Rumi and Pasteurized Kareish Cheeses Are a Source of β-Lactam-Resistant Salmonella in the Nile Delta Region of Egypt: Insights into Their Incidence, AMR Pattern, Genotypic Determinants of Virulence and β-Lactam Resistance
Abstract
:1. Introduction
2. Results
2.1. Prevalence and Distribution of Salmonella in Rumi and Pasteurized Kareish Cheeses from the Delta Region of Egypt
2.2. Distribution of Salmonella Serotypes and Virulence Genes in Rumi and Pasteurized Kareish Cheeses
2.3. Susceptibility to Antimicrobial Agents
2.4. Antimicrobial Resistance Phenotypes
2.5. Prevalence of NS-/ES-/AmpC-β-Lactams Resistance Genes
3. Discussion
4. Materials and Methods
4.1. Study Design and Sample Processing
4.2. Phenotypic Characterization of Antibiotic Resistance Profile
4.3. Detection of Virulence and Antimicrobial Resistance Genes
4.4. Data Analysis and Illustration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Y.; Zhou, X.; Jiang, Z.; Qi, Y.; Ed-Dra, A.; Yue, M. Antimicrobial resistance profiles and genetic typing of Salmonella serovars from chicken embryos in China. Antibiotics 2021, 10, 1156. [Google Scholar] [CrossRef] [PubMed]
- Majowicz, S.E.; Musto, J.; Scallan, E.; Angulo, F.J.; Kirk, M.; O’Brien, S.J.; Jones, T.F.; Fazil, A.; Hoekstra, R.M.; For the International Collaboration on Enteric Disease “Burden of Illness” Studies. The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. 2010, 50, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Kon, H.; Lurie-Weinberger, M.; Cohen, A.; Metsamber, L.; Keren-Paz, A.; Schwartz, D.; Carmeli, Y.; Schechner, V. Occurrence, typing, and resistance genes of ESBL/AmpC-producing Enterobacterales in fresh vegetables purchased in Central Israel. Antibiotics 2023, 12, 1528. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Elbediwi, M.; Nambiar, R.B.; Yang, H.; Lin, J.; Yue, M. Genomic characterization of antimicrobial-resistant Salmonella enterica in duck, chicken, and pig farms and retail markets in Eastern China. Microbiol. Spectr. 2022, 10, e01257-22. [Google Scholar] [CrossRef] [PubMed]
- Algammal, A.M.; El-Tarabili, R.M.; Abd El-Ghany, W.A.; Almanzalawi, E.A.; Alqahtani, T.M.; Ghabban, H.; Al-otaibi, A.S.; Alatfeehy, N.M.; Abosleima, N.M.; Hetta, H.F.; et al. Resistance profiles, virulence and antimicrobial resistance genes of XDR S. Enteritidis and S. Typhimurium. AMB Express 2023, 13, 110. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Wang, D.; Hao, W.; Sun, R.; Sun, J.; Liu, Y.; Liao, X. Prevalence, antibiotic resistance, virulence genes and molecular characteristics of Salmonella isolated from ducks and wild geese in China. Food Microbiol. 2024, 118, 104423. [Google Scholar] [CrossRef] [PubMed]
- Fahey, J.W.; Smilovitz Burak, J.; Evans, D. Sprout microbial safety: A reappraisal after a quarter-century. Food Front. 2023, 4, 318–324. [Google Scholar] [CrossRef]
- Abdelmalek, S.; Kadry, M.; Elshafiee, E.A.; Hamed, W.; Moussa, I.M.; Al-Maary, K.S.; Mubarak, A.S.; Hemeg, H.A.; Elbehiry, A. Occurrence of Salmonella infection and antimicrobial susceptibility for local Salmonella isolates from different sources in a cross-sectional study. Ital. J. Food Saf. 2019, 8, 8525. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Ghany, W.A. Salmonellosis: A food borne zoonotic and public health disease in Egypt. J. Infect. Dev. Ctries. 2020, 14, 674–678. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Razik, M.S.; Rizk, H.I.; Hassan, M.H. Surveillance of communicable diseases for decision-making in Egypt: 2006–2013. East. Mediterr. Health J. 2017, 23, 395. [Google Scholar] [CrossRef]
- Afifi, S.; Earhart, K.; Azab, M.A.; Youssef, F.G.; El Sakka, H.; Wasfy, M.; Mansour, H.; El Oun, S.; Rakha, M.; Mahoney, F. Hospital-based surveillance for acute febrile illness in Egypt: A focus on community-acquired bloodstream infections. Am. J. Trop. Med. Hyg. 2005, 73, 392–399. [Google Scholar] [CrossRef] [PubMed]
- El-Kowrany, S.I.; El- Zamarany, E.A.; El-Nouby, K.A.; El-Mehy, D.A.; Abo Ali, E.A.; Othman, A.A.; Salah, W.; El-Ebiary, A.A. Water pollution in the Middle Nile Delta, Egypt: An environmental study. J. Adv. Res. 2016, 7, 781–794. [Google Scholar] [CrossRef]
- CDC. Salmonella Homepage. Available online: https://www.cdc.gov (accessed on 11 March 2024).
- Finlayson, C.; Milton, G.R.; Prentice, R.C.; Davidson, N. The Wetland Book II: Distribution, Description and Conservation; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Sallam, K.I.; Mohammed, M.A.; Hassan, M.A.; Tamura, T. Prevalence, molecular identification and antimicrobial resistance profile of Salmonella serovars isolated from retail beef products in Mansoura, Egypt. Food Control 2014, 38, 209–214. [Google Scholar] [CrossRef]
- El-Baz, A.H.; El-Sherbini, M.; Abdelkhalek, A.; Al-Ashmawy, M.A. Prevalence and molecular characterization of Salmonella serovars in milk and cheese in Mansoura city, Egypt. J. Adv. Vet. Anim. Res. 2017, 4, 45. [Google Scholar] [CrossRef]
- Elafify, M.; Darwish, W.S.; El-Toukhy, M.; Badawy, B.M.; Mohamed, R.E.; Shata, R.R. Prevalence of multidrug resistant Salmonella spp. in dairy products with the evaluation of the inhibitory effects of ascorbic acid, pomegranate peel extract, and D-tryptophan against Salmonella growth in cheese. Int. J. Food Microbiol. 2022, 364, 109534. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Shimamoto, T.; Shimamoto, T. Characterization of integrons and resistance genes in multidrug-resistant Salmonella enterica isolated from meat and dairy products in Egypt. Int. J. Food Microbiol. 2014, 189, 39–44. [Google Scholar] [CrossRef] [PubMed]
- D’amico, D.J.; Druart, M.J.; Donnelly, C.W. Comparing the behavior of multidrug-resistant and pan susceptible Salmonella during the production and aging of a Gouda cheese manufactured from raw milk. J. Food Prot. 2014, 77, 903–913. [Google Scholar] [CrossRef]
- Oladapo, O.D.; Onifade, A.K.; Bayode, M.T. Direct detection of iro B, stn and hil A virulence genes in Salmonella enterica serovar typhimurium from non-ripened cheese. Bull. Natl. Res. Cent. 2022, 46, 175. [Google Scholar] [CrossRef]
- Bedassa, A.; Nahusenay, H.; Asefa, Z.; Sisay, T.; Girmay, G.; Kovac, J.; Vipham, J.L.; Zewdu, A. Prevalence and associated risk factors for Salmonella enterica contamination of cow milk and cottage cheese in Ethiopia. Food Saf. Risk 2023, 10, 2. [Google Scholar] [CrossRef]
- Sabeq, I.; Awad, D.; Hamad, A.; Nabil, M.; Aboubakr, M.; Abaza, M.; Fouad, M.; Hussein, A.; Shama, S.; Ramadan, H.; et al. Prevalence and molecular characterization of foodborne and human-derived Salmonella strains for resistance to critically important antibiotics. Transbound. Emerg. Dis. 2022, 69, e2153–e2163. [Google Scholar] [CrossRef]
- Elzhraa, F.; Al-Ashmawy, M.; El-Sherbini, M.; Abdelkhalek, A. Critical occurrence of verotoxgenic E. coli and non-typhoidal salmonella in some heat treated dairy products. Ital. J. Food Saf. 2021, 10, 9318. [Google Scholar] [CrossRef] [PubMed]
- Dong, P.; Zhu, L.; Mao, Y.; Liang, R.; Niu, L.; Zhang, Y.; Li, K.; Luo, X. Prevalence and profile of Salmonella from samples along the production line in Chinese beef processing plants. Food Control 2014, 38, 54–60. [Google Scholar] [CrossRef]
- Tasmin, R.; Gulig, P.A.; Parveen, S. Detection of virulence plasmid–encoded genes in Salmonella Typhimurium and Salmonella Kentucky isolates recovered from commercially processed chicken carcasses. J. Food Prot. 2019, 82, 1364–1368. [Google Scholar] [CrossRef] [PubMed]
- Diab, M.S.; Thabet, A.S.; Elsalam, M.A.; Ewida, R.M.; Sotohy, S.A. Detection of virulence and β-lactamase resistance genes of non-typhoidal Salmonella isolates from human and animal origin in Egypt “one health concern”. Gut Pathog. 2023, 15, 16. [Google Scholar] [CrossRef]
- Siddiky, N.A.; Sarker, M.S.; Khan, M.S.R.; Begum, R.; Kabir, M.E.; Karim, M.R.; Rahman, M.T.; Mahmud, A.; Samad, M.A. Virulence and antimicrobial resistance profiles of Salmonella enterica serovars isolated from chicken at wet markets in Dhaka, Bangladesh. Microorganisms 2021, 9, 952. [Google Scholar] [CrossRef] [PubMed]
- Zou, M.; Keelara, S.; Thakur, S. Molecular Characterization of Salmonella enterica Serotype Enteritidis Isolates from Humans by Antimicrobial Resistance, Virulence Genes, and Pulsed-Field Gel Electrophoresis. Foodborne Pathog. Dis. 2012, 9, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Punchihewage-Don, A.J.; Schwarz, J.; Bowers, J.; Parveen, S. Prevalence and antibiotic resistance of Salmonella in organic and non-organic chickens on the Eastern Shore of Maryland, USA. Front. Microbiol. 2024, 14, 1272892. [Google Scholar] [CrossRef] [PubMed]
- Kanaan, M.H.G.; Khalil, Z.K.; Khashan, H.T.; Ghasemian, A. Occurrence of virulence factors and carbapenemase genes in Salmonella enterica serovar Enteritidis isolated from chicken meat and egg samples in Iraq. BMC Microbiol. 2022, 22, 279. [Google Scholar] [CrossRef] [PubMed]
- da Cunha-Neto, A.; Carvalho, L.A.; Castro, V.S.; Barcelos, F.G.; Carvalho, R.C.T.; Rodrigues, D.d.P.; Conte-Junior, C.A.; Figueiredo, E.E.d.S. Salmonella anatum, S. infantis and S. schwarzengrund in Brazilian cheeses: Occurrence and antibiotic resistance profiles. Int. J. Dairy Technol. 2020, 73, 296–300. [Google Scholar] [CrossRef]
- Garbaj, A.M.; Gawella, T.B.B.; Sherif, J.A.; Naas, H.T.; Eshamah, H.L.; Azwai, S.M.; Gammoudi, F.T.; Abolghait, S.K.; Moawad, A.A.; Barbieri, I.; et al. Occurrence and antibiogram of multidrug-resistant Salmonella enterica isolated from dairy products in Libya. Vet. World 2022, 15, 1185–1190. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2011. EFSA J. 2013, 11, 3196. [Google Scholar] [CrossRef]
- Elsherbeny, S.M.; Rizk, D.E.; Al-Ashmawy, M.; Barwa, R. Prevalence and antimicrobial susceptibility of Enterobacteriaceae isolated from ready-to-eat foods retailed in Damietta, Egypt. Egypt. J. Basic Appl. Sci. 2024, 11, 116–134. [Google Scholar] [CrossRef]
- Mohammed, A.R.; El-Said, E.I.; Abd ElAal, S.F.; Kamal, R.M. Screening of antibiogram, virulence factors, and biofilm production of Staphylococcus aureus and the bio-control role of some probiotics as alternative antibiotics. Open Vet. J. 2024, 14, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Doménech, E.; Jimenez -Belenguer, A.; Amoros, J.A.; Ferrus, M.A.; Escriche, I. Prevalence and antimicrobial resistance of Listeria monocytogenes and Salmonella strains isolated in ready-to-eat foods in Eastern Spain. Food Control 2015, 47, 120–125. [Google Scholar] [CrossRef]
- Nweneka, C.V.; Tapha-Sosseh, N.; Sosa, A. Curbing the menace of antimicrobial resistance in developing countries. Harm Reduct. J. 2009, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Sallam, K.I.; Kasem, N.G.; Abdelkhalek, A.; Elshebrawy, H.A. Extensively drug-, ciprofloxacin-, cefotaxime-, and azithromycin-resistant Salmonella enterica serovars isolated from camel meat in Egypt. Int. J. Food Microbiol. 2024, 411, 110538. [Google Scholar] [CrossRef]
- Adel, W.A.; Ahmed, A.M.; Hegazy, Y.; Torky, H.A.; Shimamoto, T. High prevalence of ESBL and plasmid-mediated quinolone resistance genes in Salmonella enterica Isolated from retail meats and slaughterhouses in Egypt. Antibiotics 2021, 10, 881. [Google Scholar] [CrossRef] [PubMed]
- Elmonir, W.; Shalaan, S.; Tahoun, A.; Mahmoud, S.F.; Remela, E.M.A.; Eissa, R.; El-Sharkawy, H.; Shukry, M.; Zahran, R.N. Prevalence, antimicrobial resistance, and genotyping of Shiga toxin-producing Escherichia coli in foods of cattle origin, diarrheic cattle, and diarrheic humans in Egypt. Gut Pathog. 2021, 13, 8. [Google Scholar] [CrossRef]
- Elkenany, R.; Eltaysh, R.; Elsayed, M.; Abdel-Daim, M.; Shata, R. Characterization of multi-resistant Shigella species isolated from raw cow milk and milk products. J. Vet. Med. Sci. 2022, 84, 890–897. [Google Scholar] [CrossRef]
- Hounmanou, Y.M.G.; Bortolaia, V.; Dang, S.T.T.; Truong, D.; Olsen, J.E.; Dalsgaard, A. ESBL and AmpC β-Lactamase Encoding Genes in E. coli from pig and pig farm workers in Vietnam and their association with mobile genetic elements. Front. Microbiol. 2021, 12, 629139. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, L.; Hu, Y.; Dottorini, T.; Fanning, S.; Xu, J.; Li, F. Epidemiological study on prevalence, serovar diversity, multidrug resistance, and CTX-M-type extended-spectrum β-Lactamases of Salmonella spp. from patients with diarrhea, food of animal origin, and pets in several Provinces of China. Antimicrob. Agents Chemother. 2020, 64, e00092-20. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, X.; Wang, Z.; Chen, Y.; Robertson, I.D.; Guo, A.; Aleri, J.W. Prevalence and antimicrobial resistance of Salmonella and the enumeration of ESBL E. coli in dairy farms in Hubei Province, China. Prev. Vet. Med. 2023, 212, 105822. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Hameid Ahmed, A.; Saad Maharik, N.M.; Valero, A.; Kamal, S.M. Incidence of enterotoxigenic Staphylococcus aureus in milk and Egyptian artisanal dairy products. Food Control 2019, 104, 20–27. [Google Scholar] [CrossRef]
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Mooijman, K.A. The new ISO 6579-1: A real horizontal standard for detection of Salmonella, at last! Food Microbiol. 2018, 71, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, G. Kauffmann white scheme. J. Acta Path. Microbiol. Sci 1974, 61, 385. [Google Scholar]
- Hudzicki, J. Kirby-Bauer disk diffusion susceptibility test protocol. Am. Soc. Microbiol. 2009, 15, 55–63. [Google Scholar]
- Humphries, R.; Bobenchik, A.M.; Hindler, J.A.; Schuetz, A.N. Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, M100, 31st edition. J. Clin. Microbiol. 2021, 59, e00213–e00221. [Google Scholar] [CrossRef] [PubMed]
- Singhal, L.; Sharma, M.; Verma, S.; Kaur, R.; Britto, X.B.; Kumar, S.M.; Ray, P.; Gautam, V. Comparative evaluation of broth Microdilution with polystyrene and glass-coated plates, agar dilution, E-test, vitek, and disk diffusion for susceptibility testing of colistin and polymyxin B on carbapenem-resistant clinical Isolates of Acinetobacter baumannii. Microb. Drug Resist. 2018, 24, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Thomsen, J.; Abdulrazzaq, N.M.; AlRand, H.; The UAE AMR Surveillance Consortium; Everett, D.B.; Senok, A.; Menezes, G.A.; Moubareck, C.A. Epidemiology and antimicrobial resistance trends of Acinetobacter species in the United Arab Emirates: A retrospective analysis of 12 years of national AMR surveillance data. Front. Public Health 2024, 11, 1245131. [Google Scholar] [CrossRef]
- Krumperman, P.H. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol. 1983, 46, 165–170. [Google Scholar] [CrossRef]
- Afunwa, R.A.; Ezeanyinka, J.; Afunwa, E.C.; Udeh, A.S.; Oli, A.N.; Unachukwu, M. Multiple antibiotic resistant index of gram-negative bacteria from bird droppings in two commercial poultries in Enugu, Nigeria. Open J. Med. Microbiol. 2020, 10, 171–181. [Google Scholar] [CrossRef]
- Nayak, R.; Stewart, T.; Wang, R.F.; Lin, J.; Cerniglia, C.E.; Kenney, P.B. Genetic diversity and virulence gene determinants of antibiotic-resistant Salmonella isolated from preharvest turkey production sources. Int. J. Food Microbiol. 2004, 91, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Murugkar, H.V.; Rahman, H.; Dutta, P.K. Distribution of virulence genes in Salmonella serovars isolated from man & animals. Indian J. Med. Res. 2003, 117, 66–70. [Google Scholar] [PubMed]
- Swamy, S.C.; Barnhart, H.M.; Lee, M.D.; Dreesen, D.W. Virulence determinants invA and spvC in salmonellae isolated from poultry products, wastewater, and human sources. Appl. Environ. Microbiol. 1996, 62, 3768–3771. [Google Scholar] [CrossRef] [PubMed]
- Cardona-Castro, N.; Restrepo-Pineda, E.; Correa-Ochoa, M. Detection of hilA gene sequences in serovars of Salmonella enterica sufigbspecies enterica. Mem. Inst. Oswaldo Cruz 2002, 97. [Google Scholar] [CrossRef] [PubMed]
- Hasman, H.; Mevius, D.; Veldman, K.; Olesen, I.; Aarestrup, F.M. β-Lactamases among extended-spectrum β-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in The Netherlands. J. Antimicrob. Chemother. 2005, 56, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Giuriatti, J.; Stefani, L.M.; Brisola, M.C.; Crecencio, R.B.; Bitner, D.S.; Faria, G.A. Salmonella Heidelberg: Genetic profile of its antimicrobial resistance related to extended spectrum β-lactamases (ESBLs). Microb. Pathog. 2017, 109, 195–199. [Google Scholar] [CrossRef]
- Ramatla, T.; Mileng, K.; Ndou, R.; Mphuti, N.; Syakalima, M.; Lekota, K.E.; Thekisoe, O.M.M. Molecular detection of Integrons, Colistin and β-lactamase resistant genes in Salmonella enterica serovars Enteritidis and Typhimurium Isolated from chickens and rats inhabiting poultry farms. Microorganisms 2022, 10, 313. [Google Scholar] [CrossRef]
Rumi Cheese = 36/140 (25%) | Kareish Cheese = 8/140 (5.7%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Serovars | Group | Antigenic Structure | Number (%) of Salmonella Serovars Positive for PCR-Detected Virulence Genes | ||||||||
(No. of Isolates) | |||||||||||
O | H | invA | stn | spvC | hilA | invA | stn | spvC | hilA | ||
S. Typhimurium (14) | B | 1,4,5,12 | i: 1,2 | 11/11 (100%) | 11/11 (100%) | 11/11 (100%) | 11/11 (100%) | 3/3 (100%) | 3/3 (100%) | 3/3 (100%) | 3/3 (100%) |
S. Enteritidis (8) | D1 | 1,9,12 | g, m: - | 6/6 (100%) | 6/6 (100%) | 0/6 (0.00%) | 6/6 (100%) | 2/2 (100%) | 2/2 (100%) | 0/2 (0.00%) | 2/2 (100%) |
S. Infantis (7) | C1 | 6,7 | r: 1,5 | 7/7 (100%) | 7/7 (100%) | 0/7 (0.00%) | 7/7 (100%) | - | - | - | - |
S. Virchow (5) | C1 | 6,7,14 | r: 1,2 | 2/2 (100%) | 2/2 (100%) | 0/2 (0.00%) | 2/2 (100%) | 3/3 (100%) | 3/3 (100%) | 0/3 (0.00%) | 3/3 (100%) |
S. Tsevie (4) | B | 1,4,12 | i: e, n, z15 | 4/4 (100%) | 4/4 (100%) | 0/4 (0.00%) | 4/4 (100%) | - | - | - | - |
S. Rissen (2) | C1 | 6,7,14 | f, g: - | 2/2 (100%) | 0/2 (0.00%) | 0/2 (0.00%) | 2/2 (100%) | - | - | - | - |
S. Shubra (2) | B | 4,5,12 | Z: 1,2 | 2/2 (100%) | 2/2 (100%) | 0/2 (0.00%) | 0/2 (0.00%) | - | - | - | - |
S. Anatum (2) | E1 | 3,10,15,34 | e, h: 1,6 | 2/2 (100%) | 0/2 (0.00%) | 0/2 (0.00%) | 2/2 (100%) | - | - | - | - |
Total (44) | 36/36 (100%) | 32/36 (88.88%) | 11/36 (30.56%) | 34/36 (94.44%) | 8/8 (100%) | 8/8 (100%) | 3/8 (37.50%) | 8/8 (100%) |
Classification | Antibiotics | Potency (μg/disk) | Classification | Antibiotics | Potency (µg/disk) |
---|---|---|---|---|---|
Penicillins | AMP | 10 | Aminoglycosides | GM | 10 |
AMX | 2 | AMI | 30 | ||
AMC | 10 | NEO | 30 | ||
Cephalosporins | CAZ | 30 | Tetracyclins | TET | 30 |
CEP | 30 | Macrolides | ERY | 15 | |
CEF | 30 | Lincosamides | CLI | 10 | |
CTZ | 30 | Quinolones | NAL | 30 | |
CFP | 30 | Fluorquinolones | CIP | 5 | |
Carbapenems | IPM | 10 | Sulfonamides | SMX | 25 |
MPM | 10 | TMP-SMX | 25 | ||
Monobactams | ATM | 30 | |||
Glycopeptides | VAN | 5 | Polymyxins | COL | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elzhraa, F.; Al-Ashmawy, M.; El-Sherbini, M.; El-Sebaey, A.M.; Mohácsi-Farkas, C.; Kiskó, G.; Belák, Á. Rumi and Pasteurized Kareish Cheeses Are a Source of β-Lactam-Resistant Salmonella in the Nile Delta Region of Egypt: Insights into Their Incidence, AMR Pattern, Genotypic Determinants of Virulence and β-Lactam Resistance. Antibiotics 2024, 13, 454. https://doi.org/10.3390/antibiotics13050454
Elzhraa F, Al-Ashmawy M, El-Sherbini M, El-Sebaey AM, Mohácsi-Farkas C, Kiskó G, Belák Á. Rumi and Pasteurized Kareish Cheeses Are a Source of β-Lactam-Resistant Salmonella in the Nile Delta Region of Egypt: Insights into Their Incidence, AMR Pattern, Genotypic Determinants of Virulence and β-Lactam Resistance. Antibiotics. 2024; 13(5):454. https://doi.org/10.3390/antibiotics13050454
Chicago/Turabian StyleElzhraa, Fatma, Maha Al-Ashmawy, Mohammed El-Sherbini, Ahmed M. El-Sebaey, Csilla Mohácsi-Farkas, Gabriella Kiskó, and Ágnes Belák. 2024. "Rumi and Pasteurized Kareish Cheeses Are a Source of β-Lactam-Resistant Salmonella in the Nile Delta Region of Egypt: Insights into Their Incidence, AMR Pattern, Genotypic Determinants of Virulence and β-Lactam Resistance" Antibiotics 13, no. 5: 454. https://doi.org/10.3390/antibiotics13050454
APA StyleElzhraa, F., Al-Ashmawy, M., El-Sherbini, M., El-Sebaey, A. M., Mohácsi-Farkas, C., Kiskó, G., & Belák, Á. (2024). Rumi and Pasteurized Kareish Cheeses Are a Source of β-Lactam-Resistant Salmonella in the Nile Delta Region of Egypt: Insights into Their Incidence, AMR Pattern, Genotypic Determinants of Virulence and β-Lactam Resistance. Antibiotics, 13(5), 454. https://doi.org/10.3390/antibiotics13050454