Efficacy and Synergistic Potential of Cinnamon (Cinnamomum zeylanicum) and Clove (Syzygium aromaticum L. Merr. & Perry) Essential Oils to Control Food-Borne Pathogens in Fresh-Cut Fruits
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of the EOs
2.2. Agar Disk Diffusion Assay
2.3. Minimum Inhibitory Concentration (MIC) and Fractional Inhibitory Concentration Index (FIC Index) Determination
2.4. Growth Kinetics Study
2.5. Evaluation of the Antibacterial Activity by “On Food” Studies
3. Discussion
4. Materials and Methods
4.1. Microbial Strains and Essential Oils
4.2. Chemical Characterization of the EOs
4.2.1. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis
4.2.2. Gas Chromatography–Flame Ionization Detection (GC–FID) Analysis
4.3. Agar Disk Diffusion Assay
4.4. Minimum Inhibitory Concentration (MIC)
4.5. Determination of the Fractional Inhibitory Concentration Index (FIC Index)
4.6. Growth Kinetics Study
4.7. Evaluation of the Antibacterial Activity by “On Food” Studies
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Ramos, B.; Miller, F.; Brandão, T.R.; Teixeira, P.; Silva, C.L. Fresh fruits and vegetables—An overview on applied methodologies to improve its quality and safety. Innov. Food Sci. Emerg. Technol. 2013, 20, 1–15. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Diet, Nutrition and the Prevention of Chronic Diseases; Report of a joint WHO/FAO; WHO: Geneva, Switzerland, 2002; WHO Technical Report Series No 916; Available online: https://apps.who.int/iris/bitstream/handle/10665/42665/WHO_TRS_916.pdf (accessed on 11 May 2019).
- Santos, M.I.; Grácio, M.; Silva, M.C.; Pedroso, L.; Lima, A. One health perspectives on food safety in minimally processed vegetables and fruits: From farm to fork. Microorganisms 2023, 11, 2990. [Google Scholar] [CrossRef] [PubMed]
- Balali, G.I.; Yar, D.D.; Afua Dela, V.G.; Adjei-Kusi, P. Microbial contamination, an increasing threat to the consumption of fresh fruits and vegetables in today’s world. Int. J. Microbiol. 2020, 2020, 3029295. [Google Scholar] [CrossRef] [PubMed]
- Carstens, C.K.; Salazar, J.K.; Darkoh, C. Multistate outbreaks of foodborne illness in the United States associated with fresh produce from 2010 to 2017. Front. Microbiol. 2019, 10, 2667. [Google Scholar] [CrossRef] [PubMed]
- Wadamori, Y.; Gooneratne, R.; Hussain, M.A. Outbreaks and factors influencing microbiological contamination of fresh produce. J. Sci. Food Agric. 2017, 97, 1396–1403. [Google Scholar] [CrossRef] [PubMed]
- Melo, J.; Quintas, C. Minimally processed fruits as vehicles for foodborne pathogens. AIMS Microbiol. 2023, 9, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Machado-Moreira, B.; Richards, K.; Brennan, F.; Abram, F.; Burgess, C.M. Microbial contamination of freshp: What, where, and how? Compr. Rev. Food Sci. Food Saf. 2019, 18, 1727–1750. [Google Scholar] [CrossRef] [PubMed]
- Luciano, W.A.; Griffin, S.; Targino de Souza Pedrosa, G.; Alvarenga, V.; Valdramidis, V.; Magnani, M. Growth behavior of low populations of Listeria monocytogenes on fresh-cut mango, melon and papaya under different storage temperatures. Food Microbiol. 2022, 102, 103930. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Multistate Outbreak of Listeriosis Linked to Whole Cantaloupes from Jensen farms, Colorado. 2011. Available online: https://www.cdc.gov/listeria/outbreaks/cantaloupes-jensen-farms/index.html (accessed on 27 August 2012).
- Centers for Disease Control and Prevention (CDC). Multistate Outbreak of Listeriosis Linked to Commercially Produced, Prepackaged Caramel Apples. 2015. Available online: https://www.cdc.gov/listeria/outbreaks/caramel-apples-12-14/index.html (accessed on 12 February 2015).
- Food and Drug Administration (FDA). Outbreak Investigation of Listeria monocytogenes: Peaches, Plums, & Nectarines. 2023. Available online: https://www.fda.gov/food/outbreaks-foodborne-illness/outbreak-investigation-listeria-monocytogenes-peaches-plums-nectarines-november-2023 (accessed on 30 January 2024).
- Harris, L.J.; Farber, J.N.; Beuchat, L.R.; Parish, M.E.; Suslow, T.V.; Garrett, E.H.; Busta, F.F. Outbreaks associated with fresh produce: Incidence, growth, and survival of pathogens in fresh and fresh-cut produce. Compr. Rev. Food Sci. Food Saf. 2003, 2 (Suppl. S1), 78–141. [Google Scholar] [CrossRef]
- Del Rosario, B.A.; Beuchat, L.R. Survival and growth of enterohemorrhagic Escherichia coli O157:H7 in cantaloupe and watermelon. J. Food Prot. 1995, 58, 105–107. [Google Scholar] [CrossRef]
- Castillo, A.; Martínez-Téllez, M.A.; Rodríguez-García, M.O. Produce Contamination Problem: Causes and Solutions; Melons (Chapter 10); Matthews, K.R., Sapers, G.M., Doyle, M.P., Eds.; Academic Press: New York, NY, USA, 2014; pp. 207–236. [Google Scholar]
- Food and Drug Administration (FDA). Outbreak Investigation of Salmonella enteritidis: Peaches. 2020. Available online: https://www.fda.gov/food/outbreaks-foodborne-illness/outbreak-investigation-salmonella-enteritidis-peaches-august-2020 (accessed on 6 June 2021).
- Centers for Disease Control and Prevention (CDC). Salmonella Outbreak Linked to Cantaloupes. 2024. Available online: https://www.cdc.gov/salmonella/sundsvall-11-23/index.html (accessed on 19 January 2024).
- Byrne, L.; Fisher, I.; Peters, T.; Mather, A.; Thomson, N.; Rosner, B.; Bernard, H.; McKeown, P.; Cormican, M.; Cowden, J.; et al. International outbreak control team. A multi-country outbreak of Salmonella Newport gastroenteritis in Europe associated with watermelon from Brazil, confirmed by whole genome sequencing: October 2011 to January 2012. Eurosurveillance 2014, 19, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Bari, M.L.; Hossain, M.A.; Isshiki, K.; Ukuku, D. Behavior of Yersinia enterocolitica in foods. J. Pathog. 2011, 2011, 420732. [Google Scholar] [CrossRef]
- Quaglio, P.; Aggazzotti, G.; Fabio, A.; Messi, P.; Mantovani, G. Presenza di batteri appartenenti al genere Yersinia in acque superficiali e di falda Presence of bacteria belonging to the genus Yersinia in surface and ground water. Ann. Ig. 1989, 1, 157–164. [Google Scholar]
- European Food Safety Authority; European Centre for Disease Prevention and Control. European Food Safety Authority and European Centre for Disease Prevention and Control. The European Union One Health 2021 Zoonoses Report. EFSA J. 2022, 20, 7666. [Google Scholar] [CrossRef]
- Xu, F.; Liu, S.; Liu, Y.; Wang, S. Effect of mechanical vibration on postharvest quality and volatile compounds of blueberry fruit. Food Chem. 2021, 349, 129216. [Google Scholar] [CrossRef]
- Iseppi, R.; Camellini, S.; Sabia, C.; Messi, P. Combined antimicrobial use of essential oils and bacteriocin bacLP17 as seafood biopreservative to control Listeria monocytogenes both in planktonic and in sessile forms. Res. Microbiol. 2020, 171, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Falleh, H.; Ben Jemaa, M.; Saada, M.; Ksouri, R. Essential oils: A promising eco-friendly food preservative. Food Chem. 2020, 330, 127268. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, F.; Lai, S.; Wang, H.; Yang, H. Impact of soybean protein isolate-chitosan edible coating on the softening of apricot fruit during storage. LWT 2018, 96, 604–611. [Google Scholar] [CrossRef]
- Liu, Q.; Meng, X.; Li, Y.; Zhao, C.N.; Tang, G.Y.; Li, H.B. Antibacterial and antifungal activities of spices. Int. J. Mol. Sci. 2017, 18, 1283. [Google Scholar] [CrossRef]
- Mohamed, S.H.; Zaky, W.M.; Kassem, J.M.; Abbas, H.M.; Salem, M.M.E.; Said-Al Ahl, H.A.H. Impact of antimicrobial properties of some essential oils on cheese yoghurt quality. World Appl. Sci. J. 2013, 27, 497–507. [Google Scholar]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology Library Database. Available online: https://webbook.nist.gov/ (accessed on 11 March 2024).
- Jabs, J.; Devine, C.M. Time scarcity and food choices: An overview. Appetite 2006, 47, 196–204. [Google Scholar] [CrossRef]
- Walsh, K.A.; Bennett, S.D.; Mahovic, M.; Gould, L.H. Outbreaks associated with cantaloupe, watermelon, and honeydew in the United States, 1973–2011. Foodborne Pathog. Dis. 2014, 11, 945–952. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.G.; Liu, T.; Hu, Q.P.; Cao, X.M. Chemical composition, antibacterial properties and mechanism of action of essential oil from clove buds against Staphylococcus aureus. Molecules 2016, 21, 1194. [Google Scholar] [CrossRef]
- Chaieb, K.; Hajlaoui, H.; Zmantar, T.; Kahla-Nakbi, A.B.; Rouabhia, M.; Mahdouani, K.; Bakhrouf, A. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): A short review. Phytother. Res. 2007, 21, 501–506. [Google Scholar] [CrossRef]
- Lomarat, P.; Phanthong, P.; Wongsariya, K.; Chomnawang, M.T.; Bunyapraphatsara, N. Bioautography-guided isolation of antibacterial compounds of essential oils from Thai spices against histamine-producing bacteria. Pak. J. Pharm. Sci. 2013, 26, 473–477. [Google Scholar] [PubMed]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.V.; Gan, S.H. Cinnamon: A multifaceted medicinal plant. Evid. Based Complement. Alternat. Med. 2014, 2014, 642942. [Google Scholar] [CrossRef]
- Shreaz, S.; Wani, W.A.; Behbehani, J.M.; Raja, V.; Irshad, M.; Karched, M.; Ali, I.; Siddiqi, W.A.; Hun, L.T. Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia 2016, 112, 116–131. [Google Scholar] [CrossRef]
- Badei, A.; Faheld, S.; El-Akel, A.; Mahmoud, B. Application of some spices in flavoring and preservation of cookies: 2-antimicrobial and sensory properties of cardamom, cinnamon and clove. Dtsch. Lebensm. Rundsch. 2002, 98, 261–265. [Google Scholar]
- Angienda, P.O.; Onyango, D.M.; Hill, D.J. Potential application of plant essential oils at sub-lethal concentrations under extrinsic conditions that enhance their antimicrobial effectiveness against pathogenic bacteria. Afr. J. Microbiol. Res. 2010, 4, 1678–1684. [Google Scholar]
- Liang, Z.W.; Cheng, Z.H.; Mittal, G.S. Inactivation of microorganisms in apple cider using spice powders, extracts and oils as antimicrobials with and without low-energy pulsed electric field. J. Food Agric. Environ. 2003, 1, 28–33. [Google Scholar]
- Nanasombat, S.; Wimuttigosol, P. Antimicrobial and antioxidant activity of spice essential oils. Food Sci. Biotechnol. 2011, 20, 45–53. [Google Scholar] [CrossRef]
- Trajano, V.N.; Lima, E.D.; de Souza, E.L.; Travassos, A. Antibacterial property of spice essential oils on food contaminating bacteria. Ciencia Tecnol. Aliment. 2009, 29, 542–545. [Google Scholar] [CrossRef]
- Mvuemba, H.N.; Green, S.E.; Tsoomo, A.; Avis, T.J. Antimicrobial efficacy of cinnamon, ginger, horseradish and nutmeg extracts against spoilage pathogens. Phytoprotection 2009, 90, 65–70. [Google Scholar] [CrossRef]
- Cui, H.; Li, W.; Li, C.; Vittayapadung, S.; Lin, L. Liposome containing cinnamon oil with antibacterial activity against methicillin-resistant Staphylococcus aureus biofilm. Biofouling 2016, 32, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Mikhaylova, Y.; Shelenkov, A.; Chernyshkov, A.; Tyumentseva, M.; Saenko, S.; Egorova, A.; Manzeniuk, I.; Akimkin, V. Whole-genome analysis of Staphylococcus aureus isolates from ready-to-eat food in Russia. Foods 2022, 11, 2574. [Google Scholar] [CrossRef] [PubMed]
- Purkait, S.; Bhattacharya, A.; Bag, A.; Chattopadhyay, R.R. Synergistic antibacterial, antifungal and antioxidant efficacy of cinnamon and clove essential oils in combination. Arch. Microbiol. 2020, 202, 1439–1448. [Google Scholar] [CrossRef]
- Iseppi, R.; Condò, C.; Messi, P. Synergistic inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by Melaleuca alternifolia Chell (Tea Tree) and Eucalyptus globulus Labill. essential oils in association with oxacillin. Antibiotics 2023, 12, 846. [Google Scholar] [CrossRef]
- Iseppi, R.; Mariani, M.; Condò, C.; Sabia, C.; Messi, P. Essential oils: A natural weapon against antibiotic-resistant bacteria responsible for nosocomial infections. Antibiotics 2021, 10, 417. [Google Scholar] [CrossRef]
- Adams, R. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Pub Corp: Carol Stream, IL, USA, 2007. [Google Scholar]
- CLSI document M02eA11; Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard. 11th ed. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012.
- Klancnik, A.; Piskernik, S.; Jersek, B.; Mozina, S.S. Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. J. Microbiol. Methods. 2010, 81, 121–126. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 29th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019; Volume 39. [Google Scholar]
- Hemaiswaryaa, S.; Kruthiventib, A.K.; Doblea, M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 2008, 15, 639–652. [Google Scholar] [CrossRef] [PubMed]
- Motulsky, H. The GraphPad Guide to Comparing Dose-Response or Kinetic Curves; GraphPad Software: San Diego, CA, USA, 1998. [Google Scholar]
Compound | Lit. LRI | Exp. LRI | Cinnamomum zeylanicum | Syzygium aromaticum |
---|---|---|---|---|
α-thujene | 928 | 926 | 0.10 | - |
α-pinene | 936 | 932 | 0.47 | - |
camphene | 950 | 947 | 0.19 | - |
sabinene | 973 | 972 | 0.21 | - |
α-phellandrene | 1004 | 1002 | 0.37 | - |
α-terpinene | 1017 | 1014 | 0.18 | - |
p-cymene | 1024 | 1022 | 1.44 | - |
limonene | 1029 | 1026 | 2.23 | 0.26 |
linalool | 1099 | 1100 | 3.36 | 0.71 |
fenchol | 1112 | 1116 | - | 0.14 |
camphor | 1143 | 1143 | - | 0.24 |
terpinen-4-ol | 1177 | 1176 | 0.21 | - |
α-terpineol | 1190 | 1190 | 0.42 | - |
trans-cinnamaldehyde | 1277 | 1278 | 68.96 | - |
bornyl acetate | 1287 | 1287 | 0.30 | - |
thymol | 1292 | 1292 | 0.13 | - |
citronellyl acetate | 1357 | 1362 | 3.37 | - |
eugenol | 1378 | 1378 | 0.74 | 79.61 |
α-copaene | 1376 | 1381 | - | 0.34 |
β-caryophyllene | 1420 | 1424 | 5.64 | 3.05 |
α-bergamotene | 1444 | 1445 | 0.26 | - |
cinnamyl acetate | 1445 | 1449 | 2.07 | - |
α-humulene | 1453 | 1458 | 1.15 | 0.51 |
γ-cadinene | 1523 | 1522 | 1.95 | - |
δ-cadinene | 1527 | 1527 | 0.19 | - |
eugenyl acetate | 1526 | 1535 | - | 11.47 |
caryophyllene oxide | 1590 | 1594 | 1.06 | 1.64 |
Total | 95.00 | 97.97 |
Indicator Strains | Cinnamon Essential Oil | Clove Essential Oil |
---|---|---|
Yersinia enterocolitica ATCC 23715 | 32 ± 1.1 | 35 ± 0.6 |
Escherichia coli ATCC 25922 | 29 ± 1.0 | 31 ± 1.4 |
Salmonella Typhimurium ATCC 19585 | 27 ± 0.9 | 30 ± 1.3 |
Listeria monocytogenes NCTC 10888 | 29 ± 0.5 | 32 ± 1.6 |
Staphylococcus aureus ATCC 6538 | 27 ± 0.9 | 31 ± 1.6 |
Strains | EO | MIC EOs (μg/mL) | MIC EO/EO (μg/mL) | FIC Index |
---|---|---|---|---|
Yersinia enterocolitica ATCC 23715 | Cinnamon Clove | 4 1 | 1 0.25 | 0.5 |
Escherichia coli ATCC 25922 | Cinnamon Clove | 8 4 | 2 1 | 0.5 |
Salmonella Typhimurium ATCC 19585 | Cinnamon Clove | 64 8 | 16 2 | 0.5 |
Listeria monocytogenes NCTC 10888 | Cinnamon Clove | 64 8 | 16 2 | 0.5 |
Staphylococcus aureus ATCC 6538 | Cinnamon Clove | 64 8 | 16 2 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iseppi, R.; Truzzi, E.; Sabia, C.; Messi, P. Efficacy and Synergistic Potential of Cinnamon (Cinnamomum zeylanicum) and Clove (Syzygium aromaticum L. Merr. & Perry) Essential Oils to Control Food-Borne Pathogens in Fresh-Cut Fruits. Antibiotics 2024, 13, 319. https://doi.org/10.3390/antibiotics13040319
Iseppi R, Truzzi E, Sabia C, Messi P. Efficacy and Synergistic Potential of Cinnamon (Cinnamomum zeylanicum) and Clove (Syzygium aromaticum L. Merr. & Perry) Essential Oils to Control Food-Borne Pathogens in Fresh-Cut Fruits. Antibiotics. 2024; 13(4):319. https://doi.org/10.3390/antibiotics13040319
Chicago/Turabian StyleIseppi, Ramona, Eleonora Truzzi, Carla Sabia, and Patrizia Messi. 2024. "Efficacy and Synergistic Potential of Cinnamon (Cinnamomum zeylanicum) and Clove (Syzygium aromaticum L. Merr. & Perry) Essential Oils to Control Food-Borne Pathogens in Fresh-Cut Fruits" Antibiotics 13, no. 4: 319. https://doi.org/10.3390/antibiotics13040319
APA StyleIseppi, R., Truzzi, E., Sabia, C., & Messi, P. (2024). Efficacy and Synergistic Potential of Cinnamon (Cinnamomum zeylanicum) and Clove (Syzygium aromaticum L. Merr. & Perry) Essential Oils to Control Food-Borne Pathogens in Fresh-Cut Fruits. Antibiotics, 13(4), 319. https://doi.org/10.3390/antibiotics13040319