 0.16 | 29.19 | 0.31 | 0.31 | 0.85 | 0.85 |
unknown | 26 | 0.46 | 0.46 | 0.10 | 20.94 | 0.23 | 0.31 | 0.62 | 0.69 |
ALL | 154 | 0.56 | 0.54 | 0.17 | 29.76 | 0.23 | 0.38 | 0.85 | 0.92 |
Variable | RUB | RKI | BfR | Usability Comment |
---|---|---|---|---|
Meta Data | ||||
Date of sampling | ✓ | ✓ | Requires harmonisation of documentation | |
Date of isolation | ✓ | ✓ | ✓ | Requires harmonisation of documentation |
Reasons for data collection | clinical isolates with AMR suspicion | Isolates of special interest | Routine screenings/regular monitoring | Evaluable in a One Health context |
Regional Code | ✓ | ✓ | Requires harmonisation of documentation | |
City | ✓ | ✓ | Requires harmonisation of documentation | |
Federal state | ✓ | ✓ | Evaluable in a One Health context | |
Source | Human | Human, Food | Animal, Food | Evaluable in a One Health context |
Age | ✓ | ✓ | For human data only | |
Gender | ✓ | ✓ | For human data only | |
Sample location origin | ✓ | ✓ | ✓ | differentiated by data source |
Matrix | ✓ | ✓ | ✓ | differentiated by data source |
Bacterial Typing | ||||
Bacterial species | ✓ | ✓ | ✓ | Requires harmonisation of documentation |
Method | ✓ | ✓, with WGS confirmation | ✓, with WGS confirmation | differentiated by data provider |
MLST | ✓ | ✓ | ✓ | Evaluable in a One Health context |
Phenotypic Data | ||||
Method | BMD, Agar disc diffusion, | BMD, autom. AST | BMD, autom. AST | Not evaluable in a One Health context |
Evaluation norm | EUCAST | EUCAST | CLSI/EUCAST | Not evaluable in a One Health context |
Tested Antibiotics | ✓ | ✓ | ✓ | Requires harmonisation |
Interpretation | ✓ | ✓ | Requires harmonisation | |
Genotypic Data | ||||
Method | PCR, WGS | PCR, WGS | PCR, WGS | differentiated by data provider |
Resistance Determinants | ✓ | ✓ | ✓ | Requires harmonisation of documentation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bleischwitz, S.; Winkelmann, T.S.; Pfeifer, Y.; Fischer, M.A.; Pfennigwerth, N.; Hammerl, J.A.; Binsker, U.; Hans, J.B.; Gatermann, S.; Käsbohrer, A.; et al. Antimicrobial Resistance Surveillance: Data Harmonisation and Data Selection within Secondary Data Use. Antibiotics 2024, 13, 656. https://doi.org/10.3390/antibiotics13070656
Bleischwitz S, Winkelmann TS, Pfeifer Y, Fischer MA, Pfennigwerth N, Hammerl JA, Binsker U, Hans JB, Gatermann S, Käsbohrer A, et al. Antimicrobial Resistance Surveillance: Data Harmonisation and Data Selection within Secondary Data Use. Antibiotics. 2024; 13(7):656. https://doi.org/10.3390/antibiotics13070656
Chicago/Turabian StyleBleischwitz, Sinja, Tristan Salomon Winkelmann, Yvonne Pfeifer, Martin Alexander Fischer, Niels Pfennigwerth, Jens André Hammerl, Ulrike Binsker, Jörg B. Hans, Sören Gatermann, Annemarie Käsbohrer, and et al. 2024. "Antimicrobial Resistance Surveillance: Data Harmonisation and Data Selection within Secondary Data Use" Antibiotics 13, no. 7: 656. https://doi.org/10.3390/antibiotics13070656
APA StyleBleischwitz, S., Winkelmann, T. S., Pfeifer, Y., Fischer, M. A., Pfennigwerth, N., Hammerl, J. A., Binsker, U., Hans, J. B., Gatermann, S., Käsbohrer, A., Werner, G., & Kreienbrock, L. (2024). Antimicrobial Resistance Surveillance: Data Harmonisation and Data Selection within Secondary Data Use. Antibiotics, 13(7), 656. https://doi.org/10.3390/antibiotics13070656