Antibiotic–Drug Interactions in the Intensive Care Unit: A Literature Review
Abstract
:1. Introduction
2. Beta-Lactams
2.1. Penicillins
2.2. Cephalosporins
2.3. Carbapenems
2.4. Monobactams
3. Fluoroquinolones
4. Macrolides
5. Linezolid
6. Other Drug–Drug Interactions in ICU Patients
7. Prevention and Management of Antibiotic–Drug Interactions
8. Factors That Can Modify the Effectiveness of Antibiotic Therapy
9. Conclusions
10. Future Directions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADR | Adverse drug reactions |
CNS | Central nervous system |
DDIs | Drug–drug interactions |
DOAC | Direct oral anticoagulants |
EPIC III | Extended Study on Prevalence of Infection in Intensive Care III |
ICU | Intensive care units |
IV | Intravenously |
MAO | Monoamine oxidase |
MRSA | Methicillin-resistant Staphylococcus aureus |
PD | Pharmacodynamic |
PK | Pharmacokinetic |
UGT | UDP-glucuronosyltransferase |
RRT | Renal replacement therapy |
VPA | Valproic acid |
References
- Vincent, J.L.; Sakr, Y.; Singer, M.; Martin-Loeches, I.; MacHado, F.R.; Marshall, J.C.; Finfer, S.; Pelosi, P.; Brazzi, L.; Aditianingsih, D.; et al. Prevalence and Outcomes of Infection among Patients in Intensive Care Units in 2017. JAMA—J. Am. Med. Assoc. 2020, 323, 1478–1487. [Google Scholar] [CrossRef] [PubMed]
- Bakker, T.; Abu-Hanna, A.; Dongelmans, D.A.; Vermeijden, W.J.; Bosman, R.J.; de Lange, D.W.; Klopotowska, J.E.; de Keizer, N.F.; Hendriks, S.; ten Cate, J.; et al. Clinically Relevant Potential Drug-Drug Interactions in Intensive Care Patients: A Large Retrospective Observational Multicenter Study. J. Crit. Care 2021, 62, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Vanham, D.; Spinewine, A.; Hantson, P.; Wittebole, X.; Wouters, D.; Sneyers, B. Drug-Drug Interactions in the Intensive Care Unit: Do They Really Matter? J. Crit. Care 2017, 38, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Sriram, S.; Aishwarya, S.; Moithu, A.; Sebastian, A.; Kumar, A. Intravenous Drug Incompatibilities in the Intensive Care Unit of a Tertiary Care Hospital in India: Are They Preventable? J. Res. Pharm. Pract. 2020, 9, 106. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Bazzar, A.; Hussein, N.; Sahhar, E. Potential Drug-Drug Interactions in ICU Patients: A Retrospective Study. Drug Metabol. Drug Interact. 2020, 35, 20200114. [Google Scholar] [CrossRef] [PubMed]
- Pandey, N.; Cascella, M. Beta-Lactam Antibiotics; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Tee, C.T.; Abdullah, N.H.B.; Kristummoonthy, P.; Lee, C.S. Severe Cutaneous Adverse Reactions: A 5-Year Retrospective Study at Hospital Melaka, Malaysia, from December 2014 to February 2020. Med. J. Malays. 2022, 77, 409–414. [Google Scholar]
- Aronson, J.K.; Ferner, R.E. Analysis of Reports of Unintended Pregnancies Associated with the Combined Use of Non-Enzyme-Inducing Antibiotics and Hormonal Contraceptives. BMJ Evid. Based Med. 2021, 26, 112–113. [Google Scholar] [CrossRef]
- Hutchings, M.; Truman, A.; Wilkinson, B. Antibiotics: Past, Present and Future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.M.; da Silva, B.N.M.; Barbosa, G.; Barreiro, E.J. β-Lactam Antibiotics: An Overview from a Medicinal Chemistry Perspective. Eur. J. Med. Chem. 2020, 208, 112829. [Google Scholar] [CrossRef]
- Yip, D.W.; Gerriets, V. Penicillin; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Deshpande, L.M.; Jones, R.N. Antagonism between Penicillin and Erythromycin against Streptococcus Pneumoniae: Does It Exist? Diagn. Microbiol. Infect. Dis. 2003, 46, 223–225. [Google Scholar] [CrossRef]
- Emmet O’Brien, M.; Restrepo, M.I.; Martin-Loeches, I. Update on the Combination Effect of Macrolide Antibiotics in Community-Acquired Pneumonia. Respir. Investig. 2015, 53, 201–209. [Google Scholar] [CrossRef]
- Cattaneo, D.; Gervasoni, C.; Corona, A. The Issue of Pharmacokinetic-Driven Drug-Drug Interactions of Antibiotics: A Narrative Review. Antibiotics 2022, 11, 1410. [Google Scholar] [CrossRef]
- Bui, T.; Preuss, C.V. Cephalosporins; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Lin, X.; Kück, U. Cephalosporins as Key Lead Generation Beta-Lactam Antibiotics. Appl. Microbiol. Biotechnol. 2022, 106, 8007–8020. [Google Scholar] [CrossRef]
- Barza, M. The Nephrotoxicity of Cephalosporins. Advers. Drug React. Acute Poisoning Rev. 1978, 8, 63–72. [Google Scholar]
- Robosa, R.S.; Lau, C.; Stojanova, J.; Chin, C.W.; Marriott, D.J. Ceftazidime Plasma Concentrations and Neurotoxicity: The Importance of Therapeutic Drug Monitoring in Patients Undergoing Different Modalities of Renal Replacement Therapy: A Grand Round. Ther. Drug Monit. 2023, 45, 711–713. [Google Scholar] [CrossRef]
- Armstrong, T.; Fenn, S.J.; Hardie, K.R. JMM Profile: Carbapenems: A Broad-Spectrum Antibiotic. J. Med. Microbiol. 2021, 70, 001462. [Google Scholar] [CrossRef]
- Papp-Wallace, K.M.; Endimiani, A.; Taracila, M.A.; Bonomo, R.A. Carbapenems: Past, Present, and Future. Antimicrob. Agents Chemother. 2011, 55, 4943–4960. [Google Scholar] [CrossRef]
- Shah, P.M. Parenteral Carbapenems. Clin. Microbiol. Infect. 2008, 14, 175–180. [Google Scholar] [CrossRef]
- Al-Quteimat, O.; Laila, A. Valproate Interaction With Carbapenems: Review and Recommendations. Hosp. Pharm. 2020, 55, 181–187. [Google Scholar] [CrossRef]
- Chai, P.Y.C.; Chang, C.T.; Chen, Y.H.; Chen, H.Y.; Tam, K.W. Effect of Drug Interactions between Carbapenems and Valproate on Serum Valproate Concentration: A Systematic Review and Meta-Analysis. Expert. Opin. Drug Saf. 2021, 20, 215–223. [Google Scholar] [CrossRef]
- Mori, H.; Takahashi, K.; Mizutani, T. Interaction between Valproic Acid and Carbapenem Antibiotics. Drug Metab. Rev. 2007, 39, 647–657. [Google Scholar] [CrossRef]
- Li, Z.; Gao, W.; Liu, G.; Zhang, Z. Interaction between Valproic Acid and Carbapenems: Decreased Plasma Concentration of Valproic Acid and Liver Injury. Ann. Palliat. Med. 2021, 10, 5417–5424. [Google Scholar] [CrossRef]
- Llinares Tello, F.; Bosacoma Ros, N.; Hernández Prats, C.; Climent Grana, E.; Selva Otaolaurruchi, J.; Ordovás Baines, J.P. Harmacokinetic Interaction between Valproic Acid and Carbapenem-like Antibiotics: A Discussion of Three Cases. Farm. Hosp. 2003, 27, 258–263. [Google Scholar]
- Hernández-Ramos, J.A.; Caro-Telle, J.M.; Bruni-Montero, M.Á.; Canales-Siguero, D.; Ferrari-Piquero, J.M. Interaction between Valproic Acid and Meropenem or Ertapenem in Patients with Epilepsy: Clinical Relevance and Results from Pharmaceutical Intervention. Farm. Hosp. 2021, 45, 335–339. [Google Scholar]
- Muñoz-Pichuante, D.; Villa-Zapata, L.; Lolas, R. Meropenem for Management of Valproic Acid Overdose: A Case Report. Drug Metabol. Drug Interact. 2020, 35, 20190028. [Google Scholar] [CrossRef]
- Bernabeu-Wittel, M.; Pichardo, C.; García-Curiel, A.; Pachón-Ibáñez, M.E.; Ibáñez-Martínez, J.; Jiménez-Mejías, M.E.; Pachón, J. Pharmacokinetic/Pharmacodynamic Assessment of the in-Vivo Efficacy of Imipenem Alone or in Combination with Amikacin for the Treatment of Experimental Multiresistant Acinetobacter Baumannii Pneumonia. Clin. Microbiol. Infect. 2005, 11, 319–325. [Google Scholar] [CrossRef]
- Gorelik, E.; Masarwa, R.; Perlman, A.; Rotshild, V.; Abbasi, M.; Muszkat, M.; Matok, I. Fluoroquinolones and Cardiovascular Risk: A Systematic Review, Meta-Analysis and Network Meta-Analysis. Drug Saf. 2019, 42, 529–538. [Google Scholar] [CrossRef]
- Thai, T.; Salisbury, B.H.; Zito, P.M. Ciprofloxacin; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Pitman, S.K.; Hoang, U.T.P.; Wi, C.H.; Alsheikh, M.; Hiner, D.A.; Percival, K.M. Revisiting Oral Fluoroquinolone and Multivalent Cation Drug-Drug Interactions: Are They Still Relevant? Antibiotics 2019, 8, 108. [Google Scholar] [CrossRef]
- Kim, J.; Ohtani, H.; Tsujimoto, M.; Sawada, Y. Quantitative Comparison of the Convulsive Activity of Combinations of Twelve Fluoroquinolones with Five Nonsteroidal Antiinflammatory Agents. Drug Metab. Pharmacokinet. 2009, 24, 167–174. [Google Scholar] [CrossRef]
- Markham, A. Delafloxacin: First Global Approval. Drugs 2017, 77, 1481–1486. [Google Scholar] [CrossRef]
- Lee, A.; Lamb, Y.N.; Shirley, M. Delafloxacin: A Review in Community-Acquired Pneumonia. Drugs 2022, 82, 913–923. [Google Scholar] [CrossRef]
- Yagi, T.; Mannheimer, B.; Reutfors, J.; Ursing, J.; Giunta, D.H.; Kieler, H.; Linder, M. Bleeding Events among Patients Concomitantly Treated with Direct Oral Anticoagulants and Macrolide or Fluoroquinolone Antibiotics. Br. J. Clin. Pharmacol. 2023, 89, 887–897. [Google Scholar] [CrossRef]
- Lenz, K.D.; Klosterman, K.E.; Mukundan, H.; Kubicek-Sutherland, J.Z. Macrolides: From Toxins to Therapeutics. Toxins 2021, 13, 347. [Google Scholar] [CrossRef]
- Patel, P.H.; Hashmi, M.F. Macrolides; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Karpiński, T.M. Marine Macrolides with Antibacterial and/or Antifungal Activity. Mar. Drugs 2019, 17, 241. [Google Scholar] [CrossRef]
- Tan, M.S.; Gomez-Lumbreras, A.; Villa-Zapata, L.; Malone, D.C. Colchicine and Macrolides: A Cohort Study of the Risk of Adverse Outcomes Associated with Concomitant Exposure. Rheumatol. Int. 2022, 42, 2253–2259. [Google Scholar] [CrossRef]
- Davis, M.W.; Wason, S.; DiGiacinto, J.L. Colchicine-Antimicrobial Drug Interactions: What Pharmacists Need to Know in Treating Gout. Consult. Pharm. 2013, 28, 176–183. [Google Scholar] [CrossRef]
- Bizjak, E.D.; Mauro, V.F. Digoxin-Macrolide Drug Interaction. Ann. Pharmacother. 1997, 31, 1077–1079. [Google Scholar] [CrossRef]
- Pauwels, O. Factors Contributing to Carbamazepine-Macrolide Interactions. Pharmacol. Res. 2002, 45, 291–298. [Google Scholar] [CrossRef]
- Albanji, M.; Alshehri, S.; Eljaaly, K. The Effect of Erythromycin and Clarithromycin versus Azithromycin on Serum Valproate Concentration. Saudi Pharm. J. 2022, 30, 337–339. [Google Scholar] [CrossRef]
- Patel, A.R.; Nagalli, S. Valproate Toxicity; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Hougaard Christensen, M.M.; Bruun Haastrup, M.; Øhlenschlæger, T.; Esbech, P.; Arnspang Pedersen, S.; Bach Dunvald, A.C.; Bjerregaard Stage, T.; Pilsgaard Henriksen, D.; Thestrup Pedersen, A.J. Interaction Potential between Clarithromycin and Individual Statins—A Systematic Review. Basic. Clin. Pharmacol. Toxicol. 2020, 126, 307–317. [Google Scholar] [CrossRef]
- Hill, K.; Sucha, E.; Rhodes, E.; Carrier, M.; Garg, A.X.; Harel, Z.; Hundemer, G.L.; Clark, E.G.; Knoll, G.; McArthur, E.; et al. Risk of Hospitalization with Hemorrhage among Older Adults Taking Clarithromycin vs Azithromycin and Direct Oral Anticoagulants. JAMA Intern. Med. 2020, 180, 1052–1060. [Google Scholar] [CrossRef]
- Lee, B.J.; Vu, B.N.; Seddon, A.N.; Hodgson, H.A.; Wang, S.K. Treatment Considerations for CNS Infections Caused by Vancomycin-Resistant Enterococcus Faecium: A Focused Review of Linezolid and Daptomycin. Ann. Pharmacother. 2020, 54, 1243–1251. [Google Scholar] [CrossRef]
- Azzouz, A.; Preuss, C.V. Linezolid; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Gatti, M.; Raschi, E.; De Ponti, F. Serotonin Syndrome by Drug Interactions with Linezolid: Clues from Pharmacovigilance-Pharmacokinetic/Pharmacodynamic Analysis. Eur. J. Clin. Pharmacol. 2021, 77, 233–239. [Google Scholar] [CrossRef]
- Mastroianni, A.; Ravaglia, G. Serotonin Syndrome Due to Co-Administration of Linezolid and Methadone. Infez. Med. 2017, 25, 263–266. [Google Scholar]
- Hasani, R.; Sarma, J.; Kansal, S. Serotonin Syndrome Induced by Combined Use of Sertraline and Linezolid. Anesth. Essays Res. 2019, 13, 188. [Google Scholar] [CrossRef]
- Hisham, M.; Sivakumar, M.; Nandakumar, V.; Lakshmikanthcharan, S. Linezolid and Rasagiline—A Culprit for Serotonin Syndrome. Indian. J. Pharmacol. 2016, 48, 91. [Google Scholar] [CrossRef]
- Mazhar, F.; Akram, S.; Haider, N.; Ahmed, R. Overlapping of Serotonin Syndrome with Neuroleptic Malignant Syndrome Due to Linezolid-Fluoxetine and Olanzapine-Metoclopramide Interactions: A Case Report of Two Serious Adverse Drug Effects Caused by Medication Reconciliation Failure on Hospital Admissi. Case Rep. Med. 2016, 2016, 7128909. [Google Scholar] [CrossRef]
- Bai, A.D.; McKenna, S.; Wise, H.; Loeb, M.; Gill, S.S. Association of Linezolid With Risk of Serotonin Syndrome in Patients Receiving Antidepressants. JAMA Netw. Open 2022, 5, e2247426. [Google Scholar] [CrossRef]
- Corsini Campioli, C.; Barth, D.; Esquer Garrigos, Z.; Abu Saleh, O.; Sohail, R.M.; Sia, I.G. Linezolid and Fentanyl: An Underrecognized Drug-to-drug Interaction. J. Clin. Pharm. Ther. 2020, 45, 825–827. [Google Scholar] [CrossRef]
- Yulin, Z.; Lingti, K.; Shan, G.; Yong, Z. A Possible Interaction between Linezolid and Digoxin: A Case Report of Therapeutic Drug Monitoring. Saudi Pharm. J. 2020, 28, 1408–1410. [Google Scholar] [CrossRef]
- Sakai, Y.; Naito, T.; Arima, C.; Miura, M.; Qin, L.; Hidaka, H.; Masunaga, K.; Kakuma, T.; Watanabe, H. Potential Drug Interaction between Warfarin and Linezolid. Intern. Med. 2015, 54, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Blassmann, U.; Roehr, A.C.; Frey, O.R.; Koeberer, A.; Briegel, J.; Huge, V.; Vetter-Kerkhoff, C. Decreased Linezolid Serum Concentrations in Three Critically Ill Patients: Clinical Case Studies of a Potential Drug Interaction between Linezolid and Rifampicin. Pharmacology 2016, 98, 51–55. [Google Scholar] [CrossRef]
- Hashimoto, S.; Honda, K.; Fujita, K.; Miyachi, Y.; Isoda, K.; Misaka, K.; Suga, Y.; Kato, S.; Tsuchiya, H.; Kato, Y.; et al. Effect of Coadministration of Rifampicin on the Pharmacokinetics of Linezolid: Clinical and Animal Studies. J. Pharm. Health Care Sci. 2018, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Pai, M.P.; Cojutti, P.G.; Gerussi, V.; Della Siega, P.; Tascini, C.; Pea, F. Linezolid Population Pharmacokinetics to Improve Dosing in Cardiosurgical Patients: Factoring a New Drug–Drug Interaction Pathway. Clin. Infect. Dis. 2023, 76, 1173–1179. [Google Scholar] [CrossRef]
- Lin, B.; Hu, Y.; Xu, P.; Xu, T.; Chen, C.; He, L.; Zhou, M.; Chen, Z.; Zhang, C.; Yu, X.; et al. Expert Consensus Statement on Therapeutic Drug Monitoring and Individualization of Linezolid. Front. Public Health 2022, 10, 967311. [Google Scholar] [CrossRef]
- Powers, A.; Loesch, E.B.; Weiland, A.; Fioravanti, N.; Lucius, D. Preemptive Warfarin Dose Reduction after Initiation of Sulfamethoxazole-Trimethoprim or Metronidazole. J. Thromb. Thrombolysis 2017, 44, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Schelleman, H.; Bilker, W.B.; Brensinger, C.M.; Han, X.; Kimmel, S.E.; Hennessy, S. Warfarin with Fluoroquinolones, Sulfonamides, or Azole Antifungals: Interactions and the Risk of Hospitalization for Gastrointestinal Bleeding. Clin. Pharmacol. Ther. 2008, 84, 581–588. [Google Scholar] [CrossRef]
- Blair, M.; Côté, J.M.; Cotter, A.; Lynch, B.; Redahan, L.; Murray, P.T. Nephrotoxicity from Vancomycin Combined with Piperacillin-Tazobactam: A Comprehensive Review. Am. J. Nephrol. 2021, 52, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Pankey, G.A. Tigecycline. J. Antimicrob. Chemother. 2005, 56, 470–480. [Google Scholar] [CrossRef]
- Srinivas, N.R. Tigecycline and Cyclosporine Interaction-an Interesting Case of Biliary-Excreted Drug Enhancing the Oral Bioavailability of Cyclosporine. Eur. J. Clin. Pharmacol. 2009, 65, 543–544. [Google Scholar] [CrossRef]
- Stumpf, A.N.; Schmidt, C.; Hiddemann, W.; Gerbitz, A. High Serum Concentrations of Ciclosporin Related to Administration of Tigecycline. Eur. J. Clin. Pharmacol. 2009, 65, 101–103. [Google Scholar] [CrossRef] [PubMed]
- Chow, K.M.; Pang, W.F.; Chan, G.C.K.; Leung, C.B.; Szeto, C.C.; Li, P.K.T. Beware of Drug Interaction between Tigecycline and Tacrolimus. Nephrology 2020, 25, 99–100. [Google Scholar] [CrossRef] [PubMed]
- Pavan, M.; Chaudhari, A.P.; Ranganth, R. Altered Bioavailability of Tacrolimus Following Intravenous Administration of Tigecycline. Am. J. Kidney Dis. 2011, 57, 354. [Google Scholar] [CrossRef] [PubMed]
- Bienias, P. Amiodarone/Clarithromycin/Cotrimoxazole. React. Wkly. 2015, 1541, 21. [Google Scholar] [CrossRef]
- Zeitlinger, M.A.; Derendorf, H.; Mouton, J.W.; Cars, O.; Craig, W.A.; Andes, D.; Theuretzbacher, U. Protein Binding: Do We Ever Learn? Antimicrob. Agents Chemother. 2011, 55, 3067–3074. [Google Scholar] [CrossRef] [PubMed]
- Baquero, F.; Levin, B.R. Proximate and Ultimate Causes of the Bactericidal Action of Antibiotics. Nat. Rev. Microbiol. 2021, 19, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Malbrain, M.L.N.G.; Langer, T.; Annane, D.; Gattinoni, L.; Elbers, P.; Hahn, R.G.; De Laet, I.; Minini, A.; Wong, A.; Ince, C.; et al. Intravenous Fluid Therapy in the Perioperative and Critical Care Setting: Executive Summary of the International Fluid Academy (IFA). Ann. Intensive Care 2020, 10, 64. [Google Scholar] [CrossRef] [PubMed]
- Mehrotra, R.; De Gaudio, R.; Palazzo, M. Antibiotic Pharmacokinetic and Pharmacodynamic Considerations in Critical Illness. Intensive Care Med. 2004, 30, 2145–2156. [Google Scholar] [CrossRef]
- Ulldemolins, M.; Roberts, J.A.; Lipman, J.; Rello, J. Antibiotic Dosing in Multiple Organ Dysfunction Syndrome. Chest 2011, 139, 1210–1220. [Google Scholar] [CrossRef]
- Shah, S.; Barton, G.; Fischer, A. Pharmacokinetic Considerations and Dosing Strategies of Antibiotics in the Critically Ill Patient. J. Intensive Care Soc. 2015, 16, 147–153. [Google Scholar] [CrossRef]
- Roberts, J.A.; Lipman, J. Pharmacokinetic Issues for Antibiotics in the Critically Ill Patient. Crit. Care Med. 2009, 37, 840–851. [Google Scholar] [CrossRef] [PubMed]
- Kerling, D.A.; Clarke, S.C.; DeLuca, J.P.; Evans, M.O.; Kress, A.T.; Nadeau, R.J.; Selig, D.J. Systematic Review and Meta-Analysis of the Effect of Loop Diuretics on Antibiotic Pharmacokinetics. Pharmaceutics 2023, 15, 1411. [Google Scholar] [CrossRef] [PubMed]
- Ordaz, G.; Dagà, U.; Budia, A.; Pérez-Lanzac, A.; Fernández, J.M.; Jordán, C. Urinary PH and Antibiotics, Choose Carefully. a Systematic Review. Actas Urol. Esp. 2023, 47, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Reed, G.; Jiang, J.; Wang, Y.; Sunega, J.; Dong, R.; Ma, Y.; Esparham, A.; Ferrell, R.; Levine, M.; et al. Pharmacokinetic Evaluation of Intravenous Vitamin C: A Classic Pharmacokinetic Study. Clin. Pharmacokinet. 2022, 61, 1237–1249. [Google Scholar] [CrossRef] [PubMed]
- Rice, P.J.; Perry, R.J.; Afzal, Z.; Stockley, I.H. Antibacterial Prescribing and Warfarin: A Review. Br. Dent. J. 2003, 194, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Danziger, L.H.; Horn, K.S. Beta-Lactam Antibiotics. In Drug Interactions in Infectious Diseases: Antimicrobial Drug Interactions; Humana Press: Totowa, NJ, USA, 2018; pp. 1–56. [Google Scholar]
- Hall, J.J.; Bolina, M.; Chatterley, T.; Jamali, F. Interaction Between Low-Dose Methotrexate and Nonsteroidal Anti-Inflammatory Drugs, Penicillins, and Proton Pump Inhibitors: A Narrative Review of the Literature. Ann. Pharmacother. 2017, 51, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.S.; Kafle, A.; Reddy, I.S.J. Drug Interactions with Antibiotics. Int. J. Chem. Stud. 2018, 6, 2120–2122. [Google Scholar]
- Naidoo, S.; Meyers, A.M. Drugs and the Kidney. S. Afr. Med. J. 2015, 105, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Hodges, G.R. Aminoglycoside Toxicity. In The Aminoglycoside Antibiotics: A Guide to Therapy; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Okumura, S.; Ishihara, Y.; Echizen, H. Detection of Signals of Convulsion-Inducing Effect for Fluoroquinolone Antibiotics. J. Clin. Pharmacol. Ther. 2019, 50, 203–209. [Google Scholar]
- Kamath, A. Fluoroquinolone Induced Neurotoxicity: A Review. J. Adv. Pharm. Educ. Res. 2013, 3, 16–19. [Google Scholar]
- Lane, M.A.; Zeringue, A.; Mcdonald, J.R. Serious Bleeding Events Due to Warfarin and Antibiotic Co- Prescription In a Cohort of Veterans. Am. J. Med. 2015, 127, 657–663. [Google Scholar] [CrossRef]
- Rizk, H.G.; Lee, J.A.; Liu, Y.F.; Endriukaitis, L.; Isaac, J.L.; Bullington, W.M. Drug-Induced Ototoxicity: A Comprehensive Review and Reference Guide. Pharmacotherapy 2020, 40, 1265–1275. [Google Scholar] [CrossRef] [PubMed]
- Roblek, T.; Vaupotic, T.; Mrhar, A.; Lainscak, M. Drug-Drug Interaction Software in Clinical Practice: A Systematic Review. Eur. J. Clin. Pharmacol. 2015, 71, 131–142. [Google Scholar] [CrossRef] [PubMed]
Albumins | Fluid Therapy | Pressor Amines | Diuretics | Vitamin C | |
---|---|---|---|---|---|
Mechanism of action | Antibiotics may bind with proteins (especially albumins), as this causes a decrease in the free fraction of antibiotics that cannot exhibit any antibacterial properties. | Fluid therapy may alter antibiotic dosage due to increased volume of distribution (Vd), particularly for hydrophilic antibiotics. | They may change the distribution of hydrophilic antibiotics. | Concomitant use of diuretics, particularly furosemide, and antibiotics with renal elimination that cause Cmax to occur simultaneously leads to increased renal elimination of antibacterial drugs. | Causes a decrease in urine pH, which may cause an increase in renal elimination of antibiotics that are more alkaline. |
References | [72,73] | [74,75,76] | [77,78] | [79] | [80,81] |
Antibiotic | Co-Medication | Mechanism of Interaction | References |
---|---|---|---|
Penicillins | Oral anticoagulants | Increased risk of haemorrhages | [14,82] |
Probenecid | Blockage of tubular secretion of penicillin G and increased levels of plasma concentrations of the drug; decrease the volume of distribution of penicillin | [83] | |
Methotrexate | Penicillins may reduce renal secretion and result in increased systemic exposure | [84] | |
NSAIDs | Increase in penicillin exposure | [83] | |
Aspirin, Furosemide, Indomethacin, Sulphonamides | The half-time of the penicillin may be increased due to competitive inhibition of tubular secretion | [14,83,85,86] | |
Cephalosporins | Aminoglycosides and loop-diuretics | Cephalosporins potentiate the nephrotoxic effects of aminoglycosides and loop-diuretics | [18,87] |
Carbapenems | Valproic acid | Decrease in valproic acid serum level, liver injury | [22,23,25,26,27,28] |
Amikacin | Lower serum level of both antibiotics | [29] | |
Monobactams | Furosemide/Probenecid | Moderately increase the systemic exposure of aztreonam | [11] |
Fluoroquinolones | NSAIDs | Fluoroquinolones—convulsion-inducing effects remain unclear, have been suggested to antagonize the inhibitory effect of gamma-aminobutyric acid or active the excitatory N-methyl-D-aspartate receptors of brain neurons NSAIDs—some in vitro studies have shown that some NSAIDs may enhance the inhibitory effect of fluroquinolones on gamma-aminobutyric acid receptors | [88,89] |
Metal ions | Decreased antibiotic serum level | [32] | |
Drugs involving QTc | Prolonging QTc to serious arrhythmia | [33] | |
DOAC | Increase systemic levels of DOAC (higher risk of bleeding) | [36] | |
Macrolide | Colchicine | Heart failure; liver failure; death | [40,41] |
Digoxin | Increased digoxin serum level | [42] | |
Carbamazepine | Increased carbamazepine serum level | [43] | |
Valproic acid | Increase valproate serum levels (valproate toxicity) | [44,45] | |
Statins | Increased serum statin concentrations that cause rhabdomyolysis | [46] | |
DOAC | Increase systemic levels of DOAC (higher risk of bleeding) | [47] | |
Linezolid | Selective Serotonin Reuptake Inhibitors (SSRI): Citalopram Escitalopram Sertraline Fluoxetine Methadone Fentanyl | Serotonin syndrome: PK—peak concentration, area under plasma concentration curve, volume of distribution (VD), and lipophilicity PD—binding affinity (Ki) and IC50 for serotonin reuptake transporter (SERT) and 5-HT2A | [50,51,52,53,54,55,56] |
Digoxin | Increased levels of both drugs | [57] | |
Warfarin | Prolonged PT-INR during therapy | [58] | |
Rifampicin | Induces of P-glycoprotein that increase clearance of linezolid and decrease linezolid plasma concentrations | [59,60,62] | |
Co-trimoksazol | Warfarin | Increased risk of gastrointestinal bleeding | [63,64,90] |
Aminoglycosides | Loop diuretics | Ototoxicity: aminoglycosides—target outer hair cells at the basal turn of the cochlea before affecting the apical cells and inner hair cells loop diuretics—decrease blood flow to the inner ear | [64,91] |
Vancomycin | Piperacillin-tazobactam | Nephrotoxicity/ Acute Kidney Injury: Piperacillin-tazobactam—interstitial nephritis Vancomycin—tubular toxicity, oxidative stress, cast formation | [65] |
Tigecycline | Cyclosporine | Increased concentration of cyclosporine (reduction of its dosage) | [66,68] |
Tacrolimus | Growth of Tacrolimus levels | [69,70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radkowski, P.; Derkaczew, M.; Mazuchowski, M.; Moussa, A.; Podhorodecka, K.; Dawidowska-Fidrych, J.; Braczkowska-Skibińska, M.; Synia, D.; Śliwa, K.; Wiszpolska, M.; et al. Antibiotic–Drug Interactions in the Intensive Care Unit: A Literature Review. Antibiotics 2024, 13, 503. https://doi.org/10.3390/antibiotics13060503
Radkowski P, Derkaczew M, Mazuchowski M, Moussa A, Podhorodecka K, Dawidowska-Fidrych J, Braczkowska-Skibińska M, Synia D, Śliwa K, Wiszpolska M, et al. Antibiotic–Drug Interactions in the Intensive Care Unit: A Literature Review. Antibiotics. 2024; 13(6):503. https://doi.org/10.3390/antibiotics13060503
Chicago/Turabian StyleRadkowski, Paweł, Maria Derkaczew, Michał Mazuchowski, Annas Moussa, Katarzyna Podhorodecka, Justyna Dawidowska-Fidrych, Małgorzata Braczkowska-Skibińska, Daria Synia, Karol Śliwa, Marta Wiszpolska, and et al. 2024. "Antibiotic–Drug Interactions in the Intensive Care Unit: A Literature Review" Antibiotics 13, no. 6: 503. https://doi.org/10.3390/antibiotics13060503
APA StyleRadkowski, P., Derkaczew, M., Mazuchowski, M., Moussa, A., Podhorodecka, K., Dawidowska-Fidrych, J., Braczkowska-Skibińska, M., Synia, D., Śliwa, K., Wiszpolska, M., & Majewska, M. (2024). Antibiotic–Drug Interactions in the Intensive Care Unit: A Literature Review. Antibiotics, 13(6), 503. https://doi.org/10.3390/antibiotics13060503