One Health Landscape of Antimicrobial Resistance in Bacteria Isolated from Virginia between 2007–2021
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Bacterial Source
3.2. Sample Origin
3.3. Bacterial Isolation and Identification Performed
3.4. Antimicrobial Resistance (AMR) Evaluation
4. Conclusions
5. Limitations with the Current Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cornejo-Juárez, P.; Vilar-Compte, D.; Pérez-Jiménez, C.; Ñamendys-Silva, S.; Sandoval-Hernández, S.; Volkow-Fernández, P. The impact of hospital-acquired infections with multidrug-resistant bacteria in an oncology intensive care unit. Int. J. Infect. Dis. 2015, 31, 31–34. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). 2019 AR Threats Report. 2021. Available online: https://www.cdc.gov/antimicrobial-resistance/data-research/threats/index.html (accessed on 20 December 2023).
- Ziemska, J.; Rajnisz, A.; Solecka, J. New perspectives on antibacterial drug research. Cent. Eur. J. Biol. 2013, 8, 943–957. [Google Scholar] [CrossRef]
- National Institutes of Health (NIH). NARMS Cooperative Agreement Program to Enhance and Strengthen Antibiotic Resistance Surveillance in Retail Food Specimens (U01). 2016. Available online: https://grants.nih.gov/grants/guide/pa-files/PAR-16-099.html (accessed on 19 December 2023).
- Bengtsson-Palme, J.; Abramova, A.; Berendonk, T.; Coelho, L.; Forslund, S.; Gschwind, R.; Heikinheimo, A.; Jarquín-Díaz, V.; Khan, A.; Klümper, U.; et al. Towards monitoring of antimicrobial resistance in the environment: For what reasons, how to implement it, and what are the data needs? Environ. Int. 2023, 178, 108089. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Wang, W.; Arshad, M.; Khurshid, M.; Muzammil, S.; Rasool, M.; Nisar, M.; Alvi, R.; Aslam, M.; Qamar, M.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018, 11, 1645–1658. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kumar, A. Prevalence and antibiotic resistance pattern of Campylobacter species in foods of animal origin. Vet. World. 2014, 7, 681–684. [Google Scholar]
- Sáenz, Y.; Zarazaga, M.; Lantero, M.; Gastanares, M.; Baquero, F.; Torres, C. Antibiotic resistance in Campylobacter strains isolated from animals, foods, and humans in Spain in 1997–1998. Antimicrob. Agents Chemother. 2000, 44, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Zuraw, L. President Declares Federal Policy for ‘Responsible Use’ of Antibiotics in Food Production. FSN. 2015. Available online: https://www.foodsafetynews.com/2015/06/president-declares-federal-policy-for-responsible-use-of-antibiotics-in-food-production/ (accessed on 19 December 2023).
- Brown, K.; Kulis, J.; Thomson, B.; Chapman, T.; Mawhinney, D. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Sci. Total Environ. 2006, 366, 772–783. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; McDermott, P.; Friedman, S.; Abbott, J.; Ayers, S.; Glenn, A.; Hall-Robinson, E.; Hubert, S.; Harbottle, H.; Walker, R.; et al. Antimicrobial resistance and genetic relatedness among Salmonella from retail foods of animal origin: NARMS retail meat surveillance. Foodborne Pathog. Dis. 2006, 3, 106–117. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). FDA Releases 2012 and 2013 NARMS Integrated Annual Report; Finds Some Improvement in Antibiotic Resistance Trends in Recent Years. 2015. Available online: https://fda.report/media/92769/Summary--NARMS-2012-2013-Integrated-Report.pdf (accessed on 19 December 2023).
- Office of Disease Prevention and Health Promotion (ODPHP). Foodborne Illness. 2020. Available online: https://health.gov/healthypeople/objectives-and-data/browse-objectives/foodborne-illness (accessed on 27 January 2024).
- Centers for Disease Control and Prevention (CDC). Foodborne Germs and Illness. 2023. Available online: https://www.cdc.gov/foodborneburden/index.html (accessed on 20 December 2023).
- Murugesan, L.; Kucerova, Z.; Knabel, S.; Laborde, L. Predominance and distribution of a persistent Listeria monocytogenes clone in a commercial fresh mushroom processing environment. J. Food Prot. 2015, 78, 1988–1998. [Google Scholar] [CrossRef]
- Scheinberg, J.; Dudley, E.; Campbell, J.; Roberts, B.; DiMarzio, M.; DebRoy, C.; Cutter, C. Prevalence and phylogenetic characterization of Escherichia coli and hygiene indicator bacteria isolated from leafy green produce, beef, and pork obtained from farmers’ markets in Pennsylvania. J. Food Prot. 2017, 80, 237–244. [Google Scholar] [CrossRef]
- Van den Bogaard, A.; Stobberingh, E. Epidemiology of resistance to antibiotics: Links between animals and humans. Int. J. Antimicrob. Agents. 2000, 14, 327–335. [Google Scholar] [CrossRef]
- Urban-Chmiel, R.; Marek, A.; Stęepień-Pyśniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, A.; Osek, J. Antibiotic resistance in bacteria—A Review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef]
- Marco-Fuertes, A.; Martin, C.; Lorenzo-Rebeaque, L.; Vega, S.; Montoro-Dasi, L. Antimicrobial resistance in companion animals: A new challenge for the One Health approach in the European Union. Vet. Sci. 2022, 9, 208. [Google Scholar] [CrossRef]
- Sobkowich, K.; Weese, S.; Poljak, Z.; Plum, A.; Szlosek, D.; Bernardo, T. Epidemiology of companion animal AMR in the United States of America: Filling a gap in the one health approach. Front. Public Health 2023, 11, 1161950. [Google Scholar] [CrossRef]
- Cornaglia, G.; Hryniewicz, W.; Jarlier, V.; Kahlmeter, G.; Mittermayer, H.; Stratchounski, L.; Baquero, F.; ESCMID Study Group for Antimicrobial Resistance Surveillance. European recommendations for antimicrobial resistance surveillance. Clin. Microbiol. Infect. 2004, 10, 349–383. [Google Scholar] [CrossRef]
- O’Brien, T. The global epidemic nature of antimicrobial resistance and the need to monitor and manage it locally. Clin. Infect. Dis. 1997, 24 (Suppl. S1), S2–S8. [Google Scholar] [CrossRef]
- Standard M100–S25; Performance Standards for Antimicrobial Disk Susceptibility Tests. Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2015.
- Kim, C.; Fatani, A.; Almuqati, R.; Rahemi, A.; Abujamous, A.; Wynn, C.; Nartea, T.; Ndegwa, E.; Rutto, L.; Dhakal, R. Prevalence and antimicrobial resistance of foodborne pathogens in value-added commodities procured from farmers’ markets in Central Virginia. J. Food Saf. 2021, 41, e12931. [Google Scholar] [CrossRef]
- Lee-Mayes, Q.; Minja, M.; Abujamous, A.; Kim, C.; Sismour, K. Characterization of E. coli Isolated from residential water wells in South Central Virginia between 2020 and 2021. In Proceedings of the Institute of Food Technologists Annual Meeting 2022, Chicago, IL, USA, 14–17 July 2022. [Google Scholar]
- Kim, C.; Lee, S.; Sismour, E. Assessment of E. coli in residential water wells of South Central Virginia. In Proceedings of the Institute of Food Technologists Annual Meeting 2018, Chicago, IL, USA, 15–18 July 2018. [Google Scholar]
- Kim, C.; Newton, M.; Wynn, C.; Comer, M.; Mullins, C.; Crosby, D. Survey of aquaponics and hydroponics systems in the Commonwealth of Virginia. In Proceedings of the International Association for Food Protection Annual Meeting 2022, Pittsburgh, PA, USA, 31 July–3 August 2022. [Google Scholar]
- Ndegwa, E.; Almehmadi, H.; Kim, C.; Kaseloo, P.; Ako, A. Longitudinal shedding patterns and characterization of antimicrobial resistant commensal E. coli in pastured goats using a cohort study. Antibiotics 2019, 8, 136. [Google Scholar] [CrossRef]
- Riley, A.; Kim, C.; Sriharan, S.; Nartea, T.; Ndegwa, E.; Dhakal, R.; Zheng, G.; Baffaut, C. Potential hotspots of antimicrobial resistance emergence and dissemination in the environment: A case study in Central Virginia. In Proceedings of the International Association for Food Protection Annual Meeting 2023, Toronto, ON, Canada, 16–19 July 2023. [Google Scholar]
- Chen, X.; Zhang, W.; Pan, W.; Yin, J.; Pan, Z.; Gao, S.; Jiao, X. Prevalence of qnr, aac(60)-Ib-cr, qepA, and oqxAB in Escherichia coli isolates from humans, animals, and the environment. Antimicrob. Agents Chemother. 2012, 56, 3423–3427. [Google Scholar] [CrossRef]
- Pereira, R.; Foditsch, C.; Siler, J.; Dulièpre, S.; Altier, C.; Garzon, A.; Warnick, L. Genotypic antimicrobial resistance characterization of E. coli from dairy calves at high risk of respiratory disease administered enrofloxacin or tulathromycin. Sci. Rep. 2020, 10, 19327. [Google Scholar] [CrossRef]
- Virginia Department of Health (VDH). 2018 Virginia State and Regional Cumulative Antibiogram. 2020. Available online: https://www.vdh.virginia.gov/content/uploads/sites/174/2020/11/2018-Virginia-State-and-Regional-Antibiogram-Report-11.20.2020.pdf (accessed on 20 December 2023).
- Kim, C.; Torres, A.; Smith, W.; Kulinczenko, A.; Pao, S.; Wildeus, S.; Ettinger, M.; Gruszynski, K.; Wynn, C. Prevalence of antimicrobial resistance (AMR) in bacteria isolated from farm animals, wildlife, and food samples in the eastern United States between 2007 and 2013. EC Nutr. 2017, 7, 264–274. [Google Scholar]
- Doyle, M.; Loneragan, H.; Scott, M.; Singer, S. Antimicrobial resistance: Challenges and perspectives. IFT 2013, 12, 234–248. [Google Scholar] [CrossRef]
- Nesemeier, B.; Ekiri, A.; Landblom, D.; Doetkott, D.; Khaitsa, M. Prevalence and antimicrobial resistance of Salmonella enterica shed from range and feedlot cattle from post-weaning to slaughter. Food Prot. Trends. 2015, 35, 280–289. [Google Scholar]
- Gast, R.; Guraya, R.; Jones, D.; Anderson, K. Persistence of fecal shedding of Salmonella Enteritidis by experimentally infected laying hens housed in conventional or enriched cages. Poult. Sci. 2015, 94, 1650–1656. [Google Scholar] [CrossRef]
- Castro-Vargas, R.; Fandiño-de-Rubio, L.; Vega, A.; Rondón-Barragán, I. Phenotypic and genotypic resistance of Salmonella Heidelberg isolated from one of the largest poultry production region from Colombia. Int. J. Poult. Sci. 2019, 18, 610–617. [Google Scholar] [CrossRef]
- Rodney, S.; Umakanth, S.; Chowdhury, G.; Saha, R.; Mukhopadhyay, A.; Ballal, M. Poultry: A receptacle for non-typhoidal Salmonellae and antimicrobial resistance. Iran. J. Microbiol. 2019, 11, 31–38. [Google Scholar]
- Yang, Y.; Feye, K.; Shi, Z.; Pavlidis, H.; Kogit, M.; Ashworth, A.; Ricke, S. A historical review on antibiotic resistance of foodborne Campylobacter. Front. Microbiol. 2019, 10, 1509. [Google Scholar] [CrossRef]
- Abd-Elghany, S.; Sallam, K.; Abd-Elkhalek, A.; Tamura, T. Occurrence, genetic characterization and antimicrobial resistance of Salmonella isolated from chicken meat and giblets. Epidemiol. Infect. 2014, 143, 997–1003. [Google Scholar] [CrossRef]
- Mihaiu, L.; Lapusan, A.; Tanasuica, R.; Sobolu, R.; Mihaiu, R.; Oniga, O.; Mihaiu, M. First study of Salmonella in meat in Romania. J. Infect. Dev. Ctries 2014, 8, 50–58. [Google Scholar] [CrossRef]
- Tîrziu, E.; Lazăr, R.; Sala, C.; Nichita, I.; Morar, A.; Şereş, M.; Imre, K. Salmonella in raw chicken meat from the Romanian seaside: Frequency of isolation and antibiotic resistance. J. Food Prot. 2015, 78, 1003–1006. [Google Scholar] [CrossRef]
- Wallinga, D.; Smit, L.; Davis, M.; Casey, J.; Nachman, K. A review of the effectiveness of current US policies on antimicrobial use in meat and poultry production. Curr. Environ. Health Rep. 2022, 9, 339–354. [Google Scholar] [CrossRef]
- Kim, C.; Stein, R.; Pao, S. Comparison of the microbial quality of lamb and goat meat acquired from internet and local retail markets. J. Food Prot. 2015, 78, 980–1987. [Google Scholar] [CrossRef]
- Kim, C.; Almuqati, R.; Fatani, A.; Alireza, R.; Kaseloo, P.; Wynn, C.; Nartea, T.; Ndegwa, E.; Rutto, L. Prevalence and antimicrobial resistance (AMR) of foodborne pathogens in select fresh produce procured from farmers’ markets in Central Virginia. J. Food Saf. 2021, 41, e12895. [Google Scholar] [CrossRef]
- Kim, C.; Albukhaytan, S.; Goodwyn, B.; Nartea, T.; Gao, M.; Ndegwa, E.; Dhakal, R. Pilot Study: Microbiological survey of select fresh produce acquired from small independent retailers and large chain supermarkets in food desert areas of Central Virginia, USA. EC Nutr. 2023, 18, 1–17. [Google Scholar]
- Kim, C.; Goodwyn, B.; Albukhaytan, S.; Nartea, T.; Ndegwa, E.; Dhakal, R. Microbiological survey and antimicrobial resistance of foodborne pathogens in select meat products and ethnic food products procured from food desert retail outlets in Central Virginia, USA. Pathogens 2023, 12, 965. [Google Scholar] [CrossRef]
- Gruszynski, K.; Pao, S.; Kim, C.; Toney, D.; Wright, K.; Ross, P.; Colon, A.; Levine, S. Evaluating wildlife as a potential source of Salmonella serotype Newport contamination for tomatoes on the eastern shore of Virginia. Zoonoses Public Health 2013, 61, 202–207. [Google Scholar] [CrossRef]
- Gruszynski, K.; Pao, S.; Kim, C.; Toney, D.; Wright, K.; Colon, A.; Engelmeyer, T.; Levine, S. Evaluating Gulls as Potential Vehicles of Salmonella enterica Serotype Newport (JJPX01.0061) Contamination of Tomatoes Grown on the Eastern Shore of Virginia. Appl. Environ. Microbiol. 2014, 80, 235–238. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). Food Sampling/Preparation of Sample Homogenate. 1998. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-1-food-samplingpreparation-sample-homogenate (accessed on 20 December 2023).
- Pao, S.; Hagens, B.; Kim, C.; Wildeus, S.; Ettinger, M.; Wilson, M.; Watts, B.; Whitley, N.; Porto-Fett, A.; Schwarz, J.; et al. Prevalence and molecular analyses of Campylobacter jejuni and Salmonella spp. in co-grazing small ruminants and wild-living birds. Livest. Sci. 2014, 160, 163–171. [Google Scholar] [CrossRef]
Study (n a) | Nature of AMR b | Number (%) of Isolates Exhibiting Resistance or Non-Susceptibility to Each Quantity of Antimicrobial Agents c | MDR d | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
Food (576) | R | 94 (16.3) | 71 (12.3) | 38 (6.6) | 13 (2.3) | 6 (1.0) | 5 (0.9) | 4 (0.7) | 1 (0.2) | 0 (0.0) | 0 (0.0) | 67 (11.6) |
R+I | 122 (21.2) | 122 (21.2) | 89 (15.5) | 61 (10.6) | 30 (5.2) | 16 (2.8) | 12 (2.1) | 2 (0.3) | 1 (0.2) | 1 (0.2) | NA e | |
Water well (270) | R | 40 (14.8) | 23 (8.5) | 10 (3.7) | 8 (3.0) | 3 (1.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 16 (5.9) |
R+I | 51 (18.9) | 30 (11.1) | 35 (13.0) | 18 (6.7) | 7 (2.6) | 8 (3.0) | 7 (2.6) | 2 (0.7) | 0 (0.0) | 1 (0.4) | NA | |
Ponics (30) | R | 1 (3.3) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
R+I | 8 (26.7) | 1 (3.3) | 0 (0.0) | 0 (0.0) | 1 (3.3) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | NA | |
Farm (159) | R | 33 (20.8) | 7 (4.4) | 0 (0.0) | 1 (0.6) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (0.6) |
R+I | 42 (26.4) | 19 (11.9) | 2 (1.3) | 1 (0.6) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | NA | |
Environment (450) | R | 105 (23.3) | 151 (33.6) | 94 (20.9) | 37 (8.2) | 4 (0.9) | 3 (0.7) | 1 (0.2) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 14 (3.1) |
R+I | 19 (4.2) | 21 (4.7) | 38 (8.4) | 93 (20.7) | 137 (30.4) | 88 (19.6) | 40 (8.9) | 9 (2.0) | 5 (1.1) | 0 (0.0) | NA | |
Overall (1485) | R | 273 (18.4) | 252 (17.0) | 142 (9.6) | 59 (4.0) | 13 (0.9) | 8 (0.5) | 5 (0.3) | 1 (0.1) | 0 (0.0) | 0 (0.0) | 98 (6.6) |
R+I | 242 (16.3) | 193 (13.0) | 164 (11.0) | 173 (11.6) | 175 (11.8) | 112 (7.5) | 59 (4.0) | 13 (0.9) | 6 (0.4) | 2 (0.1) | NA |
Study (n a) | Nature of AMR b | Number (%) of Isolates Exhibiting Resistance or Non-Susceptibility to Each Quantity of Antimicrobial Agents c | MDR d | |||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |||
Food (16) | R | 5 (31.2) | 3 (18.8) | 1 (6.3) | 2 (12.5) | 2 (12.5) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 5 (31.2) |
R+I | 3 (18.8) | 4 (25.0) | 1 (6.3) | 2 (12.5) | 2 (12.5) | 0 (0.0) | 1 (6.3) | 1 (6.3) | NA e | |
Farm (13) | R | 1 (7.7) | 1 (7.7) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
R+I | 11 (84.6) | 2 (15.4) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | NA | |
Wildlife (90) | R | 18 (20.0) | 1 (1.1) | 4 (4.4) | 1 (1.1) | 2 (2.2) | 1 (1.1) | 0 (0.0) | 1 (1.1) | 8 (8.9) |
R+I | 54 (60.0) | 17 (18.9) | 3 (3.3) | 5 (5.6) | 3 (3.3) | 1 (1.1) | 0 (0.0) | 1 (1.1) | NA | |
Overall (119) | R | 24 (20.2) | 5 (4.2) | 5 (4.2) | 3 (2.5) | 4 (3.4) | 1 (0.8) | 0 (0.0) | 1 (0.8) | 13 (10.9) |
R+I | 68 (57.1) | 23 (19.3) | 4 (3.4) | 7 (5.9) | 5 (4.2) | 1 (0.8) | 1 (0.8) | 2 (1.7) | NA |
Study Type | Sample Origin | Sample Type | Bacteria Species (n a) | |
---|---|---|---|---|
E. coli | Salmonella spp. | |||
Food | Farmers’ markets and retail stores | Fruits, vegetables, and meat | 576 | 16 |
Environment | Livestock, wild avian, wastewater treatment plant, and watershed | Feces and water | 450 | NA |
Farm | Small ruminants | Feces | 159 | 13 |
Ponics | Aquaponics and hydroponics system | Vegetables, water, biofilter, sludge, and fish skin | 30 | NA |
Water well | Well | Water | 270 | NA |
Wildlife | Deer, ducks, geese, gulls, and turtles | Feces | NA b | 90 |
Total number of isolates | 1485 | 119 |
Antimicrobial Category | Antimicrobial Agent and Its Abbreviation | Concentration (µg/Disk) | Zone Diameter (mm) | ||
---|---|---|---|---|---|
S | I | R | |||
Penicillins | Ampicillin (AMP) | 10 | >17 | 14–16 | <13 |
β-lactamase inhibitor combinations | Amoxicillin-clavulanic acid (AMC) | 30 | >18 | 14–17 | <13 |
Carbapenems | Meropenem (MEM) | 10 | >23 | 20–22 | <19 |
Aminoglycosides | Amikacin (AMK) | 30 | >17 | 15–16 | <14 |
Gentamicin (GEN) | 10 | >15 | 13–14 | <12 | |
Streptomycin (STR) | 10 | >15 | 12–14 | <11 | |
Tobramycin (TOB) | 10 | >15 | 13–14 | <12 | |
Tetracyclines | Tetracycline (TCY) | 30 | >15 | 12–14 | <11 |
Fluoroquinolones | Ciprofloxacin (CIP) | 5 | >21 | 16–20 | <15 |
Quinolones | Nalidixic acid (NAL) | 30 | >19 | 14–18 | <13 |
Phenicols | Chloramphenicol (CHL) | 30 | >18 | 13–17 | <12 |
Folate pathway inhibitors | Trimethoprim-sulfamethoxazole (SXT) | 25 | >16 | 11–15 | <10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Ndegwa, E. One Health Landscape of Antimicrobial Resistance in Bacteria Isolated from Virginia between 2007–2021. Antibiotics 2024, 13, 504. https://doi.org/10.3390/antibiotics13060504
Kim J, Ndegwa E. One Health Landscape of Antimicrobial Resistance in Bacteria Isolated from Virginia between 2007–2021. Antibiotics. 2024; 13(6):504. https://doi.org/10.3390/antibiotics13060504
Chicago/Turabian StyleKim, Jimin, and Eunice Ndegwa. 2024. "One Health Landscape of Antimicrobial Resistance in Bacteria Isolated from Virginia between 2007–2021" Antibiotics 13, no. 6: 504. https://doi.org/10.3390/antibiotics13060504
APA StyleKim, J., & Ndegwa, E. (2024). One Health Landscape of Antimicrobial Resistance in Bacteria Isolated from Virginia between 2007–2021. Antibiotics, 13(6), 504. https://doi.org/10.3390/antibiotics13060504