The Role of Wastewater Treatment Plants in Dissemination of Antibiotic Resistance: Source, Measurement, Removal and Risk Assessment
Abstract
:1. Introduction
Antibiotic Resistance in Wastewater
2. Approaches for Identifying Antimicrobial Resistance Factors in WWTPs and the Environment
2.1. Identifying ARB and ARGs
2.2. Identifying Antibiotics
3. Effects of Wastewater Treatment Processes on ARGs Released from WWTPs
3.1. Primary Wastewater Treatment
3.2. Secondary Wastewater Treatment
3.3. Tertiary Wastewater Treatment
3.3.1. Chlorination Disinfection
3.3.2. Ultra-Violet Disinfection
3.3.3. Ozone Treatment
3.3.4. Membrane Filtration
4. Assessing the Risk of Antibiotic Resistance from WWTPs in the Environment
4.1. Interactions between ARB, ARGs, MGEs and Co-Occurrence Genes for Risk Scafolding
4.2. A Proposed Pathway to Informed Risk Scaffolds for Antibiotic Resistance from WWTPs
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Publication | Study Focus | Treatment in WWTP | Location | ARG Detection Method | ARGs Identified in Influent | Changes to ARG Relative Abundance in Effluent |
---|---|---|---|---|---|---|
Chen and Zhang, 2013 [45]. | Effect of treatment on ARGs | Activated Sludge | China | qPCR (abundance relative to 16s) | TETM, TETO, TETQ, TETW, SULI, SULII, INTI1 | TETM, TETO, TETQ, TETW, SULI, SULII, INTI1 |
constructed wetland | qPCR (abundance relative to 16s) | TETM, TETO, TETQ, TETW, SULI, SULII, INTI1 | TETM, TETO, TETQ, TETW, SULI, SULII, INTI1 | |||
ultraviolet (UV) disinfection | qPCR (abundance relative to 16s) | TETM, TETO, TETQ, TETW, SULI, SULII, INTI1 | TETM, TETO, TETQ, TETW, SULI, SULII, INTI1 | |||
Conco, et al, 2022 [35]. | ARGs identified in hospital waste | Chlorination | South Africa | WGS | Resistome identified | SULI, AADA4–5, TEM-1D Several ARGs were downregulated |
Czekalski, et al, 2012 [31]. | Multi-drug resistant bacteria in wastewater stream | Activated Sludge | Switzerland | Bacterial culture, antibiotic sensitivity testing, and qPCR | SULI, SULII | SULI, SULII |
Czekalski, et al., 2016 [88] | Escherichia coli | ozonation | Germany | Bacterial culture, and qPCR | SULI | SULI |
Gao, et al., 2012 [71]. | tetracycline and sulfonamide resistance genes | Activated Sludge | USA | qPCR (abundance relative to 16s) | TETO, TETW, SULI | SULI, TETO, TETW |
Ju, et al., 2019 [59]. | Resistome | Activated Sludge | Switzerland | WGS (abundance relative to total sequences) | Resistome identified | Several ARGs for multi-drug, beta-lactam, aminoglycoside, tetracycline, trimethoprim, vancomycin, bacitracin, chloramphenicol, rifamycin, sulfonamide, macrolide. |
Karkman, et al., 2016 [26]. | Resistome | Activated Sludge and biofilters | Finland | qPCR (abundance relative to 16s) | ERMF, blaTEM, TETA, TNPA, ERMB, SULII, AACC, TNPA, MEXF, TNPA, TETO, TETW, STRB, AADA | blaTEM, TETA, TNPA, ERMB |
Lee, et al., 2017 [78]. | Impact of UV disinfection on ARGs and ARB | ultraviolet (UV) disinfection | China | qPCR (abundance relative to 16s) | TETX, TETM, TETA, SULI, SULII, ERMB, QNRD, blaTEM | TETA, TETX, TETM, SULI, SULII, ERMB, QNRD, blaTEM |
Li, et al., 2015 [36]. | Relationship of Antibiotics to ARGs | ultraviolet (UV) disinfection and constructed wetland | China | qPCR (abundance relative to 16s) | TETA, TETB, TETC, TETG, TETL, TETM, TETO, TETQ, TETW, TETX, SULI, SULII | TETC, TETG, TETM, TETX, SULI, INTI1, TETA, TETB, TETL, TETO, TETQ, TETW, SULII |
Li, et al., 2018 [14]. | pharmaceutical wastewater treatment plant | Activated Sludge | China | qPCR (abundance relative to 16s) | TETB, TETW, SULI, SULII, GYRA, QEPA, ERMB, ERMF, INTI1, INTI2 | TETB, SULI, SULII, GYRA, INTI1, ERMB, ERMF, QEPA, INTI2 |
Lin, et al., 2021 [92]. | Relationship of Antibiotics to ARGs | Membrane bioreactors | China | qPCR (abundance relative to 16s) | Unspecified 319 ARGs | APHA3, MERA, DFRA14, APH3-III, ERMF, ARR-2, TET32, CEFA, blaTEM, AACC2, DFRA1, CN1A5, AADA16, AADA6, AAC(6)-LB, COPA, MEFA, ERMQ, INU(F), AADA_99, AAC(6), CATB3, QACH_351, AADA5, blaVEB, AADA21, EREB, AADA17, MSRE, ERMB, TETM, TETW, TETA, SULI, MPHA, Expression of all other ARGs was maintained or downregulated |
Liu, et al., 2019 [7]. | Relationship of Antibiotics to ARGs | ultraviolet (UV) disinfection | China | qPCR (abundance relative to 16s) | TETA, TETC, TETQ, TETW, TETX, SULI, SULII, SULIII, INTI 1 | TETA, TETC, TETQ, TETW, TETX, SULI, SULII, SULIII, INTI1 |
Liu, et al., 2018 [85]. | Intracellular and extracellular ARGs | Chlorination | China | qPCR (abundance relative to 16s) | VANA, DFRA1, CATA1, KATG, RPOB1, APH(2′)-ID, AADA, QNRA, GYRA, AMPC, blaTEM, ERMB, ERMA, SULIII, SULII, SULI, TETX, TETQ, TETM, TETC, TETB, TETA | ERMB, TETA, TETB, TETC, SULI, SULII, SULIII, AMPC, APH(2’)-ID, KATG, VANA, DFRA1, CATA1, KATG, RPOB1, AADA, QNRA, GYRA, blaTEM, ERMA, TETX, TETQ, TETM |
Mao, et al., 2015 [61]. | Relationship of Antibiotics and Heavy metals to ARGs | Chlorination | China | qPCR (abundance relative to 16s) | TETA, TETB, TETC, TETD, TETE, TETG, TETH, TETJ, TETK, TETL, TETM, TETO, TETQ, TETT, TETW, TETX, TETZ, SULI, SULII, SULIII, SULA, QNRA, QNRB, QNRD, QNRS, ERMB, ERMC | TETA, TETB, TETE, TETG, TETH, TETS, TETT, TETX, SULI, SULII, QNRB, ERMC, TETC, TETD, TETJ, TETK, TETL, TETM, TETO, TETQ, TETW, TETZ, SULIII, SULA, QNRA, QNRD, QNRS, ERMB |
Machado, et al., 2023 [77]. | Effect of different treatment types | Activated Sludge | Brazil | Bacterial culture, antibiotic sensitivity testing, and qPCR | INT1, blaTEM, TETA, SULI, QNRB, EMRB | INT1, blaTEM, TETA, SULI, QNRB, EMRB |
anaerobic sludge blanket Reactor | blaTEM, TETA, QNRB, INT1, SULI, EMRB | |||||
ultraviolet (UV) disinfection | QNRB, EMRB, INT1, blaTEM, TETA, SULI | |||||
Munir, et al., 2011 [72]. | Effect of different treatment types | Activated Sludge | USA | qPCR (abundance relative to 16s) | TETW, TETO, SULI | TETW, TETO, SULI |
Oxidative Ditch | TETW, TETO, SULI | |||||
Membrane bioreactors | TETW, TETO, SULI | |||||
Narciso-da-Rocha, et al., 2018 [68]. | Effect of treatment on ARGs | ultraviolet (UV) disinfection | Portugal | qPCR (abundance relative to 16s) | INTI1, blaTEM, blaOXA-A, blaSHV, blaCTX-M, SULI, SULII, QNRS | blaTEM, blaOXA-A, QNRS, INTI1, SULI, blaSHV, blaCTX-M, SULII |
Neudorf, et al., 2017 [32]. | Effect of treatment type | constructed wetland | Canada | qPCR (abundance relative to 16s) | INT1, SULI, SULII, TETO, ERMB, MECA, blaCTX-M, blaTEM, QNRS | SULI, SULII, MECA, TETO, QNRS |
Osińska, et al., 2019 [15]. | Culture-based identification | Activated Sludge, Plus Anerobic-aerobic reactor | Poland | Bacterial culture, antibiotic sensitivity testing, and qPCR | blaTEM, blaSHV, blaOXA, TETA, TETM | TETA, TETM, blaTEM, blaSHV, blaOXA |
Plus mechanical & biological system | Poland | Bacterial culture, antibiotic sensitivity testing, and qPCR | blaTEM, blaSHV, blaOXA, TETA, TETM | TETM, TETA, blaTEM, blaSHV, blaOXA | ||
Plus Sequencing batch reactor | Poland | Bacterial culture, antibiotic sensitivity testing, and qPCR | blaTEM, blaSHV, blaOXA, TETA, TETM | TETM, TETA, blaTEM, blaSHV, blaOXA | ||
Plus mechanical & biological nutrient removal | Poland | Bacterial culture, antibiotic sensitivity testing, and qPCR | blaTEM, blaSHV, blaOXA, TETA, TETM | TETM, TETA, blaTEM, blaSHV, blaOXA | ||
Pazda, et al., 2020 [79]. | Effect of different treatment types on tetracycline and sulfonamide resistance genes | Activated Sludge | Poland | qPCR (abundance relative to 16s) | TETA, TETB, TETC, TETG, TETL, TETM, TETO, TETQ, TETX, SULI, SULII, SULIII | TETB, TETG, TETH, TETS, TETT, TETX AND SULI, SULII |
constructed wetland | TETB, TETK, TETL, TETO, SULIII | |||||
Rafraf, et al., 2016 [86]. | Effect of different treatment types on resistance genes | Activated Sludge | Tunisia | qPCR (abundance relative to 16s) | blaCTX-M, blaTEM, QNRA, QNRS, SULI, ERMB, INTI1 | QNRS, ERMB |
constructed wetland | blaCTX-M, blaTEM, AND QNRA, INTI1 | |||||
Rodriguez-Mozaz, et al., 2015 [73]. | hospital-urban wastewater system | Activated Sludge | Spain | qPCR (abundance relative to 16s) | blaTEM, ERMB, QNRS, SULI, TETW | blaTEM, SULI, QNRS, ERMB, TETW |
Sui, et al., 2019 [80]. | Intracellular and extracellular ARGs | Activated Sludge | China | qPCR (abundance relative to 16s) | TETM, TETW, TETG, TETX, ERMB, ERMF, MEFA, EREA, SULI, SULI, blaTEM, INTI1 | MEFA, TETM, TETW, SULI, TETG, TETX, ERMB, ERMF, EREA, SULI, blaTEM, INTI1 |
Wang, et al., 2020 [91]. | Intracellular and extracellular ARGs | Membrane bioreactors | China | qPCR (abundance relative to 16s) | INTI, blaTEM, ERMB, TETO, TETW | INTI1, blaTEM, ERMB, TETO, TETW |
Wen, et al., 2016 [65]. | Effect of treatment on ARGs | ultraviolet (UV) disinfection | China | qPCR (abundance relative to 16s) | TETA, TETO, TETW, SULI, SULII, blaCTX-M, blaTEM, blaSHV, INTI1 | TETA, TETO, TETW, SULI, SULII, blaCTX-M, blaTEM, blaSHV, INTI1 |
Xu, et al., 2015 [63]. | Relationship of Antibiotics to ARGs | Activated Sludge | China | qPCR (abundance relative to 16s) | TETA, TETB, TETE, TETW, TETM, TETZ, SULI, SULII, SULIII, GRYA, PARC, QNRC, QNRD | QNRC, TETM, QNRD, PARC, GYRA, TETA, TETB, TETE, TETW, TETZ, SULI, SULII, SULIII |
Yang, et al., 2014 [37]. | Resistome | Activated Sludge | China | WGS (abundance relative to total sequences) | Resistome identified | ARGs for Sulfonamide, Quinolone and Chloramphenicol resistance. Beta-lactams, Tetracyclines, Aminoglycosides |
Yuan, et al., 2019 [81]. | Intracellular and extracellular ARGs | Activated Sludge | China | qPCR (abundance relative to 16s) | TETA, TETC, TETM, TETX, SULI, SULII, blaTEM, EREA, ERMB | TETA, TETC, TETM, TETX, SULI, SULII, blaTEM, EREA, ERMB |
References
- Rizzo, L.; Malato, S.; Antakyali, D.; Beretsou, V.G.; Đolić, M.B.; Gernjak, W.; Heath, E.; Ivancev-Tumbas, I.; Karaolia, P.; Ribeiro, A.R.L. Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci. Total Environ. 2019, 655, 986–1008. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Dorsch, D.E.; Bay, S.M.; Maruya, K.; Snyder, S.A.; Trenholm, R.A.; Vanderford, B.J. Contaminants of emerging concern in municipal wastewater effluents and marine receiving water. Environ. Toxicol. Chem. 2012, 31, 2674–2682. [Google Scholar] [CrossRef] [PubMed]
- Talebi Bezmin Abadi, A.; Rizvanov, A.A.; Haertlé, T.; Blatt, N.L. World Health Organization report: Current crisis of antibiotic resistance. BioNanoScience 2019, 9, 778–788. [Google Scholar] [CrossRef]
- Panthee, S.; Hamamoto, H.; Paudel, A.; Sekimizu, K. Lysobacter species: A potential source of novel antibiotics. Arch. Microbiol. 2016, 198, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.; Flanagan, T.W.; Kharouf, N.; Bertsch, C.; Mancino, D.; Haikel, Y. Antimicrobial proteins: Structure, molecular action, and therapeutic potential. Pharmaceutics 2022, 15, 72. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Li, J.; Chen, H.; Bond, P.L.; Yuan, Z. Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements. Water Res. 2017, 123, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhou, X.; Huang, H.; Zhang, J. Prevalence of Antibiotic Resistance Genes and Their Association with Antibiotics in a Wastewater Treatment Plant: Process Distribution and Analysis. Water 2019, 11, 2495. [Google Scholar] [CrossRef]
- Kümmerer, K. Antibiotics in the aquatic environment—A review—Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Kümmerer, K. Antibiotics in the aquatic environment. In Antimicrobial Resistance in the Environment; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 325–335. [Google Scholar]
- Alexander, J.; Knopp, G.; Dötsch, A.; Wieland, A.; Schwartz, T. Ozone treatment of conditioned wastewater selects antibiotic resistance genes, opportunistic bacteria, and induce strong population shifts. Sci. Total Environ. 2016, 559, 103–112. [Google Scholar] [CrossRef]
- Novo, A.; André, S.; Viana, P.; Nunes, O.C.; Manaia, C.M. Antibiotic resistance, antimicrobial residues and bacterial community composition in urban wastewater. Water Res. 2013, 47, 1875–1887. [Google Scholar] [CrossRef]
- Varela, A.R.; André, S.; Nunes, O.C.; Manaia, C.M. Insights into the relationship between antimicrobial residues and bacterial populations in a hospital-urban wastewater treatment plant system. Water Res. 2014, 54, 327–336. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, T. Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing. Appl. Microbiol. Biotechnol. 2013, 97, 2681–2690. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Guo, C.; Fan, S.; Lv, J.; Zhang, Y.; Xu, Y.; Xu, J. Dynamic transport of antibiotics and antibiotic resistance genes under different treatment processes in a typical pharmaceutical wastewater treatment plant. Environ. Sci. Pollut. Res. 2018, 25, 30191–30198. [Google Scholar] [CrossRef] [PubMed]
- Osińska, A.; Korzeniewska, E.; Harnisz, M.; Niestępski, S. Quantitative Occurrence of Antibiotic Resistance Genes among Bacterial Populations from Wastewater Treatment Plants Using Activated Sludge. Appl. Sci. 2019, 9, 387. [Google Scholar] [CrossRef]
- Al-Asheh, S.; Bagheri, M.; Aidan, A. Membrane bioreactor for wastewater treatment: A review. Case Stud. Chem. Environ. Eng. 2021, 4, 100109. [Google Scholar] [CrossRef]
- Garner, E.; Organiscak, M.; Dieter, L.; Shingleton, C.; Haddix, M.; Joshi, S.; Pruden, A.; Ashbolt, N.J.; Medema, G.; Hamilton, K.A. Towards risk assessment for antibiotic resistant pathogens in recycled water: A systematic review and summary of research needs. Environ. Microbiol. 2021, 23, 7355–7372. [Google Scholar] [CrossRef]
- Huijbers, P.M.; Flach, C.-F.; Larsson, D.J. A conceptual framework for the environmental surveillance of antibiotics and antibiotic resistance. Environ. Int. 2019, 130, 104880. [Google Scholar] [CrossRef]
- Akanbi, O.E.; Njom, H.A.; Fri, J.; Otigbu, A.C.; Clarke, A.M. Antimicrobial susceptibility of Staphylococcus aureus isolated from recreational waters and beach sand in Eastern Cape Province of South Africa. Int. J. Environ. Res. Public Health 2017, 14, 1001. [Google Scholar] [CrossRef]
- Balsalobre, L.; de la Campa, A.G. Fitness of Streptococcus pneumoniae fluoroquinolone-resistant strains with topoisomerase IV recombinant genes. Antimicrob. Agents Chemother. 2008, 52, 822–830. [Google Scholar] [CrossRef]
- Guardabassi, L.; Petersen, A.; Olsen, J.E.; Dalsgaard, A. Antibiotic resistance in Acinetobacter spp. isolated from sewers receiving waste effluent from a hospital and a pharmaceutical plant. Appl. Environ. Microbiol. 1998, 64, 3499–3502. [Google Scholar] [CrossRef]
- Adekanmbi, A.O.; Adejoba, A.T.; Banjo, O.A.; Saki, M. Detection of sul1 and sul2 genes in sulfonamide-resistant bacteria (SRB) from sewage, aquaculture sources, animal wastes and hospital wastewater in South-West Nigeria. Gene Rep. 2020, 20, 100742. [Google Scholar] [CrossRef]
- Wang, N.; Yang, X.; Jiao, S.; Zhang, J.; Ye, B.; Gao, S. Sulfonamide-Resistant Bacteria and Their Resistance Genes in Soils Fertilized with Manures from Jiangsu Province, Southeastern China. PLoS ONE 2014, 9, e112626. [Google Scholar] [CrossRef]
- Al-Awadhi, H.; Dashti, N.; Khanafer, M.; Al-Mailem, D.; Ali, N.; Radwan, S. Bias problems in culture-independent analysis of environmental bacterial communities: A representative study on hydrocarbonoclastic bacteria. SpringerPlus 2013, 2, 369. [Google Scholar] [CrossRef]
- Stedtfeld, R.D.; Baushke, S.W.; Tourlousse, D.M.; Miller, S.M.; Stedtfeld, T.M.; Gulari, E.; Tiedje, J.M.; Hashsham, S.A. Development and experimental validation of a predictive threshold cycle equation for quantification of virulence and marker genes by high-throughput nanoliter-volume PCR on the OpenArray platform. Appl. Environ. Microbiol. 2008, 74, 3831–3838. [Google Scholar] [CrossRef]
- Karkman, A.; Johnson, T.A.; Lyra, C.; Stedtfeld, R.D.; Tamminen, M.; Tiedje, J.M.; Virta, M. High-throughput quantification of antibiotic resistance genes from an urban wastewater treatment plant. FEMS Microbiol. Ecol. 2016, 92, fiw014. [Google Scholar] [CrossRef]
- Muziasari, W.I.; Pärnänen, K.; Johnson, T.A.; Lyra, C.; Karkman, A.; Stedtfeld, R.D.; Tamminen, M.; Tiedje, J.M.; Virta, M. Aquaculture changes the profile of antibiotic resistance and mobile genetic element associated genes in Baltic Sea sediments. FEMS Microbiol. Ecol. 2016, 92, fiw052. [Google Scholar] [CrossRef]
- Muurinen, J.; Karkman, A.; Virta, M. High throughput method for analyzing antibiotic resistance genes in wastewater treatment plants. In Antimicrobial Resistance in Wastewater Treatment Processes; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 253–262. [Google Scholar]
- Hultman, J.; Tamminen, M.; Pärnänen, K.; Cairns, J.; Karkman, A.; Virta, M. Host range of antibiotic resistance genes in wastewater treatment plant influent and effluent. FEMS Microbiol. Ecol. 2018, 94, fiy038. [Google Scholar] [CrossRef]
- Bueno, I.; Verdugo, C.; Jimenez-Lopez, O.; Alvarez, P.P.; Gonzalez-Rocha, G.; Lima, C.A.; Travis, D.A.; Wass, B.; Zhang, Q.; Ishii, S.; et al. Role of wastewater treatment plants on environmental abundance of Antimicrobial Resistance Genes in Chilean rivers. Int. J. Hyg. Environ. Health 2020, 223, 56–64. [Google Scholar] [CrossRef]
- Czekalski, N.; Berthold, T.; Caucci, S.; Egli, A.; Buergmann, H. Increased Levels of Multiresistant Bacteria and Resistance Genes after Wastewater Treatment and Their Dissemination into Lake Geneva, Switzerland. Front. Microbiol. 2012, 3, 106. [Google Scholar] [CrossRef]
- Neudorf, K.D.; Huang, Y.N.; Ragush, C.M.; Yost, C.K.; Jamieson, R.C.; Truelstrup Hansen, L. Antibiotic resistance genes in municipal wastewater treatment systems and receiving waters in Arctic Canada. Sci. Total Environ. 2017, 598, 1085–1094. [Google Scholar] [CrossRef]
- Harnisz, M.; Kiedrzyńska, E.; Kiedrzyński, M.; Korzeniewska, E.; Czatzkowska, M.; Koniuszewska, I.; Jóźwik, A.; Szklarek, S.; Niestępski, S.; Zalewski, M. The impact of WWTP size and sampling season on the prevalence of antibiotic resistance genes in wastewater and the river system. Sci. Total Environ. 2020, 741, 140466. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Liu, J.; Li, Z.; Zou, X.; Guo, J.; Liu, Z.; Yang, J.; Zhou, Y. Antibiotic resistance gene abundances associated with heavy metals and antibiotics in the sediments of Changshou Lake in the three Gorges Reservoir area, China. Ecol. Indic. 2020, 113, 106275. [Google Scholar] [CrossRef]
- Conco, T.; Kumari, S.; Awolusi, O.O.; Allam, M.; Ismail, A.; Stenström, T.A.; Bux, F. Profiling of emerging pathogens, antibiotic resistance genes and mobile genetic elements in different biological wastewater treatment plants. J. Environ. Chem. Eng. 2022, 10, 107596. [Google Scholar] [CrossRef]
- Li, A.-D.; Li, L.-G.; Zhang, T. Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants. Front. Microbiol. 2015, 6, 1025. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, B.; Zou, S.; Fang, H.H.P.; Zhang, T. Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. Water Res. 2014, 62, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Tansirichaiya, S.; Hutton, W.; Roberts, A.P. Functional and Sequence-Specific Screening Protocols for the Detection of Novel Antimicrobial Resistance Genes in Metagenomic DNA. In Metagenomics: Methods and Protocols; Humana: New York, NY, USA, 2022; pp. 51–72. [Google Scholar]
- Lakin, S.M.; Dean, C.; Noyes, N.R.; Dettenwanger, A.; Ross, A.S.; Doster, E.; Rovira, P.; Abdo, Z.; Jones, K.L.; Ruiz, J. MEGARes: An antimicrobial resistance database for high throughput sequencing. Nucleic Acids Res. 2017, 45, D574–D580. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Jiang, X.-T.; Chai, B.; Li, L.; Yang, Y.; Cole, J.R.; Tiedje, J.M.; Zhang, T. ARGs-OAP v2. 0 with an expanded SARG database and Hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes. Bioinformatics 2018, 34, 2263–2270. [Google Scholar] [CrossRef] [PubMed]
- de Nies, L.; Lopes, S.; Busi, S.B.; Galata, V.; Heintz-Buschart, A.; Laczny, C.C.; May, P.; Wilmes, P. PathoFact: A pipeline for the prediction of virulence factors and antimicrobial resistance genes in metagenomic data. Microbiome 2021, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, W.; Zhu, Y.; Gong, Q.; Yu, W.; Lu, X. Antibiotics at subinhibitory concentrations improve the quorum sensing behavior of Chromobacterium violaceum. FEMS Microbiol. Lett. 2013, 341, 37–44. [Google Scholar] [CrossRef]
- Hutinel, M.; Huijbers, P.M.C.; Fick, J.; Ahren, C.; Larsson, D.G.J.; Flach, C.-F. Population-level surveillance of antibiotic resistance in Escherichia coli through sewage analysis. Euro Surveill. 2019, 24, 1800497. [Google Scholar] [CrossRef]
- Wang, J.; Chu, L.; Wojnárovits, L.; Takács, E. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: An overview. Sci. Total Environ. 2020, 744, 140997. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, M. Effects of Advanced Treatment Systems on the Removal of Antibiotic Resistance Genes in Wastewater Treatment Plants from Hangzhou, China. Environ. Sci. Technol. 2013, 47, 8157–8163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.-N.; Gaston, J.M.; Dai, C.L.; Zhao, S.; Poyet, M.; Groussin, M.; Yin, X.; Li, L.-G.; van Loosdrecht, M.C.M.; Topp, E.; et al. An omics-based framework for assessing the health risk of antimicrobial resistance genes. Nat. Commun. 2021, 12, 4765. [Google Scholar] [CrossRef] [PubMed]
- Tello, A.; Austin, B.; Telfer, T.C. Selective pressure of antibiotic pollution on bacteria of importance to public health. Environ. Health Perspect. 2012, 120, 1100–1106. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson-Palme, J.; Larsson, D.G.J. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ. Int. 2016, 86, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Fajardo, A.; Martínez, J.L. Antibiotics as signals that trigger specific bacterial responses. Curr. Opin. Microbiol. 2008, 11, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.-J.; Wang, J.; Hu, W.; Liu, H.; Gao, X.-Z.; Wu, Z.-H.; Zhang, P.-Y.; Li, Y.-Z. Improving conjugation efficacy of Sorangium cellulosum by the addition of dual selection antibiotics. J. Ind. Microbiol. Biotechnol. 2008, 35, 1157–1163. [Google Scholar] [CrossRef] [PubMed]
- Shun-Mei, E.; Zeng, J.-M.; Yuan, H.; Lu, Y.; Cai, R.-X.; Chen, C. Sub-inhibitory concentrations of fluoroquinolones increase conjugation frequency. Microb. Pathog. 2018, 114, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Shi, Y.; Zhang, D.; Wei, J.; Surette, M.G.; Duan, K. Modulation of secreted virulence factor genes by subinhibitory concentrations of antibiotics in Pseudomonas aeruginosa. J. Microbiol. 2008, 46, 441–447. [Google Scholar] [CrossRef]
- Memar, M.Y.; Yekani, M.; Celenza, G.; Poortahmasebi, V.; Naghili, B.; Bellio, P.; Baghi, H.B. The central role of the SOS DNA repair system in antibiotics resistance: A new target for a new infectious treatment strategy. Life Sci. 2020, 262, 118562. [Google Scholar] [CrossRef]
- Carette, J.; Nachtergael, A.; Duez, P.; El Jaziri, M.; Rasamiravaka, T. Natural compounds inhibiting Pseudomonas aeruginosa biofilm formation by targeting quorum sensing circuitry. In Bacterial Biofilms; BoD—Books on Demand: Norderstedt, Germany, 2020. [Google Scholar]
- Murray, A.K.; Stanton, I.; Gaze, W.H.; Snape, J. Dawning of a new ERA: Environmental Risk Assessment of antibiotics and their potential to select for antimicrobial resistance. Water Res. 2021, 200, 117233. [Google Scholar] [CrossRef] [PubMed]
- Harrower, J.; McNaughtan, M.; Hunter, C.; Hough, R.; Zhang, Z.; Helwig, K. Chemical fate and partitioning behavior of antibiotics in the aquatic environment—A review. Environ. Toxicol. Chem. 2021, 40, 3275–3298. [Google Scholar] [CrossRef]
- van Hamelsveld, S.; Jamali-Behnam, F.; Alderton, I.; Kurenbach, B.; McCabe, A.W.; Palmer, B.R.; Gutierrez-Gines, M.J.; Weaver, L.; Horswell, J.; Tremblay, L.A.; et al. Effects of emerging contaminants found in wastewater on antimicrobial resistance and horizontal gene transfer. Emerg. Contam. 2023, 9, 100257. [Google Scholar] [CrossRef]
- Alderton, I.; Palmer, B.R.; Heinemann, J.A.; Pattis, I.; Weaver, L.; Gutierrez-Gines, M.J.; Horswell, J.; Tremblay, L.A. The role of emerging organic contaminants in the development of antimicrobial resistance. Emerg. Contam. 2021, 7, 160–171. [Google Scholar] [CrossRef]
- Ju, F.; Beck, K.; Yin, X.; Maccagnan, A.; McArdell, C.S.; Singer, H.P.; Johnson, D.R.; Zhang, T.; Bürgmann, H. Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes. ISME J. 2019, 13, 346–360. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; He, H.; Chen, S.; Huang, T.; Lu, K.; Zhang, Z.; Wang, R.; Zhang, X.; Li, H. Abundance of antibiotic resistance genes and their association with bacterial communities in activated sludge of wastewater treatment plants: Geographical distribution and network analysis. J. Environ. Sci. 2019, 82, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.; Yu, S.; Rysz, M.; Luo, Y.; Yang, F.; Li, F.; Hou, J.; Mu, Q.; Alvarez, P.J.J. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. Water Res. 2015, 85, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cheng, W.; Xu, L.; Strong, P.J.; Chen, H. Antibiotic-resistant genes and antibiotic-resistant bacteria in the effluent of urban residential areas, hospitals, and a municipal wastewater treatment plant system. Environ. Sci. Pollut. Res. 2015, 22, 4587–4596. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xu, Y.; Wang, H.; Guo, C.; Qiu, H.; He, Y.; Zhang, Y.; Li, X.; Meng, W. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere 2015, 119, 1379–1385. [Google Scholar] [CrossRef]
- Bouki, C.; Venieri, D.; Diamadopoulos, E. Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: A review. Ecotoxicol. Environ. Saf. 2013, 91, 1–9. [Google Scholar] [CrossRef]
- Wen, Q.; Yang, L.; Duan, R.; Chen, Z. Monitoring and evaluation of antibiotic resistance genes in four municipal wastewater treatment plants in Harbin, Northeast China. Environ. Pollut. 2016, 212, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wen, Q.; Chen, Z.; Duan, R.; Yang, P. Impacts of advanced treatment processes on elimination of antibiotic resistance genes in a municipal wastewater treatment plant. Front. Environ. Sci. Eng. 2019, 13, 32. [Google Scholar] [CrossRef]
- Wagner, M.; Loy, A.; Nogueira, R.; Purkhold, U.; Lee, N.; Daims, H. Microbial community composition and function in wastewater treatment plants. Antonie Van Leeuwenhoek 2002, 81, 665–680. [Google Scholar] [CrossRef] [PubMed]
- Narciso-da-Rocha, C.; Rocha, J.; Vaz-Moreira, I.; Lira, F.; Tamames, J.; Henriques, I.; Martinez, J.L.; Manaia, C.M. Bacterial lineages putatively associated with the dissemination of antibiotic resistance genes in a full-scale urban wastewater treatment plant. Environ. Int. 2018, 118, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gao, J.; Li, D.; Dai, H.; Zhao, Y. Co-occurrence of microplastics and triclosan inhibited nitrification function and enriched antibiotic resistance genes in nitrifying sludge. J. Hazard. Mater. 2020, 399, 123049. [Google Scholar] [CrossRef]
- Karkman, A.; Do, T.T.; Walsh, F.; Virta, M.P. Antibiotic-resistance genes in waste water. Trends Microbiol. 2018, 26, 220–228. [Google Scholar] [CrossRef]
- Gao, P.; Munir, M.; Xagoraraki, I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Sci. Total Environ. 2012, 421, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.; Wong, K.; Xagoraraki, I. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res. 2011, 45, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mozaz, S.; Chamorro, S.; Marti, E.; Huerta, B.; Gros, M.; Sànchez-Melsió, A.; Borrego, C.M.; Barceló, D.; Balcázar, J.L. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res. 2015, 69, 234–242. [Google Scholar] [CrossRef]
- Pei, R.; Kim, S.-C.; Carlson, K.H.; Pruden, A. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res. 2006, 40, 2427–2435. [Google Scholar] [CrossRef]
- Griffith, E.C.; Wallace, M.J.; Wu, Y.; Kumar, G.; Gajewski, S.; Jackson, P.; Phelps, G.A.; Zheng, Z.; Rock, C.O.; Lee, R.E.; et al. The Structural and Functional Basis for Recurring Sulfa Drug Resistance Mutations in Staphylococcus aureus Dihydropteroate Synthase. Front. Microbiol. 2018, 9, 1369. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, X.; Wang, C.; Hakizimana, I. Influence of wastewater antibiotic resistance difference on horizontal gene transfer risk using electrochemical flow-through reaction. Chem. Eng. J. 2023, 474, 145669. [Google Scholar] [CrossRef]
- Machado, E.C.; Freitas, D.L.; Leal, C.D.; de Oliveira, A.T.; Zerbini, A.; Chernicharo, C.A.; de Araújo, J.C. Antibiotic resistance profile of wastewater treatment plants in Brazil reveals different patterns of resistance and multi resistant bacteria in final effluents. Sci. Total Environ. 2023, 857, 159376. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Jeon, J.H.; Shin, J.; Jang, H.M.; Kim, S.; Song, M.S.; Kim, Y.M. Quantitative and qualitative changes in antibiotic resistance genes after passing through treatment processes in municipal wastewater treatment plants. Sci. Total Environ. 2017, 605–606, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Pazda, M.; Rybicka, M.; Stolte, S.; Piotr Bielawski, K.; Stepnowski, P.; Kumirska, J.; Wolecki, D.; Mulkiewicz, E. Identification of Selected Antibiotic Resistance Genes in Two Different Wastewater Treatment Plant Systems in Poland: A Preliminary Study. Molecules 2020, 25, 2851. [Google Scholar] [CrossRef]
- Sui, Q.; Chen, Y.; Yu, D.; Wang, T.; Hai, Y.; Zhang, J.; Chen, M.; Wei, Y. Fates of intracellular and extracellular antibiotic resistance genes and microbial community structures in typical swine wastewater treatment processes. Environ. Int. 2019, 133, 105183. [Google Scholar] [CrossRef]
- Yuan, Q.-B.; Huang, Y.-M.; Wu, W.-B.; Zuo, P.; Hu, N.; Zhou, Y.-Z.; Alvarez, P.J.J. Redistribution of intracellular and extracellular free & adsorbed antibiotic resistance genes through a wastewater treatment plant by an enhanced extracellular DNA extraction method with magnetic beads. Environ. Int. 2019, 131, 104986. [Google Scholar] [CrossRef]
- Miller, J.H.; Novak, J.T.; Knocke, W.R.; Pruden, A. Survival of antibiotic resistant bacteria and horizontal gene transfer control antibiotic resistance gene content in anaerobic digesters. Front. Microbiol. 2016, 7, 263. [Google Scholar] [CrossRef]
- Guo, M.-T.; Yuan, Q.-B.; Yang, J. Distinguishing effects of ultraviolet exposure and chlorination on the horizontal transfer of antibiotic resistance genes in municipal wastewater. Environ. Sci. Technol. 2015, 49, 5771–5778. [Google Scholar] [CrossRef]
- Yuan, Q.-B.; Guo, M.-T.; Yang, J. Fate of Antibiotic Resistant Bacteria and Genes during Wastewater Chlorination: Implication for Antibiotic Resistance Control. PLoS ONE 2015, 10, e0119403. [Google Scholar] [CrossRef]
- Liu, S.-S.; Qu, H.-M.; Yang, D.; Hu, H.; Liu, W.-L.; Qiu, Z.-G.; Hou, A.-M.; Guo, J.; Li, J.-W.; Shen, Z.-Q.; et al. Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant. Water Res. 2018, 136, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Rafraf, I.D.; Lekunberri, I.; Sànchez-Melsió, A.; Aouni, M.; Borrego, C.M.; Balcázar, J.L. Abundance of antibiotic resistance genes in five municipal wastewater treatment plants in the Monastir Governorate, Tunisia. Environ. Pollut. 2016, 219, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Umar, M. From conventional disinfection to antibiotic resistance control—Status of the use of chlorine and UV irradiation during wastewater treatment. Int. J. Environ. Res. Public Health 2022, 19, 1636. [Google Scholar] [CrossRef] [PubMed]
- Czekalski, N.; Imminger, S.; Salhi, E.; Veljkovic, M.; Kleffel, K.; Drissner, D.; Hammes, F.; Bürgmann, H.; von Gunten, U. Inactivation of Antibiotic Resistant Bacteria and Resistance Genes by Ozone: From Laboratory Experiments to Full-Scale Wastewater Treatment. Environ. Sci. Technol. 2016, 50, 11862–11871. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Su, C.; Zhou, J.; Xu, L.; Qian, Y.; Chen, H. Effects and mechanisms of ultraviolet, chlorination, and ozone disinfection on antibiotic resistance genes in secondary effluents of municipal wastewater treatment plants. Chem. Eng. J. 2017, 317, 309–316. [Google Scholar] [CrossRef]
- Purnell, S.; Ebdon, J.; Buck, A.; Tupper, M.; Taylor, H. Bacteriophage removal in a full-scale membrane bioreactor (MBR)–implications for wastewater reuse. Water Res. 2015, 73, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ma, X.; Liu, Y.; Yi, X.; Du, G.; Li, J. Fate of antibiotics, antibiotic-resistant bacteria, and cell-free antibiotic-resistant genes in full-scale membrane bioreactor wastewater treatment plants. Bioresour. Technol. 2020, 302, 122825. [Google Scholar] [CrossRef]
- Lin, Z.-J.; Zhou, Z.-C.; Zhu, L.; Meng, L.-X.; Shuai, X.-Y.; Sun, Y.-J.; Chen, H. Behavior of antibiotic resistance genes in a wastewater treatment plant with different upgrading processes. Sci. Total Environ. 2021, 771, 144814. [Google Scholar] [CrossRef]
- Zhu, T.-T.; Su, Z.-X.; Lai, W.-X.; Zhang, Y.-B.; Liu, Y.-W. Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology. Sci. Total Environ. 2021, 776, 145906. [Google Scholar] [CrossRef]
- Nnadozie, C.F.; Kumari, S.; Bux, F. Status of pathogens, antibiotic resistance genes and antibiotic residues in wastewater treatment systems. Rev. Environ. Sci. Bio/Technol. 2017, 16, 491–515. [Google Scholar] [CrossRef]
- Arkhangelsky, E.; Sefi, Y.; Hajaj, B.; Rothenberg, G.; Gitis, V. Kinetics and mechanism of plasmid DNA penetration through nanopores. J. Membr. Sci. 2011, 371, 45–51. [Google Scholar] [CrossRef]
- Ben, Y.; Fu, C.; Hu, M.; Liu, L.; Wong, M.H.; Zheng, C. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environ. Res. 2019, 169, 483–493. [Google Scholar] [CrossRef] [PubMed]
- O’Flaherty, E.; Cummins, E. Antibiotic resistance in surface water ecosystems: Presence in the aquatic environment, prevention strategies, and risk assessment. Hum. Ecol. Risk Assess. Int. J. 2017, 23, 299–322. [Google Scholar] [CrossRef]
- Hu, Y.; Jiang, L.; Sun, X.; Wu, J.; Ma, L.; Zhou, Y.; Lin, K.; Luo, Y.; Cui, C. Risk assessment of antibiotic resistance genes in the drinking water system. Sci. Total Environ. 2021, 800, 149650. [Google Scholar] [CrossRef] [PubMed]
- Bondarczuk, K.; Markowicz, A.; Piotrowska-Seget, Z. The urgent need for risk assessment on the antibiotic resistance spread via sewage sludge land application. Environ. Int. 2016, 87, 49–55. [Google Scholar]
- Ashbolt, N.J.; Amézquita, A.; Backhaus, T.; Borriello, P.; Brandt, K.K.; Collignon, P.; Coors, A.; Finley, R.; Gaze, W.H.; Heberer, T. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ. Health Perspect. 2013, 121, 993–1001. [Google Scholar] [CrossRef] [PubMed]
- Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Bürgmann, H.; Sørum, H.; Norström, M.; Pons, M.-N. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol. 2015, 13, 310–317. [Google Scholar] [CrossRef]
- Korzeniewska, E.; Harnisz, M. Sources, occurrence, and environmental risk assessment of antibiotics and antimicrobial-resistant bacteria in aquatic environments of Poland. In Polish River Basins and Lakes—Part II: Biological Status and Water Management; Springer: Cham, Switzerland, 2020; pp. 179–193. [Google Scholar]
- Xu, L.; Surathu, A.; Raplee, I.; Chockalingam, A.; Stewart, S.; Walker, L.; Sacks, L.; Patel, V.; Li, Z.; Rouse, R. The effect of antibiotics on the gut microbiome: A metagenomics analysis of microbial shift and gut antibiotic resistance in antibiotic treated mice. BMC Genom. 2020, 21, 263. [Google Scholar] [CrossRef]
- Isles, N.S.; Mu, A.; Kwong, J.C.; Howden, B.P.; Stinear, T.P. Gut microbiome signatures and host colonization with multidrug-resistant bacteria. Trends Microbiol. 2022, 30, 853–865. [Google Scholar] [CrossRef]
- Francino, M. Antibiotics and the human gut microbiome: Dysbioses and accumulation of resistances. Front. Microbiol. 2016, 6, 164577. [Google Scholar] [CrossRef]
- Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Antibiotics in the Soil Environment—Degradation and Their Impact on Microbial Activity and Diversity. Front. Microbiol. 2019, 10, 338. [Google Scholar] [CrossRef] [PubMed]
- Grenni, P.; Ancona, V.; Barra Caracciolo, A. Ecological effects of antibiotics on natural ecosystems: A review. Microchem. J. 2018, 136, 25–39. [Google Scholar] [CrossRef]
- Moran, M.A. The global ocean microbiome. Science 2015, 350, aac8455. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Wang, M.; Chen, W.; Li, X.; Balseiro-Romero, M.; Baveye, P.C. Ecological risk of combined pollution on soil ecosystem functions: Insight from the functional sensitivity and stability. Environ. Pollut. 2019, 255, 113184. [Google Scholar] [CrossRef] [PubMed]
- Louca, S.; Parfrey, L.W.; Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 2016, 353, 1272–1277. [Google Scholar] [CrossRef]
- Li, L.G.; Xia, Y.; Zhang, T. Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. Isme J 2017, 11, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhao, X.; Li, Q.; Liu, J.; Ding, J.; Wu, H.; Zhao, Z.; Ba, Y.; Cheng, X.; Cui, L.; et al. Bacterial community structure and abundances of antibiotic resistance genes in heavy metals contaminated agricultural soil. Environ. Sci. Pollut. Res. 2018, 25, 9547–9555. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Wang, J.; Han, Y.; Chen, J.; Liu, G.; Lu, H.; Yan, B.; Chen, S. Nutrients, heavy metals and microbial communities co-driven distribution of antibiotic resistance genes in adjacent environment of mariculture. Environ. Pollut. 2017, 220, 909–918. [Google Scholar] [CrossRef]
- Sun, F.; Xu, Z.; Fan, L. Response of heavy metal and antibiotic resistance genes and related microorganisms to different heavy metals in activated sludge. J. Environ. Manag. 2021, 300, 113754. [Google Scholar] [CrossRef]
- Ahmad, N.; Joji, R.M.; Shahid, M. Evolution and implementation of One Health to control the dissemination of antibiotic-resistant bacteria and resistance genes: A review. Front. Cell. Infect. Microbiol. 2022, 12, 1065796. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drane, K.; Sheehan, M.; Whelan, A.; Ariel, E.; Kinobe, R. The Role of Wastewater Treatment Plants in Dissemination of Antibiotic Resistance: Source, Measurement, Removal and Risk Assessment. Antibiotics 2024, 13, 668. https://doi.org/10.3390/antibiotics13070668
Drane K, Sheehan M, Whelan A, Ariel E, Kinobe R. The Role of Wastewater Treatment Plants in Dissemination of Antibiotic Resistance: Source, Measurement, Removal and Risk Assessment. Antibiotics. 2024; 13(7):668. https://doi.org/10.3390/antibiotics13070668
Chicago/Turabian StyleDrane, Kezia, Madoc Sheehan, Anna Whelan, Ellen Ariel, and Robert Kinobe. 2024. "The Role of Wastewater Treatment Plants in Dissemination of Antibiotic Resistance: Source, Measurement, Removal and Risk Assessment" Antibiotics 13, no. 7: 668. https://doi.org/10.3390/antibiotics13070668
APA StyleDrane, K., Sheehan, M., Whelan, A., Ariel, E., & Kinobe, R. (2024). The Role of Wastewater Treatment Plants in Dissemination of Antibiotic Resistance: Source, Measurement, Removal and Risk Assessment. Antibiotics, 13(7), 668. https://doi.org/10.3390/antibiotics13070668